高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯仿改性聚(3-己基噻吩)有机电化学晶体管及其神经突触功能模仿

蒋倩 孙翠 郭哲成 刘雪蓉 孙启浩 段吉鹏 朱小健 李润伟

蒋 倩, 孙 翠, 郭哲成, 刘雪蓉, 孙启浩, 段吉鹏, 朱小健, 李润伟. 氯仿改性聚(3-己基噻吩)有机电化学晶体管及其神经突触功能模仿[J]. 功能高分子学报,2023,36(4):1-7 doi: 10.14133/j.cnki.1008-9357.20230322001
引用本文: 蒋 倩, 孙 翠, 郭哲成, 刘雪蓉, 孙启浩, 段吉鹏, 朱小健, 李润伟. 氯仿改性聚(3-己基噻吩)有机电化学晶体管及其神经突触功能模仿[J]. 功能高分子学报,2023,36(4):1-7 doi: 10.14133/j.cnki.1008-9357.20230322001
JIANG Qian, SUN Cui, GUO Zhecheng, LIU Xuerong, SUN Qihao, DUAN Jipeng, ZHU Xiaojian, LI Runwei. Poly(3-hexylthiophene) Based Organic Electrochemical Transistor Optimized with Chloroform and Its Synaptic Function Emulation[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230322001
Citation: JIANG Qian, SUN Cui, GUO Zhecheng, LIU Xuerong, SUN Qihao, DUAN Jipeng, ZHU Xiaojian, LI Runwei. Poly(3-hexylthiophene) Based Organic Electrochemical Transistor Optimized with Chloroform and Its Synaptic Function Emulation[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230322001

氯仿改性聚(3-己基噻吩)有机电化学晶体管及其神经突触功能模仿

doi: 10.14133/j.cnki.1008-9357.20230322001
基金项目: 国家重点研发计划项目( 2021YFA1202600 )、国家自然科学基金项目(92064011、62174164、61974179、U22A2075)、中国科学院青年创新促进会项目( 2020297 )、浙江省自然科学基金项目( LR23E020001 )、宁波市自然科学基金项目( 202003N4029 )
详细信息
    作者简介:

    蒋倩:蒋 倩(1998—), 女, 硕士研究生,主要研究方向为用于神经形态计算的电解质栅控晶体管。E-mail: jiangqian@nimte.ac.cn

    通讯作者:

    朱小健, E-mail: zhuxj@nimte.ac.cn; 孙 翠, E-mail: suncui@nimte.ac.cn

  • 中图分类号: TN389

Poly(3-hexylthiophene) Based Organic Electrochemical Transistor Optimized with Chloroform and Its Synaptic Function Emulation

  • 摘要: 通过旋涂法制备了有机半导体聚(3-己基噻吩)(P3HT)薄膜,在二氯苯溶剂中引入氯仿对P3HT薄膜进行改性,以改性的P3HT薄膜作为沟道层、离子凝胶作为电解质层制备了有机电化学晶体管(OECT)。通过原子力显微镜、紫外-可见光谱和拉曼光谱探究了氯仿改性对P3HT薄膜粗糙度和分子有序度的影响,采用半导体参数仪研究了氯仿改性对材料电学性能的影响。实验结果表明,氯仿改性降低了P3HT薄膜的粗糙度,提高了分子排列的有序度。氯仿改性后的OECT在−0.5 V和−1 V的电脉冲刺激下呈现显著的神经突触兴奋脉冲电流响应特性,相比于未改性的器件,电导调控幅值分别增加了约2倍和16倍,且延长了其保持特性。基于氯仿改性OECT的人工神经突触网络将MNIST手写数字识别准确率从73.6%提高至92.7%,有望在高性能神经形态计算方面发挥重要作用。

     

  • 图  1  基于 P3 HT 的 OECT 的制备流程图

    Figure  1.  Flow chart of P3 HT-based OECT device fabrication

    图  2  (a) o-DCB@P3HT 和(b) o-DCB/CF@P3HT 的 AFM 图像;(c) 两种 P3HT 薄膜的光学显微镜照片

    Figure  2.  AFM images of (a) o-DCB@P3HT and (b) o-DCB/CF@P3HT; (c) Optical microscope images of the two P3HT films

    图  3  o-DCB@P3HT 和(b) o-DCB/CF@P3HT 的紫外-可见光谱; (c) o-DCB@P3HT 和(d) o-DCB/CF@P3HT 的拉曼光谱

    Figure  3.  UV-Vis spectra of (a) o-DCB@P3HT and (b) o-DCB/CF@P3HT; Raman spectra of (c) o-DCB@P3HT and (d) o-DCB/CF@P3HT

    图  4  (a) 基于 P3HT 的 OECT 结构示意图;(b) o-DCB@OECT 和(c) o-DCB/CF@OECT 的转移特性曲线;(d) o- DCB@OECT 和(e) o-DCB/CF@OECT 在−0.5 V 和−1.0 V 电脉冲刺激下的 EPSC;(f) 两种 OECT 在−1.0 V 电压脉冲刺激下的弛豫时间常数

    Figure  4.  (a) Schematic diagram of OECT based on P3HT; Transfer characteristic curve of (b) o-DCB@OECT and (c) o-DCB/CF@OECT; EPSC of (d) o-DCB@OECT and (e) o-DCB/CF@OECT under −0.5 V and −1.0 V electrical pulse stimulation; (f) Relaxation-time constants of the two OECTs under −1.0 V electrical pulse stimulation

    图  5  (a) 基于 P3HT 的 OECT 神经网络的 MNIST 图像识别;基于(b) o-DCB@OECT 和(c) o-DCB/CF@OECT 的识别混淆矩阵图;(d) 两种 OECT 网络的识别准确率对比

    Figure  5.  (a) A neural network based on P3HT@OECT for MNIST image recognition; Identification confusion matrix diagram based on the (b) o-DCB@OECT and (c) o-DCB/CF@OECT; (d) Comparison of the recognition accuracy for the networks based on the two OECTs

  • [1] KIM S J, JEONG J S, JANG H W, YI H, YANG H, JU H, LIM J A. Dendritic network implementable organic neurofiber transistors with enhanced memory cyclic endurance for spatiotemporal iterative learning [J]. Advanced Materials,2021,33(26):2100475.
    [2] KIM Y, CHORTOS A, XU W, LIU Y, OH J Y, SON D, KANG J, FOUDEH A M, ZHU C, LEE Y, NIU S, LIU J, PFATTNER R, BAO Z, LEE T W. A bioinspired flexible organic artificial afferent nerve [J]. Science,2018,360(6392):998-1003.
    [3] DAI S, ZHAO Y, WANG Y, ZHANG J, FANG L, JIN S, SHAO Y, HUANG J. Recent advances in transistor-based artificial synapses [J]. Advanced Functional Materials,2019,29(42):1903700.
    [4] RIVNAY J, INAL S, SALLEO A, OWENS R M, BERGGREN M, MALLIARAS G G. Organic electrochemical transistors [J]. Nature Reviews Materials,2018,3(2):17086.
    [5] 竺立强. 电解质调控场效应晶体管及其人造突触器件应用 [J]. 中国材料进展,2017,36(10):742-755. doi: 10.7502/j.issn.1674-3962.2017.10.08

    ZHU L Q. Electrolyte gated field-effect transistors and artificial synaptic device applications [J]. Materials China,2017,36(10):742-755. doi: 10.7502/j.issn.1674-3962.2017.10.08
    [6] LENZ J, deL GIUDICE F, GEISENHOF F R, WINTERER F, WEITZ R T. Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour [J]. Nature Nanotechnology,2019,14(6):579-585.
    [7] HUANG J H, YANG C Y, HSU C Y, CHEN C L, LIN L Y, WANG R R, HO K C, CHU C W. Solvent-annealing-induced self-organization of poly(3-hexylthiophene), a high-performance electrochromic material [J]. ACS Applied Materials & Interfaces,2009,1(12):2821-2828.
    [8] NGUYEN-DANG T, CHAE S, HARRISON K, LLANES L C, YI A, KIM H J, BISWAS S, VISELL Y, BAZAN G C, NGUYEN T Q. Efficient fabrication of organic electrochemical transistors via wet chemical processing [J]. ACS Applied Materials & Interfaces,2022,14(10):12469-12478.
    [9] SEO D G, LEE Y, GO G T, PEI M, JUNG S, JEONG Y H, LEE W, PARK H L, KIM S W, YANG H, YANG C, LEE T W. Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: From artificial neural networks to neuro-prosthetics [J]. Nano Energy,2019,65:104035.
    [10] ZHAO Y, XIE Z, QIN C, QU Y, GENG Y, WANG L. Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer [J]. Solar Energy Materials and Solar Cells,2009,93(5):604-608.
    [11] 刘冠辰, 谢小银. 氯苯和邻二氯苯及其混合物作为溶剂对P3HT/PCBM异质结活性层光电转换效率的影响 [J]. 科学技术与工程,2016,16(1):13-16.

    LIU G C, XIE X Y. Solvent effects of chlorobenzene, ortho-dichlorobenzene and their mixture to performance of P3HT/PCBM-based bulk-heterojunction solar cells [J]. Science Technology and Engineering,2016,16(1):13-16.
    [12] CHANG J F, SUN B, BREIBY D W, NIELSEN M M, SÖLLING T I, GILES M, MCCULLOCH I, SIRRINGHAUS H. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents [J]. Chemistry of Materials,2004,16(23):4772-4776.
    [13] LEE K H, KANG M S, ZHANG S, GU Y, LODGE T P, FRISBIE C D. "Cut and stick" rubbery ion gels as high capacitance gate dielectrics [J]. Advanced Materials,2012,24(32):4457-4462.
    [14] PEUMANS P, YAKIMOV A, FORREST S R. Small molecular weight organic thin-film photodetectors and solar cells[J]. Journal of Applied Physics, 2003, 93(7): 3693-3723.
    [15] YANG S P, LI N, LI G, SHI J B, LI X W, FU G S. Effect of mixed solvents on P3HT: PCBM based solar cell [J]. Acta Physica Sinica,2013,62(1):014702.
    [16] MOULÉ A J, MEERHOLZ K. Controlling morphology in polymer-fullerene mixtures [J]. Advanced Materials,2008,20(2):240-245.
    [17] TSOI W C, JAMES D T, KIM J S, NICHOLSON P G, MURPHY C E, BRADLEY D D, NELSON J, KIM J S. The nature of in-plane skeleton raman modes of P3HT and their correlation to the degree of molecular order in P3HT: PCBM blend thin films [J]. Journal of the American Chemical Society,2011,133(25):9834-9843.
    [18] CHEN Q, HAN T, TANG M, ZHANG Z, ZHENG X, LIU G. Improving the recognition accuracy of memristive neural networks via homogenized analog type conductance quantization [J]. Micromachines (Basel),2020,11(4):427-436.
  • 加载中
图(5)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  17
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-22
  • 录用日期:  2023-04-25
  • 网络出版日期:  2023-05-04

目录

    /

    返回文章
    返回