高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钴铁双金属基碳纳米管催化膜的制备及高效去除四环素

赵钰 林海波 毕秋艳 王晓 张国亮 刘富

赵 钰, 林海波, 毕秋艳, 王 晓, 张国亮, 刘 富. 钴铁双金属基碳纳米管催化膜的制备及高效去除四环素[J]. 功能高分子学报,2023,36(4):1-11 doi: 10.14133/j.cnki.1008-9357.20230309001
引用本文: 赵 钰, 林海波, 毕秋艳, 王 晓, 张国亮, 刘 富. 钴铁双金属基碳纳米管催化膜的制备及高效去除四环素[J]. 功能高分子学报,2023,36(4):1-11 doi: 10.14133/j.cnki.1008-9357.20230309001
ZHAO Yu, LIN Haibo, BI Qiuyan, WANG Xiao, ZHANG Guoliang, LIU Fu. Preparation and Efficient Tetracycline Removal of Co-Fe Bimetallic Carbon Nanotubes Catalytic Membranes[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230309001
Citation: ZHAO Yu, LIN Haibo, BI Qiuyan, WANG Xiao, ZHANG Guoliang, LIU Fu. Preparation and Efficient Tetracycline Removal of Co-Fe Bimetallic Carbon Nanotubes Catalytic Membranes[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230309001

钴铁双金属基碳纳米管催化膜的制备及高效去除四环素

doi: 10.14133/j.cnki.1008-9357.20230309001
基金项目: 中科院国际伙伴计划全球共性挑战专项(181GJHZ2022038GC);浙江省重点研发计划(2021C03170)
详细信息
    作者简介:

    赵钰:赵 钰(1997—),男,河南济源人,硕士生,主要研究方向为催化膜的制备。E-mail:zhaoyu@nimte.ac.cn

    通讯作者:

    林海波,E-mail:linhaibo@nimte.ac.cn

    刘 富,E-mail:fu.liu@nimte.ac.cn

  • 中图分类号: O63

Preparation and Efficient Tetracycline Removal of Co-Fe Bimetallic Carbon Nanotubes Catalytic Membranes

  • 摘要: 采用煅烧钻铁双金属的普鲁士蓝类似物(CoFe PBA)的方法获得了包裹钴铁合金的碳纳米管催化剂(CoFe@Cs),然后使用真空抽滤制备复合催化膜。通过扫描电子显微镜(SEM)、X射线衍射图谱(XRD)、X射线光电子能谱(XPS)等对样品的形貌及组成进行表征;以四环素(TC )为目标污染物对所制备催化剂及催化膜的催化机理及性能进行测试。结果表明,改变煅烧温度可以有效调控碳纳米管催化剂的形貌及组成。其中,在900 °C煅烧温度下制备的碳纳米管催化剂(CoFe@Cs-900)主要产生以硫酸根自由基及单线态氧为主的活性氧物质,并可对TC进行快速的降解去除。由其组装的碳纳米管催化膜在24 h错流过滤中对TC的降解去除率大于99%,水通量保持在172 L/(m2·h),表现出优异的膜催化降解性能。

     

  • 图  1  样品的SEM图片

    Figure  1.  SEM images of samples

    图  2  CoFe PBA和CoFe@Cs的XRD图谱

    Figure  2.  XRD spectra of CoFe PBA and CoFe@Cs

    图  3  样品的XPS图谱

    Figure  3.  XPS spectra of samples

    图  4  CoFe@Cs的拉曼光谱分析

    Figure  4.  Raman spectra of CoFe@Cs

    图  5  不同催化剂对TC的(a)吸附能力和(b)降解能力

    Figure  5.  (a) Adsorption capacity and (b) degradation capacity of different catalysts for TC

    图  6  CoFe@Cs-900的(a)TEM图像以及(b,c)EDS mapping图像

    Figure  6.  (a) TEM image and (b, c) EDS images of CoFe@Cs-900

    图  7  (a)活性氧淬灭实验以及(b~d)电子顺磁共振测试

    Figure  7.  (a) Reactive oxygen species quenching experiment and (b—d) electron paramagnetic resonance test

    图  8  催化膜的(a)表面、(b)放大后的表面以及(c)断面的SEM图;(d)接触角随时间的变化

    Figure  8.  SEM images of (a) surface, (b) enlarged surface and (c) cross-sectional of the catalytic membrane; (d) Contact angle changing with time

    图  9  催化剂负载前后膜孔径(a)及通量(b)

    Figure  9.  Membrane pore size (a) and flux (b) before and after catalyst loading

    图  10  PMS浓度(a)和pH(b)对催化膜催化性能的影响

    Figure  10.  Effect PMS concentration (a) and pH value (b) on the catalytic performance of the catalytic membrane

    图  11  (a)催化膜连续错流过滤24 h时的去除率及通量;(b)运行后关于催化膜表面的SEM照片

    Figure  11.  (a) Removal rate and flux of the catalytic membrane during continuous cross-flow filtration for 24 h; (b) SEM image of catalytic membrane surface after operation

  • [1] FELIS E, KALKA J, SOCHACKI A, KOWALSKA K, BAJKACZ S, HARNISZ M, KORZENIEWSKA E. Antimicrobial pharmaceuticals in the aquatic environment-occurrence and environmental implications [J]. European Journal of Pharmacology,2020,866:172813. doi: 10.1016/j.ejphar.2019.172813
    [2] HANNA N, TAMHANKAR A J, STALSBY L C. Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO western pacific and south-east asia regions: A systematic review and probabilistic environmental hazard assessment [J]. Lancet Planet Health,2023,7(1):e45-e54. doi: 10.1016/S2542-5196(22)00254-6
    [3] LIU H, YANG Y, SUN H, ZHAO L, LIU Y. Fate of tetracycline in enhanced biological nutrient removal process [J]. Chemosphere,2018,193:998-1003. doi: 10.1016/j.chemosphere.2017.11.136
    [4] CHOPRA I, ROBERTS M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiology and Molecular Biology Reviews, 2001, 65(2): 232-260.
    [5] SALVIA M V, FIEU M, VULLIET E. Determination of tetracycline and fluoroquinolone antibiotics at trace levels in sludge and soil [J]. Applied and Environmental Soil Science,2015,2015:435741.
    [6] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review [J]. Chemical Engineering Journal,2017,310:41-62. doi: 10.1016/j.cej.2016.10.064
    [7] LI Y, HE Y, ZHUANG J, SHI H. Hierarchical microsphere encapsulated in graphene oxide composite for durable synergetic membrane separation and Fenton-like degradation [J]. Chemical Engineering Journal,2022,430:133124. doi: 10.1016/j.cej.2021.133124
    [8] ZHANG L P, LIU Z, FARAJ Y, ZHAO Y, ZHUANG R, XIE R, JU X J, WANG W, CHU L Y. High-flux efficient catalytic membranes incorporated with iron-based Fenton-like catalysts for degradation of organic pollutants [J]. Journal of Membrane Science,2019,573:493-503. doi: 10.1016/j.memsci.2018.12.032
    [9] YU C X, XIONG Z K, ZHOU H Y, ZHOU P, ZHANG H, HUANG G F, YAO G, LAI B. Marriage of membrane filtration and sulfate radical-advanced oxidation processes (SR-AOPs) for water purification: Current developments, challenges and prospects [J]. Chemical Engineering Journal,2022,433:133802. doi: 10.1016/j.cej.2021.133802
    [10] YOO J M, SHIN H J, CHUNG D Y, SUNG Y E. Carbon shell on active nanocatalyst for stable electrocatalysis [J]. Accounts of Chemical Research,2022,55(9):1278-1289. doi: 10.1021/acs.accounts.1c00727
    [11] YANG Z C, QIAN J S, YU A Q, PAN B C. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement [J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(14):6659-6664. doi: 10.1073/pnas.1819382116
    [12] LIU X, WANG L, YU P, TIAN C G, SUN F F, MA J Y, LI W, FU H G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix [J]. Angewandte Chemie International Edition in English,2018,57(49):16166-16170. doi: 10.1002/anie.201809009
    [13] DU M, GENG P B, PEI C X, JIANG X Y, SHAN Y Y, HU W H, NI L B, PANG H. High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries [J]. Angewandte Chemie International Edition in English,2022,61(41):e202209350.
    [14] ANIPSITAKIS G P, DIONYSIOU D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science & Technology,2003,37(20):4790-4797.
    [15] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants [J]. Environmental Science & Technology,2004,38(13):3705-3712.
    [16] YANG F, ZHAO H F, LI R M, LIU Q D, ZHANG X R, BAI X D, WANG R M, LI Y. Growth modes of single-walled carbon nanotubes on catalysts [J]. Science Advances,2022,14:eabq0794.
    [17] ZHANG W Z, DONG Y H, HUANG M H, LIU Z C. Facile vacancies engineering of CoFe-PBA nanocubes for enhanced oxygen evolution [J]. Journal of Alloys and Compounds,2023,935:168084. doi: 10.1016/j.jallcom.2022.168084
    [18] XIA C L, REN T Y, DARABI R, MEHDI S N, KLEMES J J, KARAMAN C, KARIMI F, WU Y J, KAMYAB H, VASSEGHIAN Y, CHELLIAPAN S S. Spotlighting the boosted energy storage capacity of CoFe2O4/graphene nanoribbons: A promising positive electrode material for high-energy-density asymmetric supercapacitor [J]. Energy,2023,270:126914. doi: 10.1016/j.energy.2023.126914
    [19] WANG Y X, SUN H Q, DUAN X G, ANG H M, MOSES O, TADE, WANG S B. A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol [J]. Applied Catalysis B:Environmental,2015,172:73-81. doi: 10.1016/j.apcatb.2015.02.016
    [20] MENG J S, NIU C J, XU L H, LI J T, LIU XIONG, WANG X P, WU Y Z, XU X M, CHEN W Y, LI Q, ZHU Z Z, ZHAO D Y, MAI L Q. General oriented formation of carbon nanotubes from metal-organic frameworks [J]. Journal of the American Chemical Society,2017,139(24):8212-8221. doi: 10.1021/jacs.7b01942
    [21] XU D, ZHAO H, DONG Z P, MA J T. Cobalt nanoparticles apically encapsulated by nitrogen-doped carbon nanotubes for oxidative dehydrogenation and transfer hydrogenation of N-heterocycles [J]. ChemCatChem,2019,11(22):5475-5486. doi: 10.1002/cctc.201901304
    [22] MA H, ZHANG X, FENG G Q, REN B, PAN Z L, SHI Y W, XU R S, WANG P C, LIU Y C, WANG G L, FAN X F, SONG C W. Carbon nanotube membrane armed with confined iron for peroxymonosulfate activation towards efficient tetracycline removal [J]. Separation and Purification Technology,2023,312:123319. doi: 10.1016/j.seppur.2023.123319
    [23] BANGARI R S, SINHA N. Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution [J]. Journal of Molecular Liquids,2019,293:111376. doi: 10.1016/j.molliq.2019.111376
    [24] LU N, LIN H B, LI G L, WANG J Q, HAN Q, LIU F. ZIF-67 derived nanofibrous catalytic membranes for ultrafast removal of antibiotics under flow-through filtration via non-radical dominated pathway [J]. Journal of Membrane Science,2021,639:119782. doi: 10.1016/j.memsci.2021.119782
    [25] MENG C C, DING B F, ZHANG S Z, CUI L L, OSTRIKOV K K, HUANG Z Y, YANG B, KIN J H, ZHANG Z H. Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels [J]. Nature Communications,2022,13(1):4010. doi: 10.1038/s41467-022-31807-1
    [26] LIN C C, WAN W H, WEI X T, CHEN J Z. H2 Activation with Co nanoparticles encapsulated in N-doped carbon nanotubes for green synthesis of benzimidazoles [J]. ChemSusChem,2021,14(2):709-720. doi: 10.1002/cssc.202002344
    [27] 李田田, 刘富. 基于相转化全过程的聚合物微孔膜功能化研究进展 [J]. 功能高分子学报,2020,33(3):210-225. doi: 10.14133/j.cnki.1008-9357.20190712002

    LI T T, LIU F. Functionalization of polymeric microporous membranes based on phase inversion [J]. Journal of Functional Polymers,2020,33(3):210-225. doi: 10.14133/j.cnki.1008-9357.20190712002
  • 加载中
图(11)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  11
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 录用日期:  2023-05-06
  • 网络出版日期:  2023-05-12

目录

    /

    返回文章
    返回