高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氮掺杂石墨烯/泡沫铁的三维复合阳极

武子杰 冯奕钰 龙鹏 俞慧涛 封伟

武子杰, 冯奕钰, 龙鹏, 俞慧涛, 封伟. 基于氮掺杂石墨烯/泡沫铁的三维复合阳极[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20230413002
引用本文: 武子杰, 冯奕钰, 龙鹏, 俞慧涛, 封伟. 基于氮掺杂石墨烯/泡沫铁的三维复合阳极[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20230413002
WU Zijie, FENG Yiyu, LONG Peng, YU Huitao, FENG Wei. A Three-Dimensional Composite Anode Based on Nitrogen-Doped Graphene/Iron Foam[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230413002
Citation: WU Zijie, FENG Yiyu, LONG Peng, YU Huitao, FENG Wei. A Three-Dimensional Composite Anode Based on Nitrogen-Doped Graphene/Iron Foam[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230413002

基于氮掺杂石墨烯/泡沫铁的三维复合阳极

doi: 10.14133/j.cnki.1008-9357.20230413002
基金项目: 国家重点研发计划(2022YFB3805702);天津市杰出青年科学基金(19JCJQJC61700);国家自然科学基金面上项目(51973152,52130303)
详细信息
    作者简介:

    武子杰(1998—),男,硕士生,主要研究方向为微生物燃料电池阳极材料;E-mail:tjclwzj@163.com

    通讯作者:

    封 伟, E-mail:weifeng@tju.edu.cn

  • 中图分类号: O614

A Three-Dimensional Composite Anode Based on Nitrogen-Doped Graphene/Iron Foam

  • 摘要: 利用浸渍和高温还原法制备了一种由氮掺杂石墨烯包覆泡沫铁(N-rGO/IF)复合阳极,该阳极为大比表面积的三维结构且亲水性良好,可实现高密度微生物负载(1534 μg/cm2)。利用该N-rGO/IF阳极,将原电池集成在微生物燃料电池装置中以增加新的产电方式,从而组成了混合微生物燃料电池。电化学测试结果显示,在原电池(功率密度0.3585 mW/cm2)的增强作用下,以N-rGO/IF为复合阳极的混合微生物燃料电池实现了0.6019 mW/cm2的最大功率密度。结果表明,N-rGO/IF复合阳极可用于设计和制造大功率混合微生物燃料电池。

     

  • 图  1  N-rGO/IF阳极在混合MFC中的电子转移过程

    Figure  1.  Electron transfer process of N-rGO/IF anode in hybrid MFC

    图  2  (a)IF和(b)N-rGO/IF的SEM照片

    Figure  2.  SEM images of (a) IF and (b) N-rGO/IF

    图  3  (a)GO和N-rGO的FT-IR谱图;N-rGO的XPS光谱图:(b)全谱图和(c)N1s精细谱及含氮官能团分布

    Figure  3.  (a) FT-IR spectra of GO and N-rGO; XPS spectra of N-rGO: (b) full spectrum and (c) N1s fine spectrum and distribution of nitrogen-containing functional groups

    图  4  N-rGO/IF的静态水接触角测试图

    Figure  4.  Static water contact angle test chart of N-rGO/IF

    图  5  以IF和N-rGO/IF为阳极的混合MFC的(a)极化曲线、(b)功率密度曲线和(c)输出电压-时间曲线

    Figure  5.  (a) Polarization curves, (b) power density curves and (c) output voltage-time curves for hybrid MFC using IF and N-rGO/IF anodes

    图  6  (a)IF和(b)N-rGO/IF阳极上MR-1微生物细胞的SEM照片

    Figure  6.  SEM images of the MR-1 bacterial cells: (a) IF and (b) N-rGO/IF

    图  7  IF和N-rGO/IF阳极的BCA蛋白检测结果

    Figure  7.  Results of BCA protein detection for IF and N-rGO/IF anodes

    图  8  以IF和N-rGO/IF为阳极原电池的(a)极化曲线、(b)功率密度曲线和(c)输出电压-时间曲线;(d)IF和(e)N-rGO/IF阳极反应前后的Fe2p精细谱

    Figure  8.  (a) Polarization curves, (b) power density curves, and (c) output voltage-time curves for primary cells using IF and N-rGO/IF anodes;Fe2p fine spectra before and after the reaction of (d) IF and (e) N-rGO/IF anode samples

  • [1] CHAUHAN S, KUMAR A, PANDIT S, VEMPATY A, KUMAR M, THAPA B, RAI N, PEERA S. Investigating the performance of a zinc oxide impregnated polyvinyl alcohol-based low-cost cation exchange membrane in microbial fuel cells [J]. Membranes (Basel),2023,13(1):55-77. doi: 10.3390/membranes13010055
    [2] CAO B, ZHAO Z, PENG L, SHIU H, DING M, SONG F, GUAN X, LEE C, HUANG J, ZHU D, FU X, WONG G, LIU C, NEALSON K, WEISS P, DUAN X, HUANG Y. Silver nanoparticles boost charge-extraction efficiency in shewanella microbial fuel cells [J]. Science,2021,373(6561):1336-1340. doi: 10.1126/science.abf3427
    [3] LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [J]. Science,2012,337(6095):686-690. doi: 10.1126/science.1217412
    [4] MASSAGLIA G, SACCO A, FAVETTO A, LUCIANO S, SERGIO F, ROBERTO M, CANDIDO F, MARZIA Q. Integration of portable sedimentary microbial fuel cells in autonomous underwater vehicles [J]. Energies,2021,14(15):4551-4562. doi: 10.3390/en14154551
    [5] BUSALMEN J, ESTEVE A, BERNA A, FELIU J. C-type cytochromes wire electricity-producing bacteria to electrodes [J]. Angewandte Chemie: International Ed. in English,2008,47(26):4874-4877. doi: 10.1002/anie.200801310
    [6] REN H, LEE H, ZHANG J, GARDNER L, CHAE J. A quantitative extracellular electron transfer (EET) kinetics study of geobacter sulfurreducens enriched microbial community reveals the transition of EET limiting step during biofilm growth [J]. International Journal of Hydrogen Energy,2021,46(4):3124-3134. doi: 10.1016/j.ijhydene.2020.06.252
    [7] WANG A, SUN D, REN N, LIU C, LIU W, LOGAN B, WU W. A rapid selection strategy for an anodophilic consortium for microbial fuel cells [J]. Bioresource Technology,2010,101(14):5733-5735. doi: 10.1016/j.biortech.2010.02.056
    [8] CHEN H, YU Y, YU Y, YE J, ZHANG S, CHEN J. Exogenous electron transfer mediator enhancing gaseous toluene degradation in a microbial fuel cell: Performance and electron transfer mechanism [J]. Chemosphere,2021,282:131028. doi: 10.1016/j.chemosphere.2021.131028
    [9] REGUERA G. Microbial nanowires and electroactive biofilms [J]. FEMS Microbiology Ecology,2018,94(7):fiy086.
    [10] THAPA B, CHANDRA T. Studies on expression levels of pil Q and fli P genes during bio-electrogenic process in kluyvera georgiana MCC 3673 [J]. 3 Biotech,2020,10(2):73-79. doi: 10.1007/s13205-020-2050-8
    [11] SUN Z, CAO R, HUANG M, CHEN D, ZHENG W, LIN L. Effect of light irradiation on the photoelectricity performance of microbial fuel cell with a copper oxide nanowire photocathode [J]. Journal of Photochemistry and Photobiology A:Chemistry,2015,300:38-43. doi: 10.1016/j.jphotochem.2014.12.003
    [12] WANG S, YANG X, ZHU Y, SU Y, LI C. Solar-assisted dual chamber microbial fuel cell with a CuInS2 photocathode [J]. RSC Advances,2014,4(45):23790-23796. doi: 10.1039/C4RA02488E
    [13] KIM H, LEE K, RAZZAQ A, LEE S, GRIMES C, IN S. Photocoupled bioanode: A new approach for improved microbial fuel cell performance [J]. Energy Technology,2018,6(2):257-262. doi: 10.1002/ente.201700177
    [14] ZHANG Y, LIU M, ZHOU M, YANG H, LIANG L, GU T. Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges [J]. Renewable and Sustainable Energy Reviews,2019,103:13-29. doi: 10.1016/j.rser.2018.12.027
    [15] LI Y, LIU J, CHEN X, WU J, LI N, HE W, FENG, Y. Tailoring surface properties of electrodes for synchronous enhanced extracellular electron transfer and enriched exoelectrogens in microbial fuel cells [J]. ACS Applied Materials & Interfaces,2021,13(49):58508-58521.
    [16] BOGAN L, SHENG C, VATSON W. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells [J]. Environmental Science & Technology,2007,41:3341-3346.
  • 加载中
图(8)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-13
  • 网络出版日期:  2023-05-22

目录

    /

    返回文章
    返回