Molecularly Imprinted SPR Sensor for Detection of β-Lactoglobulin in Camel Milk Powder
-
摘要: 结合模板分子前定位、表面印迹法和后修饰策略,在金(Au)基底上构建了分子印迹表面等离子体共振(SPR)传感器,并将其用于骆驼奶粉中β-乳球蛋白(BLG)的检测。首先,在聚多巴胺(PDA)修饰的金片(PDA/Au)上,通过聚丙烯酸(PAA)固定模板分子BLG,以多巴胺为功能单体和交联剂进行印迹,然后在非印迹部分接枝具有抗蛋白质吸附功能的部分水解的聚(2-甲基-2-噁唑啉)(PMOXA-EI),洗脱模板后,得到BLG分子印迹SPR传感器。采用水接触角(WCA)研究了传感器表面亲/疏水的变化,用傅里叶变换红外光谱仪(FT-IR)、原子力显微镜(AFM)、可变角光谱椭偏仪(VASE)对其进行表征。结果表明,该传感器对0.21 ~ 10 μg/mL的BLG具有良好的线性关系,检测限为0.12 μg/mL,能快速灵敏地检测出骆驼奶粉中BLG的质量浓度,回收率在100.2% ~ 100.7%。
-
关键词:
- β-乳球蛋白 /
- 多巴胺 /
- 分子印迹 /
- SPR传感器 /
- 聚(2-甲基-2-噁唑啉)
Abstract: Combined with template molecular pre-positioning, surface imprinting method, and post-modification strategy, a molecularly imprinted surface plasmon resonance (SPR) sensor was constructed on a gold substrate and used for detection of β-lactoglobulin (BLG) in camel milk powder. Firstly, the template molecule BLG was fixed by polyacrylic acid (PAA) on the gold substrate which was modified by polydopamine in advance. Then imprinting was performed using dopamine as functional monomer and crosslinking agent. Finally, partially hydrolyzed poly (2-methyl-2-oxazoline) (PMOXA-EI) with anti-protein adsorption function was grafted on the non-imprinted part, and the BLG molecularly imprinted SPR sensor was prepared after eluting the template. The changes of sensor’s surface hydrophilicity/hydrophobicity were studied by water contact angle (WCA) and the characterization of created sensor was performed by using Fourier transform infrared spectrometer (FT-IR), atomic force microscopy (AFM), and variable angle spectroscopy ellipsometry (VASE), respectively. Results show that the sensor performe a good linear relationship in the range of 0.21~10 μg/mL for BLG, and the detection of limit is 0.12 μg/mL. The sensor could detect the BLG in camel milk powder quickly and sensitively with a recovery rate between 100.2% and 100.7%.-
Key words:
- β-lactoglobulin /
- dopamine /
- molecular imprinting /
- SPR sensor /
- poly(2-methyl-2-oxazoline)
-
表 1 生物传感器对BLG和竞争蛋白的Q、IF和k
Table 1. Q、IF and k of BLG and competing proteins by biosensor
Protein QMIP/RU QNIP/RU IF k BLG 1401 458 3.1 — SA 647 690 0.9 2.2 LYZ 254 363 0.7 5.5 ALB 527 574 0.9 2.6 LF 203 218 0.9 6.9 表 2 骆驼奶粉中BLG质量浓度的检测
Table 2. Detection of BLG mass concentration in camel milk powder
ρ(Spiked BLG)/(μg·mL−1) ρ(Found BLG)/(μg·mL−1) Recovery/% 3.33 3.35 ± 0.25 100.6 ± 7.5 5.00 5.01 ± 0.15 100.2 ± 3.0 10.00 10.07 ± 0.14 100.7 ± 1.4 -
[1] SZEPFALUSI Z, LOIBICHLER C, PICHLER J, REISENBERGER K, EBNER C, URBANEK R. Direct evidence for transplacental allergen transfer [J]. Pediatric Research,2000,48(3):404-407. doi: 10.1203/00006450-200009000-00024 [2] WAL J M. Bovine milk allergenicity[J]. Annals of Allergy, Asthma & Immunology, 2004, 93(5 Suppl 3): S2-S11. [3] ALLEN K J, REMINGTON B C, BAUMERT J L, CREVEL R W, HOUBEN G F, BROOKE-TAYLOR S, KRUIZINGA A G, TAYLOR S L. Allergen reference doses for precautionary labeling (VITAL 2.0): Clinical implications [J]. J Allergy Clin Immunol,2014,133(1):156-164. doi: 10.1016/j.jaci.2013.06.042 [4] OMAR A, HARBOURNE N, ORUNA-CONCHA M J. Quantification of major camel milk proteins by capillary electrophoresis [J]. International Dairy Journal,2016,58:31-35. doi: 10.1016/j.idairyj.2016.01.015 [5] ZHAO D B, BAI Y H, NIU Y W. Composition and characteristics of Chinese bactrian camel milk [J]. Small Ruminant Research,2015,127:58-67. doi: 10.1016/j.smallrumres.2015.04.008 [6] 冯雪. 我国骆驼奶产业发展前景分析 [J]. 现代经济信息,2016(7):315.FENG X. Analysis of the development prospect of camel milk industry in China [J]. Modern Economic Information,2016(7):315. [7] 陆东林, 徐敏, 李景芳, 何晓瑞, 叶东东. 新疆特种乳产业发展现状、问题和对策 [J]. 新疆畜牧业,2017(5):4-7.LU D L, XU M, LI J F, HE X R, YE D D. Development status, problems and countermeasures of special dairy industry in Xinjiang [J]. Xinjiang Animal Husbandry,2017(5):4-7. [8] 李玲玉, 王俊, 李敏婧, 杨迎春, 苗静, 赵仲凯, 杨洁. 基于乳清蛋白的骆驼乳中掺假牛乳的检测及热处理对方法的影响 [J]. 食品科学,2022,43(10):329-335.LI L Y, WANG J, LI M J, YANG Y C, MIAO J, ZHAO Z K, YANG J. Detection of adulterated cow's milk in whey protein-based camel milk and effect of heat treatment on the method [J]. Food Science,2022,43(10):329-335. [9] KUMAR D, VERMA A K, CHATLI M K, SINGH R, KUMAR P, MEHTA N, MALAV O P. Camel milk: Alternative milk for human consumption and its health benefits [J]. Nutrition & Food Science,2016,46(2):217-227. [10] ORCAJO J, LAVILLA M, MARTINEZ-DE-MARANON I. Specific and sensitive ELISA for measurement of IgE-binding variations of milk allergen β-lactoglobulin in processed foods [J]. Analytica Chimica Acta,2019,1052:163-169. doi: 10.1016/j.aca.2018.11.048 [11] REN Y P, HAN Z, CHU X J, ZHANG J S, CAI Z X, WU Y J. Simultaneous determination of bovine α-lactalbumin and β-lactoglobulin in infant formulae by ultra-high-performance liquid chromatography-mass spectrometry [J]. Analytica Chimica Acta,2010,667(1-2):96-102. doi: 10.1016/j.aca.2010.04.015 [12] CIMEN D, BERELI N, DENIZLI A. Surface plasmon resonance based on molecularly imprinted polymeric film for l-phenylalanine detection [J]. Biosensors,2021,11(1):21. doi: 10.3390/bios11010021 [13] SCARANO S, MASCINI M, TURNER A P, MINUNNI M. Surface plasmon resonance imaging for affinity-based biosensors [J]. Biosens Bioelectron,2010,25(5):957-966. doi: 10.1016/j.bios.2009.08.039 [14] WU X L, LI Y, LIU B, FENG Y, HE W Y, LIU Z G, LIU L Z, WANG Z M, HUANG H Z. Two-site antibody immol/Lunoanalytical detection of food allergens by surface plasmon resonance [J]. Food Analytical Methods,2015,9(3):582-588. [15] ASHLEY J, D'AURELIO R, PIEKARSKA M, TEMBLAY J, PLEASANTS M, TRINH L, RODGERS T L, TOTHILL I E. Development of a β-lactoglobulin sensor based on SPR for milk allergens detection [J]. Biosensors,2018,8(2):32. doi: 10.3390/bios8020032 [16] ZHANG L L, ZHU C C, CHEN C B, ZHU S H, ZHOU J, WANG M L, SHANG P P. Determination of kanamycin using a molecularly imprinted SPR sensor [J]. Food Chemistry,2018,266:170-174. doi: 10.1016/j.foodchem.2018.05.128 [17] MAHANI M, MAHMOUDI F, FASSIHI J, HASANI Z, DIVSAR F. Carbon dots-embedded N-acetylneuraminic acid and glucuronic acid-imprinted polymers for targeting and imaging of cancer cells [J]. Mikrochim Acta,2021,188(7):1-11. [18] ZHAO X Y, MAI Y L, CHEN D C, ZHANG M, HU H W. Selective enrichment of clenbuterol onto molecularly imprinted polymer microspheres with tailor-made structure and oxygen functionalities[J]. Polymers, 2019, 11(10): 1635. [19] GAO R X, KONG X, WANG X, HE X W, CHEN L X, ZHANG Y K. Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core-shell magnetic nanoparticles for the recognition and enrichment of protein [J]. Journal of Materials Chemistry,2011,21:17863-17871. doi: 10.1039/c1jm12414e [20] LAN F, MA S H, YANG Q, XIE L Q, WU Y, GU Z W. Polydopamine-based superparamagnetic molecularly imprinted polymer nanospheres for efficient protein recognition [J]. Colloids and Surfaces B:Biointerfaces,2014,123:213-218. doi: 10.1016/j.colsurfb.2014.09.018 [21] WANG S S, YE J, BIE Z J, LIU Z. Affinity-tunable specific recognition of glycoproteins via boronate affinity-based controllable oriented surface imprinting [J]. Chemical Science,2014,5:1135-1140. doi: 10.1039/c3sc52986j [22] TRETJAKOV A, SYRITSKI V, REUT J, BOROZNJAK R, VOLOBUJEVA O, ÖPIK A. Surface molecularly imprinted polydopamine films for recognition of immol/Lunoglobulin G [J]. Microchimica Acta,2013,180(15-16):1433-1442. doi: 10.1007/s00604-013-1039-y [23] AYLAZ G, ZENGER O, PEŞINT G B, ANDAÇ M. Molecularly imprinted composite discs for transferrin recognition [J]. Separation Science and Technology,2022,57(9):1359-1375. doi: 10.1080/01496395.2021.1990950 [24] KHUMSAP T, BAMRUNGSAP S, THU V T, NGUYEN L T. Epitope-imprinted polydopamine electrochemical sensor for ovalbumin detection [J]. Bioelectrochemistry,2021,140:107805. doi: 10.1016/j.bioelechem.2021.107805 [25] 何雨晴, 吴友平. 快速提拉法制备PDMS/SiO2/PDMS-PDA光子弹性体薄膜 [J]. 功能高分子学报,2023,36(2):117-125.HE Y Q, WU Y P. Preparation of PDMS/SiO2/PDMS-PDA photonic elastomer films by rapid lifting method [J]. Journal of Functional Polymers,2023,36(2):117-125. [26] LI X J, ZHOU J J, TIAN L, WANG Y F, ZHANG B L, ZHANG H P, ZHANG Q Y. Preparation of anti-nonspecific adsorption polydopamine-based surface protein-imprinted magnetic microspheres with the assistance of 2-methacryloyloxyethyl phosphorylcholine and its application for protein recognition [J]. Sensors and Actuators B:Chemical,2017,241:413-421. doi: 10.1016/j.snb.2016.10.105 [27] HAN W Y, HAN X, LIU Z Q, ZHANG S T, LI Y, LU J Y, CHEN J, OU L L, FU G Q. Facile modification of protein-imprinted polydopamine coatings over nanoparticles with enhanced binding selectivity [J]. Chemical Engineering Journal,2019,385:123463. [28] PAN C, LIU X R, GONG K, MUMTAZ F, WANG Y M. Dopamine assisted PMOXA/PAA brushes for their switchable protein adsorption/desorption [J]. Journal of Materials Chemistry B,2018,6(4):556-567. doi: 10.1039/C7TB02209C [29] ZHANG Y L, CHEN L J, ZHANG C, LIU S T, ZHU H K, WANG Y M. Polydopamine-assisted partial hydrolyzed poly(2-methyl-2-oxazolinze) as coating for determination of melamine in milk by capillary electrophoresis [J]. Talanta,2016,150:375-387. doi: 10.1016/j.talanta.2015.12.054 [30] TRAN N T, TAVERNA M, MICCOLI L, ANGULO J F. Poly(ethylene oxide) facilitates the characterization of an affinity between strongly basic proteins with DNA by affinity capillary electrophoresis [J]. Electrophoresis,2005,26(16):3105-3112. doi: 10.1002/elps.200400091 [31] ÖZCAN N, MEDETALIBEYOGLU H, AKYILDIRIM O, ATAR N, YOLA M L. Electrochemical detection of amyloid-β protein by delaminated titanium carbide MXene/multi-walled carbon nanotubes composite with molecularly imprinted polymer [J]. Materials Today Communications,2020,23:101097. doi: 10.1016/j.mtcomm.2020.101097 [32] SMITS M G, HUPPERTZ T, ALTING A C, KIERS J L. Composition, constituents and properties of dutch camel milk [J]. Journal of Camel Practice and Research,2011,18:1-6. [33] GUTIERREZ J E, JAKOBOVITS L. Capillary electrophoresis of α-lactalbumin in milk powders [J]. Journal of Agricultural and Food Chemistry,2003,51(11):3280-3286. doi: 10.1021/jf021013u [34] TOUQEER T, MUMTAZ M W, MUKHTAR H, IRFAN A, AKRAM S, SHABBIR A, RASHID U, NEHDI I A, CHOONG T S Y. Fe3O4-PDA-lipase as surface functionalized nano biocatalyst for the production of biodiesel using waste cooking oil as feedstock: Characterization and process optimization [J]. Energies,2020,13(1):177. [35] WANG J J, ZHOU S F, HUANG J, ZHAO G Z, LIU Y Q. Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties [J]. RSC Advances,2018,8(22):12222-12231. doi: 10.1039/C8RA00106E [36] VERGARA-BARBERÁN M, SIMÓ-ALFONSO E F, HERRERO-MARTíNEZ J M, BENAVENTE F. Accurate determination of the milk protein allergen β-lactoglobulin by on-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry[J]. Talanta, 2023, 259: 124542. [37] 赵倩如, 朱丽英, 赵权宇, 江凌. 高效液相色谱法测定乳清蛋白中的α-乳白蛋白和β-乳球蛋白及其改性降敏 [J]. 生物加工过程,2020,18(4):536-543.ZHAO Q R, ZHU L Y, ZHAO Q Y, JIANG L. Determination of α-lactalbumin and β-lactoglobulin in whey protein by high performance liquid chromatography and modify them to reduce allergenicity [J]. Bioprocessing Technology,2020,18(4):536-543. -