Preparation of Porous Polyacrylonitrile Fibrous Membranes and Their Properties for Oil/Water Separation
-
摘要: 首先采用静电纺丝制备聚丙烯腈/聚乙烯吡咯烷酮(PAN/PVP)纤维膜,再经水浸渍处理获得多孔聚丙烯腈(PPAN)纤维膜。通过傅里叶变换红外(FT-IR)光谱、热重分析(TGA)探究纤维成孔机理,以X射线光电子能谱(XPS)研究多孔纤维膜中PAN与PVP分子间相互作用力;同时探究PAN与PVP质量比对多孔纤维膜形貌、比表面积、润湿性、力学性能、油/水分离性能的影响,并确定最佳配比。当m(PAN)/m(PVP)=1∶2时,PPAN纤维膜具有较高的力学性能;对正己烷/水混合物的分离通量高达46318 ± 3879 L/(m2·h·bar),效率为(96.01 ± 0.38)%;还实现了对不同种类油/水混合物的高效分离。此外,该PPAN纤维膜表现出优异的循环分离性能,经10次循环分离,通量损失率仅为8.9%。Abstract: First, polyacrylonitrile/polyvinyl pyrrolidone (PAN/PVP) fibrous membrane was prepared by electrospinning, and then polyacrylonitrile porous (PPAN) fibrous membrane was obtained by water impregnation. Fourier transform infrared (FT-IR) spectra and thermogravimetric analysis (TGA) were used to explore the mechanism of fiber pore-forming, and X-ray photoelectron spectroscopy (XPS) was used to study the interaction between PAN and PVP molecules in the porous fibrous membrane. At the same time, the effects of mass ratio of PAN to PVP on the morphology, surface area, wettability, mechanical properties, and oil/water separation performance of porous fibrous membrane were investigated, and the optimal mass ratio was determined. When m(PAN)/m(PVP) was 1∶2, PPAN fibrous membrane showed higher mechanical properties. The separation flux of the n-hexane/water mixture was (46318 ± 3879) L/(m2·h·bar), and the efficiency was (96.01 ± 0.38)%. It also realized the efficient separation of different kinds of oil/water mixtures. In addition, PPAN fibrous membrane showed excellent cyclic separation performance, and the flux loss rate was only 8.9% after ten cycles of separation.
-
图 7 纤维膜的(a)水接触角与润湿时间(b)水下正己烷接触角;(c)PPAN2纤维膜的水下不同油接触角与(d)水下超疏油示意图
Figure 7. (a) Water contact angle, wetting time, and (b) underwater n-hexane contact angle of fibrous membranes; (c) Contact angle for different oils underwater and (d) schematic diagram of underwater superoleophobic of PPAN2 fibrous membrane
图 9 (a)不同纤维膜对正己烷/水混合物的分离性能;(b)PPAN2纤维膜对不同油/水混合物的分离性能;PPAN2纤维膜10次循环分离的(c)通量和(d)效率
Figure 9. (a) Separation performance of different fibrous membranes for n-hexane/water mixture; (b) Separation performance of PPAN2 fibrous membrane for different oil/water mixtures; (c) Flux and (d) efficiency of 10 cycles separation of PPAN2 fibrous membrane
-
[1] FAN Q W, LU T, DENG Y K, ZHANG Y Y, MA W J, XIONG R H, HUANG C B. Bio-based materials with special wettability for oil-water separation [J]. Separation and Purification Technology,2022,297:121445. doi: 10.1016/j.seppur.2022.121445 [2] MA W J, ZHANG Q L, HUA D W, XIONG R H, ZHAO J T, RAO W D, HUANG S L, ZHAN X X, CHEN F, HUANG C B. Electrospun fibers for oil-water separation [J]. RSC Advances,2016,6(16):12868-12884. doi: 10.1039/C5RA27309A [3] 盖军, 冯阳阳, 柴鹏, 颜录科, 陈涛. PVDF/TiO2电纺纤维膜在光降解和油/水分离方面的应用 [J]. 功能高分子学报,2021,34(5):483-489.GE J, FENG Y Y, CHAI P, YAN L K, CHEN T. Application of PVDF/TiO2 electrospun fiber membrane in photodegradation and oil-water separation [J]. Journal of Functional Polymers,2021,34(5):483-489. [4] ZHAO H X, CHEN S, QUAN X, YU H T, ZHAO H M. Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment [J]. Applied Catalysis B:Environmental,2016,194:134-140. doi: 10.1016/j.apcatb.2016.04.042 [5] ZHAO R, CHEN D Y, GAO N W, YUAN L Y, HU W, CUI F C, TIAN Y Y, SHI W Q, MA S Q, ZHU G S. Porous cationic electrospun fibers with sufficient adsorption sites for effective and continuous 99TcO4- uptake [J]. Advanced Functional Materials,2022,32(26):2200618. doi: 10.1002/adfm.202200618 [6] ZHENG S Y, HUANG M H, SUN S M, ZHAO H T, MENG L J, MU T W, SONG J L, JIANG N. Synergistic effect of MIL-88 A/g-C3N4 and MoS2 to construct a self-cleaning multifunctional electrospun membrane [J]. Chemical Engineering Journal,2021,421:129621. doi: 10.1016/j.cej.2021.129621 [7] HAN N, WANG W J, LV X S, ZHANG W X, YANG C, WANG M L, KOU X H, LI W, DAI Y, ZHANG X X. Highly efficient purification of multicomponent wastewater by electrospinning kidney-bean-skin-like porous H-PPAN/rGO-g-PAO@Ag+/Ag composite nanofibrous membranes [J]. ACS Applied Materials & Interfaces,2019,11(50):46920-46929. [8] SUN F, LI T T, REN H T, SHIU B C, PENG H K, LIN J H, LOU C W. Multi-scaled, hierarchical nanofibrous membrane for oil/water separation and photocatalysis: Preparation, characterization and properties evaluation [J]. Progress in Organic Coatings,2021,152:106125. doi: 10.1016/j.porgcoat.2020.106125 [9] DOU Y L, YUE X, LV C J, YASIN A, HAO B, SU Y H, MA P C. Dual-responsive polyacrylonitrile-based electrospun membrane for controllable oil-water separation [J]. Journal of Hazardous Materials,2022,438:129565. doi: 10.1016/j.jhazmat.2022.129565 [10] HE L, LEI W W, LIU D. One-step facile fabrication of mechanical strong porous boron nitride nanosheets-polymer electrospun nanofibrous membranes for repeatable emulsified oil/water separation [J]. Separation and Purification Technology,2021,264:118446. doi: 10.1016/j.seppur.2021.118446 [11] 张晨晖, 张文博, 郭婷. 木质液化物静电纺丝法制备纳米纤维可行性研究 [J]. 生物质化学工程,2015,49(2):59-65. doi: 10.3969/j.issn.1673-5854.2015.02.011ZHANG C H, ZHANG W B, GUO T. Feasibility study on preparation of nano fiber from liquefied wood by electrostatic spinning [J]. Biomass Chemical Engineering,2015,49(2):59-65. doi: 10.3969/j.issn.1673-5854.2015.02.011 [12] YUAN F, YANG R F, WANG B, GAO Y, LI C Q, SUN Z M. Composite nanofiber membrane embedded TiO2/diatomite catalyst for highly efficient mineralization of formaldehyde [J]. Separation and Purification Technology,2023,312:123423. doi: 10.1016/j.seppur.2023.123423 [13] ZHANG Y F, GUAN J M, WANG X F, YU J Y, DING B. Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture [J]. ACS Applied Materials & Interfaces,2017,9(46):41087-41098. [14] 王晨洋, 徐浪, 成世杰, 帅旗, 左丹英. 表面喷雾 N, N-二甲基乙酰胺/水-浸没沉淀相转化法制备PVDF多孔膜的结构和性能 [J]. 功能高分子学报,2022,35(3):292-298.WANG C Y, XU L, CHENG S J, SHUAI Q, ZUO D Y. Structure and performance of PVDF porous membrane prepared by surface spraying DMAc/H2O-immersion precipitation phase inversion method [J]. Journal of Functional Polymers,2022,35(3):292-298. [15] KARBOWNIK I, RAC-RUMIJOWSKA O, FIEDOT-TOBOŁA M, RYBICKI T, TETERYCZ H. The preparation and characterization of polyacrylonitrile-polyaniline (PAN/PANI) fibers [J]. Materials,2019,12(4):664. doi: 10.3390/ma12040664 [16] ZHANG Y, REN Y L, LIU X H, HUO T G, QIN Y W. Preparation of durable flame retardant PAN fabrics based on amidoximation and phosphorylation [J]. Applied Surface Science,2018,428:395-403. doi: 10.1016/j.apsusc.2017.09.155 [17] MAHESWARI A U, ANJALI K K, SIVAKUMAR M. Optical absorption enhancement of PVP capped TiO2 nanostructures in the visible region [J]. Solid State Ionics,2019,337:33-41. doi: 10.1016/j.ssi.2019.04.001 [18] LIN J Y, DING B, YANG J M, YU J Y, SUN G. Subtle regulation of the micro-and nanostructures of electrospun polystyrene fibers and their application in oil absorption [J]. Nanoscale,2012,4(1):176-182. doi: 10.1039/C1NR10895F [19] QIAN M X, YANG F F, LI N, GAO J T, CHEN X F, XU T F, ZHU Z X, LU W Y, CHEN W X. A novel biodegradable porous graphitic carbon nitride/poly(lactic acid) fiber photocatalyst for efficient elimination of carbamazepine under solar irradiation [J]. Chemical Engineering Journal,2021,414:128845. doi: 10.1016/j.cej.2021.128845 [20] MA X C, LIU B G, CHE M H, WU Q D, CHEN R F, SU C Q, XU X, ZENG Z, LI L Q. Biomass-based hierarchical porous carbon with ultrahigh surface area for super-efficient adsorption and separation of acetone and methanol [J]. Separation and Purification Technology,2021,269:118690. doi: 10.1016/j.seppur.2021.118690 [21] MENG H T, XU T, GAO M Y, BAI J, LI C P. An oil-contamination-resistant PVP/PAN electrospinning membrane for high-efficient oil-water mixture and emulsion separation [J]. Journal of Applied Polymer Science,2021,138(11):50043. doi: 10.1002/app.50043 [22] LIAO X L, SUN D X, CAO S, ZHANG N, HUANG T, LEI Y Z, WANG Y. Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride) porous fibers for highly efficient oil/water separation [J]. Journal of Hazardous Materials,2021,416:125926. doi: 10.1016/j.jhazmat.2021.125926 [23] ZHANG X, ZHANG Z P, ZENG Z X, DU S M, LIU E Y. Superoleophobic graphene oxide/halloysite nanotube composite membranes for oil-water separation [J]. Materials Chemistry Physics,2021,263:124347. doi: 10.1016/j.matchemphys.2021.124347 [24] SUN X C, BAI L Z, LI J, HUANG L L, SUN H B, GAO X L. Robust preparation of flexibly super-hydrophobic carbon fiber membrane by electrospinning for efficient oil-water separation in harsh environments [J]. Carbon,2021,182:11-22. doi: 10.1016/j.carbon.2021.05.047 [25] ZHAO J X, WANG W, YE C C, LI Y J, YOU J C. Gravity-driven ultrafast separation of water-in-oil emulsion by hierarchically porous electrospun Poly(L-lactide) fabrics [J]. Journal of Membrane Science,2018,563:762-767. doi: 10.1016/j.memsci.2018.06.053 -