Synergistic Effect of β-Amino Acid Polymers and Itraconazole on Reversing Drug Resistance in Candida albicans
-
摘要: 设计合成了与伊曲康唑具有协同活性的系列β-氨基酸聚合物。通过β-氨基酸N-硫代羧基酸酐(β-NTA)开环聚合的方法,将不同比例疏水性单体DL-β-正亮氨酸N-羧基硫代羰基环内酸酐(简称Bu)和阳离子单体N(α)-Z-DL-2,3-二氨基丙酸N-羧基硫代羰基环内酸酐(简称DAP)进行共聚,得到了DAP:Bu系列β-氨基酸聚合物。抗菌测试表明,制备的DAP:Bu共聚物可通过协同增效,有效逆转白色念珠菌(Candida albicans, C. albicans)对伊曲康唑的耐药性,使伊曲康唑的抗真菌最低抑制浓度从单药的>200 μg/mL降低至协同后的3.1 μg/mL,即从无效逆转为高效抗真菌活性。此外,DAP:Bu共聚物在400 μg/mL的高浓度下基本没有造成明显的人血红细胞溶血和细胞毒性。DAP:Bu共聚物能实现高效的协同增效和逆转真菌对伊曲康唑的耐药性,在真菌感染治疗中具有广阔的应用潜力。Abstract: In this study, we design and synthesize a series of β-amino acid polymers that have synergistic antifungal activity with itraconazole. The random copolymers DAP:Bu were obtained by ring-opening polymerization of β-amino acid N-thiocarboxyanhydrides (β-NTA) under room temperature using 4-tert-Butylbenzylamine (tBuBz-NH2) as an initiator, with DL-β-norleucine N-thiocarboxyanhydrides (β-Bu NTA) as hydrophobic monomer and N(α)-Z-DL-2,3-diaminopropionic acid N-thiocarboxyanhydrides (β-DAP NTA) as cationic monomer. The effect of DAP:Bu combined with itraconazole on C. albicans was evaluated by checkerboard antifungal test. The test showed that DAP:Bu copolymers could effectively reverse itraconazole resistance in C. albicans through synergistic effect, while the minimum inhibitory concentration (MIC) of antifungal of itraconazole was reduced from >200 μg/mL to 3.1 μg/mL after exposure to DAP:Bu, indicating that the antifungal activity of itraconazole reversed from ineffective to highly effective. In addition, most of DAP:Bu copolymers did not cause significant hemolysis of human red blood cells and fibroblasts toxicity at a high concentration of 400 μg/mL. Our studies demonstrate that the DAP:Bu copolymers can achieve efficient synergistic effect with itraconazole and reverse itraconazole resistance in C. albicans, showing broad potential in the treatment of fungal infections.
-
Key words:
- β-amino acid polymers /
- itraconazole /
- synergistic effect /
- reversing fungal resistance /
- antifungal
-
表 1 系列聚合物与伊曲康唑的最低抑菌浓度及相互作用模式
Table 1. Interaction modes of polymers and itraconazole and their MIC and FICI values
Polymer MIC alone (μg/mL) MIC combined (μg/mL) FICI Effect itraconazole polymer itraconazole polymer (DAP0.9Bu0.1)20 >200 3.1 6.3 0.8 0.29 Synergistic (DAP0.8Bu0.2)20 >200 3.1 6.3 0.8 0.29 Synergistic (DAP0.7Bu0.3)20 >200 6.3 3.1 1.6 0.27 Synergistic (DAP0.6Bu0.4)20 >200 6.3 4.7 1.6 0.28 Synergistic (DAP0.5Bu0.5)20 >200 12.5 3.1 3.1 0.26 Synergistic -
[1] ZHANG S, XIAO X M, QI F, MA P C, ZHANG W W, DAI C Z, ZHANG D F, LIU R H. Biofilm disruption utilizing α/β chimeric polypeptide molecular brushes [J]. Chinese Journal of Polymer Science,2019,37(11):1105-1112. doi: 10.1007/s10118-019-2278-0 [2] WANG Y R, WEI T, QU Y C, ZHOU Y, ZHENG Y J, HUANG C B, ZHANG Y X, YU Q, CHEN H. Smart, photothermally activated, antibacterial surfaces with thermally triggered bacteria-releasing properties [J]. ACS Applied Materials & Interfaces,2020,12(19):21283-21291. [3] GAO Y, WANG J, CHAI M, LI X, DENG Y, JIN Q, JI J. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management [J]. Acs Nano,2020,14(5):5686-5699. doi: 10.1021/acsnano.0c00269 [4] DONG A, WANG Y J, GAO Y Y, GAO T Y, GAO G. Chemical insights into antibacterial N-halamines [J]. Chemical Reviews,2017,117(6):4806-4862. doi: 10.1021/acs.chemrev.6b00687 [5] SUN J, LI M, ZHANG B, CHEN X S. High antibacterial activity and selectivity of the versatile polysulfoniums that combat drug resistance [J]. Advanced Materials,2021,33(41):2104402. doi: 10.1002/adma.202104402 [6] WANG J, GAO M, CUI Z K, JIA Y G, LIU S, CHEN K F, CHEN X H, ZHANG Y Q, FANG Z, CHEN Y H, WANG K J, ZHANG H T, WANG L, REN L. One-pot quaternization of dual-responsive poly(vinyl alcohol) with AIEgens for pH-switchable imaging and killing of bacteria [J]. Materials Chemistry Frontiers,2020,4(9):2635-2645. doi: 10.1039/D0QM00014K [7] LI X, BAI H T, YANG Y C, YOON J, WANG S, ZHANG X. Supramolecular antibacterial materials for combatting antibiotic resistance [J]. Advanced Materials,2019,31(5):1805092. [8] DUAN S, WU R N, XIONG Y H, REN H M, LEI C Y, ZHAO Y Q, ZHANG X Y, XU F J. Multifunctional antimicrobial materials: from rational design to biomedical applications [J]. Progress in Materials Science,2022,125:100887. doi: 10.1016/j.pmatsci.2021.100887 [9] BROWN G D, DENNING D W, GOW N A R, LEVITZ S M, NETEA M G, WHITE T C. Hidden killers: human fungal infections [J]. Science Translational Medicine,2012,4(165):165rv13. [10] LIMPER A H, KNOX K S, SAROSI G A, AMPEL N M, BENNETT J E, CATANZARO A, DAVIES S F, DISMUKES W E, HAGE C A, MARR K A, MODY C H, PERFECT J R, STEVENS D A, AMER THORACIC SOC FUNGAL WORKING G. An official american thoracic society statement: treatment of fungal infections in adult pulmonary and critical care patients [J]. American Journal of Respiratory and Critical Care Medicine,2011,183(1):96-128. doi: 10.1164/rccm.2008-740ST [11] BUTTS A, PALMER G E, ROGERS P D. Antifungal adjuvants: preserving and extending the antifungal arsenal [J]. Virulence,2017,8(2):198-210. doi: 10.1080/21505594.2016.1216283 [12] FISHER M C, HAWKINS N J, SANGLARD D, GURR S J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security [J]. Science,2018,360(6390):739-742. doi: 10.1126/science.aap7999 [13] GOW N A R, VAN DE VEERDONK F L, BROWN A J P, NETEA M G. Candida albicans morphogenesis and host defence: discriminating invasion from colonization [J]. Nature Reviews Microbiology,2012,10(2):112-122. doi: 10.1038/nrmicro2711 [14] NOBLE S M, GIANETTI B A, WITCHLEY J N. Candida albicans cell-type switching and functional plasticity in the mammalian host [J]. Nature Reviews Microbiology,2017,15(2):96-108. doi: 10.1038/nrmicro.2016.157 [15] LESTNER J, HOPE W W. Itraconazole: an update on pharmacology and clinical use for treatment of invasive and allergic fungal infections [J]. Expert Opinion on Drug Metabolism & Toxicology,2013,9(7):911-926. [16] DE BEULE K. Itraconazole: pharmacology, clinical experience and future development [J]. International Journal of Antimicrobial Agents,1996,6(3):175-181. doi: 10.1016/0924-8579(95)00043-7 [17] KORTING H C, SCHöLLMANN C. The significance of itraconazole for treatment of fungal infections of skin, nails and mucous membranes [J]. Journal Der Deutschen Dermatologischen Gesellschaft,2009,7(1):11-19. [18] GUALCO L, DEBBIA E A, BANDETTINI R, PESCETTO L, CAVALLERO A, OSSI M C, SCHITO A M, MARCHESE A. Antifungal resistance in Candida spp. isolated in Italy between 2002 and 2005 from children and adults [J]. International Journal of Antimicrobial Agents,2007,29(2):179-184. doi: 10.1016/j.ijantimicag.2006.08.047 [19] MULLER F M C, WEIG M, PETER J, WALSH T J. Azole cross-resistance to ketoconazole, fluconazole, itraconazole and voriconazole in clinical Candida albicans isolates from HIV-infected children with oropharyngeal candidosis [J]. Journal of Antimicrobial Chemotherapy,2000,46(2):338-341. doi: 10.1093/jac/46.2.338 [20] ŁUKASZUK C, KRAJEWSKA-KUŁAK E, KUŁAK W. Retrospective observation of drug susceptibility of Candida strains in the years 1999, 2004, and 2015 [J]. Peerj,2017,5:e3038. doi: 10.7717/peerj.3038 [21] LEE Y, PUUMALA E, ROBBINS N, COWEN L E. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond [J]. Chemical Reviews,2021,121(6):3390-3411. doi: 10.1021/acs.chemrev.0c00199 [22] PERLIN D S, RAUTEMAA-RICHARDSON R, ALASTRUEY-IZQUIERDO A. The global problem of antifungal resistance: prevalence, mechanisms, and management [J]. The Lancet Infectious Diseases,2017,17(12):E383-E392. doi: 10.1016/S1473-3099(17)30316-X [23] WHALEY S G, BERKOW E L, RYBAK J M, NISHIMOTO A T, BARKER K S, ROGERS P D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species [J]. Frontiers in Microbiology,2017,7:2173. [24] BASSO V, TRAN D Q, OUELLETTE A J, SELSTED M E. Host Defense peptides as templates for antifungal drug development [J]. Journal of Fungi,2020,6(4):241. doi: 10.3390/jof6040241 [25] HANCOCK R E W, DIAMOND G. The role of cationic antimicrobial peptides in innate host defences [J]. Trends in Microbiology,2000,8(9):402-410. doi: 10.1016/S0966-842X(00)01823-0 [26] WILMES M, CAMMUE B P A, SAHL H G, THEVISSEN K. Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation [J]. Natural Product Reports,2011,28(8):1350-1358. doi: 10.1039/c1np00022e [27] ZASLOFF M. Antimicrobial peptides of multicellular organisms [J]. Nature,2002,415(6870):389-395. doi: 10.1038/415389a [28] PACHóN-IBáñEZ M E, SMANI Y, PACHóN J, SáNCHEZ-CéSPEDES J. Perspectives for clinical use of engineered human host defense antimicrobial peptides [J]. Fems Microbiology Reviews,2017,41(3):323-342. doi: 10.1093/femsre/fux012 [29] 徐心源, 孙辉, 李建树. 口腔医用高分子材料的研究进展及产业转化 [J]. 功能高分子学报,2021,34(2):126-143.XU X Y, SUN H, LI J S. Advances of biomedical polymeric materials in dentistry and its industrialization [J]. Journal of Functional Polymers,2021,34(2):126-143. [30] WU Y M, ZHANG W W, ZHOU R Y, CHEN Q, XIE C Y, XIANG H X, SUN B, ZHU M F, LIU R H. Facile synthesis of high molecular weight polypeptides via fast and moisture insensitive polymerization of alpha-amino acid N-carboxyanhydrides [J]. Chinese Journal of Polymer Science,2020,38(10):1131-1140. doi: 10.1007/s10118-020-2471-1 [31] HANCOCK R E W, SAHL H G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies [J]. Nature Biotechnology,2006,24(12):1551-1557. doi: 10.1038/nbt1267 [32] NIU Y H, WANG R E, WU H F, CAI J F. Recent development of small antimicrobial peptidomimetics [J]. Future Medicinal Chemistry,2012,4(14):1853-1862. doi: 10.4155/fmc.12.111 [33] 毕玉芳, 武月铭, 刘士琦, 钱宇芯, 刘润辉. 宿主防御肽模拟聚合物与蛋白酶K联用抗生物被膜 [J]. 功能高分子学报,2021,34:1-8.BI Y F, WU Y M, LIU S Q, QIAN Y X, LIU R H. Combination of host defense peptide mimicking peptide polymer and proteinase K against biofilms [J]. Journal of Functional Polymers,2021,34:1-8. [34] 张丹丰, 张思, 马鹏程, 乔忠乾, 张强, 齐凡, 朱孟钦, 刘润辉. 具有高效阳性菌抗菌活性的合成多肽聚合物研究 [J]. 功能高分子学报,2018,31(5):493-500.ZHANG D F, ZHANG S, MA P C, QIAO Z Q, ZHANG Q, QI F, ZHU M Q, LIU R H. Synthetic peptidyl polymer displaying potent activity against gram positive bacteria [J]. Journal of Functional Polymers,2018,31(5):493-500. [35] CHEN Y, YU L F, ZHANG B, FENG W, XU M, GAO L L, LIU N, WANG Q Q, HUANG X, LI P, HUANG W. Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry [J]. Biomacromolecules,2019,20(6):2230-2240. doi: 10.1021/acs.biomac.9b00179 [36] LIU R H, CHEN X Y, HAYOUKA Z, CHAKRABORTY S, FALK S P, WEISBLUM B, MASTERS K S, GELLMAN S H. Nylon-3 polymers with selective antifungal activity [J]. Journal of the American Chemical Society,2013,135(14):5270-5273. doi: 10.1021/ja4006404 [37] LIU R H, CHEN X Y, FALK S P, MOWERY B P, KARLSSON A J, WEISBLUM B, PALECEK S P, MASTERS K S, GELLMAN S H. Structure-activity relationships among antifungal nylon-3 polymers: identification of materials active against drug-resistant strains of Candida albicans [J]. Journal of the American Chemical Society,2014,136(11):4333-4342. doi: 10.1021/ja500036r [38] 钱宇芯, 张丹丰, 武月铭, 陈琦, 刘润辉. 模拟宿主防御肽的尼龙3抗菌聚合物结构设计、合成及活性研究 [J]. 高分子学报,2016,10(10):1300-1311. doi: 10.11777/j.issn1000-3304.2016.16194QIAN Y X, ZHANG D F, WU Y M, CHEN Q, LIU R H. The design, synthesis and biological activity study of nylon-3 polymers as mimics of host defense peptides [J]. Acta Polymerica Sinica,2016,10(10):1300-1311. doi: 10.11777/j.issn1000-3304.2016.16194 [39] ZHANG D H, SHI C, CONG Z H, CHEN Q, BI Y F, ZHANG J Y, MA K Q, LIU S Q, GU J W, CHEN M Z, LU Z Y, ZHANG H D, XIE J Y, XIAO X M, LIU L Q, JIANG W N, SHAO N, CHEN S, ZHOU M, SHAO X Y, DAI Y D, LI M Q, ZHANG L X, LIU R H. Microbial metabolite inspired β-peptide polymers displaying potent and selective antifungal activity [J]. Advanced Science,2022:e2104871. doi: 10.1002/advs.202104871 [40] ZHOU M, XIAO X M, CONG Z H, WU Y M, ZHANG W J, MA P C, CHEN S, ZHANG H D, ZHANG D F, ZHANG D H, LUAN X F, MAI Y Y, LIU R H. Water-insensitive synthesis of poly-beta-peptides with defined architecture [J]. Angewandte Chemie International Edition,2020,59(18):7240-7244. doi: 10.1002/anie.202001697 [41] HANCOCK R E W, ALFORD M A, HANEY E F. Antibiofilm activity of host defence peptides: complexity provides opportunities [J]. Nature Reviews Microbiology,2021,19(12):786-797. doi: 10.1038/s41579-021-00585-w [42] ROSSI D C, MUñOZ J E, CARVALHO D D, BELMONTE R, FAINTUCH B, BORELLI P, MIRANDA A, TABORDA C P, DAFFRE S. Therapeutic use of a cationic antimicrobial peptide from the spider acanthoscurria gomesianain the control of experimental candidiasis [J]. BMC Microbiology,2012,12(1):28-37. doi: 10.1186/1471-2180-12-28 -