A Three-Dimensional Composite Anode Based on Nitrogen-Doped Graphene/Iron Foam
-
摘要: 利用浸渍和高温还原法制备了一种由氮掺杂石墨烯包覆泡沫铁(N-rGO/IF)复合阳极,该阳极为大比表面积的三维结构且亲水性良好,可实现高密度微生物负载(1534 μg/cm2)。利用该N-rGO/IF阳极,将原电池集成在微生物燃料电池装置中以增加新的产电方式,从而组成了混合微生物燃料电池。电化学测试结果显示,在原电池(功率密度0.3585 mW/cm2)的增强作用下,以N-rGO/IF为复合阳极的混合微生物燃料电池实现了0.6019 mW/cm2的最大功率密度。结果表明,N-rGO/IF复合阳极可用于设计和制造大功率混合微生物燃料电池。Abstract: Hybrid microbial fuel cells integrating different technologies and applications are becoming one of the effective ways to break the power density limitation of microbial fuel cells in recent years. However, the typical hybrid microbial fuel cell technology is complicated to manufacture and limited by various conditions, which is not conducive to its realization for large scale applications. Herein, a three-dimensional iron foam anode coated by nitrogen-doped graphene (N-rGO/IF) was prepared by impregnation and high-temperature reduction, which has a large specific surface area three-dimensional structure. Thanks to the super hydrophilic nature of nitrogen-doped graphene (static water contact angle of 0°), the N-rGO/IF anode has good biocompatibility for high-density microbial loading (1534 μg/cm2). In addition, based on the iron foam substrate, the galvanic cell is successfully integrated into a microbial fuel cell device to construct a hybrid microbial fuel cell. This hybrid microbial fuel cell is simple to fabricate and has no condition limitations. The electrochemical test results show that this hybrid microbial fuel cell achieves a maximum power density of 0.6019 mW/cm2 with the enhancement of the galvanic cell (0.3585 mW/cm2).The results indicate that N-rGO/IF composite anode can be used for the design and fabrication of high-power hybrid microbial fuel cells.
-
Key words:
- hybrid microbial fuel cell /
- power density /
- hydrophilic /
- galvanic cell /
- microbial load density
-
图 8 以IF和N-rGO/IF为阳极原电池的(a)极化曲线、(b)功率密度曲线和(c)输出电压-时间曲线;(d)IF和(e)N-rGO/IF阳极反应前后的Fe2p精细谱
Figure 8. (a) Polarization curves, (b) power density curves, and (c) output voltage-time curves for primary cells using IF and N-rGO/IF anodes;Fe2p fine spectra before and after the reaction of (d) IF and (e) N-rGO/IF anode samples
-
[1] CHAUHAN S, KUMAR A, PANDIT S, VEMPATY A, KUMAR M, THAPA B, RAI N, PEERA S. Investigating the performance of a zinc oxide impregnated polyvinyl alcohol-based low-cost cation exchange membrane in microbial fuel cells [J]. Membranes (Basel),2023,13(1):55-77. doi: 10.3390/membranes13010055 [2] CAO B, ZHAO Z, PENG L, SHIU H, DING M, SONG F, GUAN X, LEE C, HUANG J, ZHU D, FU X, WONG G, LIU C, NEALSON K, WEISS P, DUAN X, HUANG Y. Silver nanoparticles boost charge-extraction efficiency in shewanella microbial fuel cells [J]. Science,2021,373(6561):1336-1340. doi: 10.1126/science.abf3427 [3] LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [J]. Science,2012,337(6095):686-690. doi: 10.1126/science.1217412 [4] MASSAGLIA G, SACCO A, FAVETTO A, LUCIANO S, SERGIO F, ROBERTO M, CANDIDO F, MARZIA Q. Integration of portable sedimentary microbial fuel cells in autonomous underwater vehicles [J]. Energies,2021,14(15):4551-4562. doi: 10.3390/en14154551 [5] BUSALMEN J, ESTEVE A, BERNA A, FELIU J. C-type cytochromes wire electricity-producing bacteria to electrodes [J]. Angewandte Chemie: International Ed. in English,2008,47(26):4874-4877. doi: 10.1002/anie.200801310 [6] REN H, LEE H, ZHANG J, GARDNER L, CHAE J. A quantitative extracellular electron transfer (EET) kinetics study of geobacter sulfurreducens enriched microbial community reveals the transition of EET limiting step during biofilm growth [J]. International Journal of Hydrogen Energy,2021,46(4):3124-3134. doi: 10.1016/j.ijhydene.2020.06.252 [7] WANG A, SUN D, REN N, LIU C, LIU W, LOGAN B, WU W. A rapid selection strategy for an anodophilic consortium for microbial fuel cells [J]. Bioresource Technology,2010,101(14):5733-5735. doi: 10.1016/j.biortech.2010.02.056 [8] CHEN H, YU Y, YU Y, YE J, ZHANG S, CHEN J. Exogenous electron transfer mediator enhancing gaseous toluene degradation in a microbial fuel cell: Performance and electron transfer mechanism [J]. Chemosphere,2021,282:131028. doi: 10.1016/j.chemosphere.2021.131028 [9] REGUERA G. Microbial nanowires and electroactive biofilms [J]. FEMS Microbiology Ecology,2018,94(7):fiy086. [10] THAPA B, CHANDRA T. Studies on expression levels of pil Q and fli P genes during bio-electrogenic process in kluyvera georgiana MCC 3673 [J]. 3 Biotech,2020,10(2):73-79. doi: 10.1007/s13205-020-2050-8 [11] SUN Z, CAO R, HUANG M, CHEN D, ZHENG W, LIN L. Effect of light irradiation on the photoelectricity performance of microbial fuel cell with a copper oxide nanowire photocathode [J]. Journal of Photochemistry and Photobiology A:Chemistry,2015,300:38-43. doi: 10.1016/j.jphotochem.2014.12.003 [12] WANG S, YANG X, ZHU Y, SU Y, LI C. Solar-assisted dual chamber microbial fuel cell with a CuInS2 photocathode [J]. RSC Advances,2014,4(45):23790-23796. doi: 10.1039/C4RA02488E [13] KIM H, LEE K, RAZZAQ A, LEE S, GRIMES C, IN S. Photocoupled bioanode: A new approach for improved microbial fuel cell performance [J]. Energy Technology,2018,6(2):257-262. doi: 10.1002/ente.201700177 [14] ZHANG Y, LIU M, ZHOU M, YANG H, LIANG L, GU T. Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges [J]. Renewable and Sustainable Energy Reviews,2019,103:13-29. doi: 10.1016/j.rser.2018.12.027 [15] LI Y, LIU J, CHEN X, WU J, LI N, HE W, FENG, Y. Tailoring surface properties of electrodes for synchronous enhanced extracellular electron transfer and enriched exoelectrogens in microbial fuel cells [J]. ACS Applied Materials & Interfaces,2021,13(49):58508-58521. [16] BOGAN L, SHENG C, VATSON W. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells [J]. Environmental Science & Technology,2007,41:3341-3346. -