Recent Advances of Sequence Regulation via Latent Monomer Strategy
-
摘要: 序列是指高分子链中的单体单元通过共价键连接的次序。自然界中生物大分子,如蛋白质和DNA等,他们的精确序列结构决定了其复杂且精密的功能。受此启发,序列可控高分子的合成及其结构性能研究日益成为高分子学科的热点,受到越来越多研究者的关注。本文将聚焦于近年来在序列调控中重要成果,突出介绍本课题组提出的休眠单体策略在序列可控高分子合成中的研究进展。最后,基于这些研究进展对休眠单体策略进行了总结和展望。
-
关键词:
- 高分子序列调控 /
- 活性/可控自由基聚合 /
- 休眠单体策略 /
- Diels-Alder反应 /
- 马来酰亚胺
Abstract: The precisely-defined sequence structure of biomacromolecule, e.g., protein and DNA, enable the sophisticated and unique functions. Inspired by this, polymer scientists have made enormous efforts to achieve the precise sequence regulation in synthetic polymers. Up to date, a variety of approaches toward efficient sequence-regulation based on step-growth and chain-growth polymerization have been developed. This review summarizes the recent progress on the sequence regulation approaches, and highlights the latent monomer strategy for sequence regulation. The latent monomer strategy for sequence regulation developed by our group relies on the thermal-responsive furan/maleimide Diels-Alder reaction. By programmatically manipulation of the polymerization temperature, varieties of sequence-controlled structures are readily produced. Moreover, this approach also bridges from sequence-controlled polymers to graft copolymers with functions and architectures. Finally, a critical outlook on the latent monomer strategy and future research directions are also provided. -
图 1 A)呋喃保护马来酰亚胺休眠单体的低温“休眠”和高温“激活”原理示意图[14];B)休眠单体策略合成序列可控高分子示意图;C)休眠单体及功能化休眠单体示例
Figure 1. A) Schematic illustration of the mechanism of the deactivation and activation of furan-protected maleimide as the latent monomer [14]; B) Synthesis of diverse sequence-controlled polymers via the latent monomer strategy; C) Chemical structures of the latent monomer examples
图 2 A)呋喃保护的马来酰亚胺休眠单体和苯乙烯单体共聚合成序列可控高分子示意图,B)序列控制FMI与苯乙烯的ATRP聚合的动力学曲线图,C)聚合物链MI的累积组成(Fcum)和瞬时组成(Finst)与归一化链长之间的关系,D) 链增长和马来酰亚胺单体插入示意图[14]
Figure 2. A) Schematic illustration of the synthesis of sequence-controlled polymer based on furan-protected maleimide as a latent monomer, B) Kinetic plots of sequence-controlled ATRP polymerization of FMI and St, C) cumulative (Fcum) and instantaneous (Finst) content of MI in polymer chains as a function of normalized chain length, D) SEC traces [14]
图 4 A)endo-和exo-两种立构不同的休眠单体的高温“激活”原理及序列控制四元RAFT共聚示意图,B)endo-和exo-两种立体构型的逆D-A反应行为动力学,C)序列控制endo-FMI、exo-FHMI与苯乙烯的RAFT三元共聚[16]
Figure 4. A) Schematic illustration of the actived mechanisms at high temperature for endo- and exo- latent monomers and the sequence-controlled RAFT quaternary polymerization, B) Kinetics of retro D-A reactions of endo- and exo- latent monomers, C) Sequence-controlled RAFT ternary polymerization of endo-FMI, exo-FHMI, and St [16]
图 5 A)二噻吩基呋喃保护的马来酰亚胺D-A加合物可逆D-A反应的光热双重控制原理示意图;B)光热双重控制下的BMA、FMOH和DTFMMI-c的RAFT三元共聚,C)动力学曲线图,D)聚合物链中MOH和MMI的瞬时组成(Finst)和累积组成(Fcum)与归一化链长之间的关系[18]
Figure 5. A) Schematic illustration of the photo-thermal dual-regulated mechanism of the reversible D-A reaction of dithienylfuran-protected maleimide D-A adduct; B) Photo-thermal dual-regulated RAFT ternary polymerization of BMA, FHOH, and DTFMMI-c, C) kinetic plots, D) cumulative (Fcum) and instantaneous (Finst) contents of the MOH and MMI in polymer chains as a function of normalized chain length [18]
图 6 A)功能化休眠单体的低温“休眠”和高温“激活”原理示意图,B)温控下休眠单体与苯乙烯RAFT共聚生成多种序列的聚合物[19]
Figure 6. A) Schematic illustration of the mechanism of the deactivation and activation of functionalized latent monomers, B) Synthesis of multiple sequence-controlled polymers by manipulating the temperature via RAFT polymerization by using the functionalized latent monomers and St [19]
-
[1] HIBI Y, TOKUOKA S, TERASHIMA T, OUCHI M, SAWAMOTO M. Design of AB divinyl "template monomers'' toward alternating sequence control in metal-catalyzed living radical polymerization [J]. Polymer Chemistry,2011,2(2):341-347. [2] HIBI Y, OUCHI M, SAWAMOTO M. Sequence-Regulated Radical Polymerization with a Metal-Templated Monomer: Repetitive ABA Sequence by Double Cyclopolymerization [J]. Angewandte Chemie International Edition,2011,50(32):7434-7437. [3] IDA S, TERASHIMA T, OUCHI M, SAWAMOTO M. Selective Radical Addition with a Designed Heterobifunctional Halide: A Primary Study toward Sequence-Controlled Polymerization upon Template Effect [J]. Journal of the American Chemical Society,2009,131(61):10808-10809. [4] SATOH K, MATSUDA M, NAGAI K, KAMIGAITO M. AAB-Sequence Living Radical Chain Copolymerization of Naturally Occurring Limonene with Maleimide: An End-to-End Sequence-Regulated Copolymer [J]. Journal of the American Chemical Society,2010,132(29):10003-10005. [5] MATSUDA M, SATOH K, KAMIGAITO M. 1: 2-sequence-regulated radical copolymerization of naturally occurring terpenes with maleimide derivatives in fluorinated alcohol [J]. Journal of Polymer Science Part a-Polymer Chemistry,2013,51(8):1774-1785. [6] OJIKA M, SATOH K, KAMIGAITO M. BAB-random-C Monomer Sequence via Radical Terpolymerization of Limonene(A), Maleimide(B), and Methacrylate(C): Terpene Polymers with Randomly Distributed Periodic Sequences [J]. Angewandte Chemie-International Edition,2017,56(7):1789-1793. [7] PFEIFER S, LUTZ J F. A facile procedure for controlling monomer sequence distribution in radical chain polymerizations [J]. Journal of the American Chemical Society,2007,129(31):9542-9543. [8] NAKATANI K, OGURA Y, KODA Y, TERASHIMA T, SAWAMOTO M. Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification [J]. Journal of the American Chemical Society,2012,134(9):4373-4383. [9] NAKATANI K, TERASHIMA T, SAWAMOTO M. Concurrent Tandem Living Radical Polymerization: Gradient Copolymers via In Situ Monomer Transformation with Alcohols [J]. Journal of the American Chemical Society,2009,131(38):13600-13601. [10] XU C R, ZHANG Z, PAN C Y, HONG C Y. A strategy combining quantitative reactions and reversible-covalent chemistry for sequential synthesis of sequence-controlled polymers with different sequences [J]. Polymer,2019,172:294-304. [11] DENG X X, LI L, LI Z L, LV A, DU F S, LI Z C. Sequence Regulated Poly(ester-amide)s Based on Passerini Reaction [J]. ACS Macro Letters,2012,1(11):1300-1303. [12] COULEMBIER O, LOHMEIJER B G G, DOVE A P, PRATT R C, MESPOUILLE L, CULKIN D A, BENIGHT S J, DUBOIS P, WAYMOUTH R M, HEDRICK J L. Alcohol adducts of N-heterocyclic carbenes: Latent catalysts for the thermally-controlled living polymerization of cyclic esters [J]. Macromolecules,2006,39(17):5617-5628. [13] KAMMIYADA H, KONISHI A, OUCHI M, SAWAMOTO M. Ring-Expansion Living Cationic Polymerization via Reversible Activation of a Hemiacetal Ester Bond [J]. Acs Macro Letters,2013,2(6):531-534. [14] JI Y X, ZHANG L Q, GU X, ZHANG W, ZHOU N C, ZHANG Z B, ZHU X L. Sequence-Controlled Polymers with Furan-Protected Maleimide as a Latent Monomer [J]. Angewandte Chemie-International Edition,2017,56(9):2328-2333. [15] GU X, ZHANG L Q, LI Y, ZHANG W, ZHU J, ZHANG Z B, ZHU X L. Facile synthesis of advanced gradient polymers with sequence control using furan-protected maleimide as a comonomer [J]. Polymer Chemistry,2018,9(13):1571-1576. [16] HAN F F, SHI Q N, ZHANG L Q, LIU B L, ZHANG Y J, GAO Y, JIA R, ZHANG Z B, ZHU X L. Stereoisomeric furan/maleimide adducts as latent monomers for one-shot sequence-controlled polymerization [J]. Polymer Chemistry,2020,11(9):1614-1620. [17] ERNO Z, ASADIRAD A M, LEMIEUX V, BRANDA N R. Using light and a molecular switch to 'lock' and 'unlock' the Diels-Alder reaction [J]. Organic & Biomolecular Chemistry,2012,10(14):2787-2792. [18] ZHANG L Q, SONG Y Y, CAO Y H, WANG Z, HUANG Z H, XUAN S T, ZHANG Z B. A photo-thermal dual-regulated latent monomer strategy for sequence control of polymers [J]. Polymer Chemistry,2021,12(35):4996-5002. [19] ZHANG L Q, JI Y X, GU X, ZHANG W, ZHOU N C, ZHANG Z B, ZHU X L. Synthesis of sequence-controlled polymers with pendent "clickable" or hydrophilic groups via latent monomer strategy [J]. Reactive & Functional Polymers,2019,138:96-103. [20] MENG F Y, ZHANG Y J, DING K S, LIU B L, HAN F F, HE Y Y, ZHOU N C, ZHANG Z B, ZHU X L. One-shot synthesis of sequence-controlled polymers with versatile succimide motifs for post-modifications [J]. Reactive & Functional Polymers,2019,134:67-73. [21] ZHANG L Q, GAO Y, HUANG Z H, ZHANG W, ZHOU N C, ZHANG Z B, ZHU X L. Controllably Growing Topologies in One-shot RAFT Polymerization via Macro-latent Monomer Strategy [J]. Chinese Journal of Polymer Science,2021,39(1):60-69. [22] ZHANG Y J, CAO X H, GAO Y, XIE Y J, HUANG Z H, ZHANG Z B, ZHU X L. Bridging from the Sequence to Architecture: Graft Copolymers Engineering via Successive Latent Monomer and Grafting-from Strategies(dagger) [J]. Chinese Journal of Chemistry,2021,39(5):1273-1280. [23] GAO Y, ZHANG L Q, JIA R, HUANG Z H, XIE Y J, XUAN S T, ZHOU N C, ZHANG Z B, ZHU X L. 2, 5-Dimethylfuran/Acrylonitrile as Latent Monomer for Sequence-Controlled Copolymer and Sequence-Dependent Thermo-Responsivity [J]. Macromolecular Rapid Communications,2021:2000724. -