[1] |
FELIS E, KALKA J, SOCHACKI A, KOWALSKA K, BAJKACZ S, HARNISZ M, KORZENIEWSKA E. Antimicrobial pharmaceuticals in the aquatic environment-occurrence and environmental implications [J]. European Journal of Pharmacology,2020,866:172813. doi: 10.1016/j.ejphar.2019.172813
|
[2] |
HANNA N, TAMHANKAR A J, STALSBY L C. Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO western pacific and south-east asia regions: A systematic review and probabilistic environmental hazard assessment [J]. Lancet Planet Health,2023,7(1):e45-e54. doi: 10.1016/S2542-5196(22)00254-6
|
[3] |
LIU H, YANG Y, SUN H, ZHAO L, LIU Y. Fate of tetracycline in enhanced biological nutrient removal process [J]. Chemosphere,2018,193:998-1003. doi: 10.1016/j.chemosphere.2017.11.136
|
[4] |
CHOPRA I, ROBERTS M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiology and Molecular Biology Reviews, 2001, 65(2): 232-260.
|
[5] |
SALVIA M V, FIEU M, VULLIET E. Determination of tetracycline and fluoroquinolone antibiotics at trace levels in sludge and soil [J]. Applied and Environmental Soil Science,2015,2015:435741.
|
[6] |
GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review [J]. Chemical Engineering Journal,2017,310:41-62. doi: 10.1016/j.cej.2016.10.064
|
[7] |
LI Y, HE Y, ZHUANG J, SHI H. Hierarchical microsphere encapsulated in graphene oxide composite for durable synergetic membrane separation and Fenton-like degradation [J]. Chemical Engineering Journal,2022,430:133124. doi: 10.1016/j.cej.2021.133124
|
[8] |
ZHANG L P, LIU Z, FARAJ Y, ZHAO Y, ZHUANG R, XIE R, JU X J, WANG W, CHU L Y. High-flux efficient catalytic membranes incorporated with iron-based Fenton-like catalysts for degradation of organic pollutants [J]. Journal of Membrane Science,2019,573:493-503. doi: 10.1016/j.memsci.2018.12.032
|
[9] |
YU C X, XIONG Z K, ZHOU H Y, ZHOU P, ZHANG H, HUANG G F, YAO G, LAI B. Marriage of membrane filtration and sulfate radical-advanced oxidation processes (SR-AOPs) for water purification: Current developments, challenges and prospects [J]. Chemical Engineering Journal,2022,433:133802. doi: 10.1016/j.cej.2021.133802
|
[10] |
YOO J M, SHIN H J, CHUNG D Y, SUNG Y E. Carbon shell on active nanocatalyst for stable electrocatalysis [J]. Accounts of Chemical Research,2022,55(9):1278-1289. doi: 10.1021/acs.accounts.1c00727
|
[11] |
YANG Z C, QIAN J S, YU A Q, PAN B C. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement [J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(14):6659-6664. doi: 10.1073/pnas.1819382116
|
[12] |
LIU X, WANG L, YU P, TIAN C G, SUN F F, MA J Y, LI W, FU H G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix [J]. Angewandte Chemie International Edition in English,2018,57(49):16166-16170. doi: 10.1002/anie.201809009
|
[13] |
DU M, GENG P B, PEI C X, JIANG X Y, SHAN Y Y, HU W H, NI L B, PANG H. High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries [J]. Angewandte Chemie International Edition in English,2022,61(41):e202209350.
|
[14] |
ANIPSITAKIS G P, DIONYSIOU D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science & Technology,2003,37(20):4790-4797.
|
[15] |
ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants [J]. Environmental Science & Technology,2004,38(13):3705-3712.
|
[16] |
YANG F, ZHAO H F, LI R M, LIU Q D, ZHANG X R, BAI X D, WANG R M, LI Y. Growth modes of single-walled carbon nanotubes on catalysts [J]. Science Advances,2022,14:eabq0794.
|
[17] |
ZHANG W Z, DONG Y H, HUANG M H, LIU Z C. Facile vacancies engineering of CoFe-PBA nanocubes for enhanced oxygen evolution [J]. Journal of Alloys and Compounds,2023,935:168084. doi: 10.1016/j.jallcom.2022.168084
|
[18] |
XIA C L, REN T Y, DARABI R, MEHDI S N, KLEMES J J, KARAMAN C, KARIMI F, WU Y J, KAMYAB H, VASSEGHIAN Y, CHELLIAPAN S S. Spotlighting the boosted energy storage capacity of CoFe2O4/graphene nanoribbons: A promising positive electrode material for high-energy-density asymmetric supercapacitor [J]. Energy,2023,270:126914. doi: 10.1016/j.energy.2023.126914
|
[19] |
WANG Y X, SUN H Q, DUAN X G, ANG H M, MOSES O, TADE, WANG S B. A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol [J]. Applied Catalysis B:Environmental,2015,172:73-81. doi: 10.1016/j.apcatb.2015.02.016
|
[20] |
MENG J S, NIU C J, XU L H, LI J T, LIU XIONG, WANG X P, WU Y Z, XU X M, CHEN W Y, LI Q, ZHU Z Z, ZHAO D Y, MAI L Q. General oriented formation of carbon nanotubes from metal-organic frameworks [J]. Journal of the American Chemical Society,2017,139(24):8212-8221. doi: 10.1021/jacs.7b01942
|
[21] |
XU D, ZHAO H, DONG Z P, MA J T. Cobalt nanoparticles apically encapsulated by nitrogen-doped carbon nanotubes for oxidative dehydrogenation and transfer hydrogenation of N-heterocycles [J]. ChemCatChem,2019,11(22):5475-5486. doi: 10.1002/cctc.201901304
|
[22] |
MA H, ZHANG X, FENG G Q, REN B, PAN Z L, SHI Y W, XU R S, WANG P C, LIU Y C, WANG G L, FAN X F, SONG C W. Carbon nanotube membrane armed with confined iron for peroxymonosulfate activation towards efficient tetracycline removal [J]. Separation and Purification Technology,2023,312:123319. doi: 10.1016/j.seppur.2023.123319
|
[23] |
BANGARI R S, SINHA N. Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution [J]. Journal of Molecular Liquids,2019,293:111376. doi: 10.1016/j.molliq.2019.111376
|
[24] |
LU N, LIN H B, LI G L, WANG J Q, HAN Q, LIU F. ZIF-67 derived nanofibrous catalytic membranes for ultrafast removal of antibiotics under flow-through filtration via non-radical dominated pathway [J]. Journal of Membrane Science,2021,639:119782. doi: 10.1016/j.memsci.2021.119782
|
[25] |
MENG C C, DING B F, ZHANG S Z, CUI L L, OSTRIKOV K K, HUANG Z Y, YANG B, KIN J H, ZHANG Z H. Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels [J]. Nature Communications,2022,13(1):4010. doi: 10.1038/s41467-022-31807-1
|
[26] |
LIN C C, WAN W H, WEI X T, CHEN J Z. H2 Activation with Co nanoparticles encapsulated in N-doped carbon nanotubes for green synthesis of benzimidazoles [J]. ChemSusChem,2021,14(2):709-720. doi: 10.1002/cssc.202002344
|
[27] |
李田田, 刘富. 基于相转化全过程的聚合物微孔膜功能化研究进展 [J]. 功能高分子学报,2020,33(3):210-225. doi: 10.14133/j.cnki.1008-9357.20190712002LI T T, LIU F. Functionalization of polymeric microporous membranes based on phase inversion [J]. Journal of Functional Polymers,2020,33(3):210-225. doi: 10.14133/j.cnki.1008-9357.20190712002
|