高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子印迹聚合物的SPR传感器用于牛血清蛋白的检测

胡子凡 申永帅 朱良宇 陈浩 吴雨晨 王延梅

胡子凡, 申永帅, 朱良宇, 陈 浩, 吴雨晨, 王延梅. 基于分子印迹聚合物的SPR传感器用于牛血清蛋白的检测[J]. 功能高分子学报,2023,36(4):1-9 doi: 10.14133/j.cnki.1008-9357.20230307002
引用本文: 胡子凡, 申永帅, 朱良宇, 陈 浩, 吴雨晨, 王延梅. 基于分子印迹聚合物的SPR传感器用于牛血清蛋白的检测[J]. 功能高分子学报,2023,36(4):1-9 doi: 10.14133/j.cnki.1008-9357.20230307002
HU Zifan, SHEN Yongshuai, ZHU Liangyu, CHEN Hao, WU Yuchen, WANG Yanmei. Molecularly Imprinted Polymers for Determination of Bovine Serum Albumin Based Surface Plasmon Resonance Sensor[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230307002
Citation: HU Zifan, SHEN Yongshuai, ZHU Liangyu, CHEN Hao, WU Yuchen, WANG Yanmei. Molecularly Imprinted Polymers for Determination of Bovine Serum Albumin Based Surface Plasmon Resonance Sensor[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230307002

基于分子印迹聚合物的SPR传感器用于牛血清蛋白的检测

doi: 10.14133/j.cnki.1008-9357.20230307002
基金项目: 国家自然科学基金(21674102)
详细信息
    作者简介:

    胡子凡(1998—),男,安徽池州人,硕士,主要研究方向为功能高分子。E-mail:huzifan@mail.ustc.edu.cn

    通讯作者:

    王延梅,E-mail:wangyanm@ustc.edu.cn

  • 中图分类号: O64

Molecularly Imprinted Polymers for Determination of Bovine Serum Albumin Based Surface Plasmon Resonance Sensor

  • 摘要: 以牛血清蛋白(BSA)为模板分子、多巴胺为功能单体和交联剂、高碘酸钠为氧化剂,制备了BSA表面印迹表面等离子共振(SPR)生物传感器。通过聚丙烯酸(PAA-SH)与BSA的氢键作用预先固定BSA,增加印迹效率,同时在聚多巴胺表面非印迹区域修饰部分水解的聚(2-甲基-2-噁唑啉)(PMOXA-EI)抵抗蛋白质的非特异性吸附。通过X射线光电子能谱、原子力显微镜、可变角光谱椭偏仪和静态水接触角对制备的BSA表面印迹SPR生物传感器进行表征。对质量浓度为0.1~10 μg/mL的BSA水溶液进行SPR吸附研究,检测限和定量限分别达到了53 ng/mL和161 ng/mL。以β-乳球蛋白、卵白蛋白、溶菌酶和细胞色素C为参比蛋白进行选择性研究,相应的选择性系数分别达到了4.43、3.45、3.17和3.64。上述5种蛋白混合溶液中BSA的检测回收率在97.5%~102.5%。

     

  • 图  1  BSA-MIP生物传感器的制备示意图

    Figure  1.  Schematic illustration of the preparation of BSA-MIP biosensor

    图  2  SPR生物传感器芯片的(a)AFM图像和(b)水接触角

    Figure  2.  (a) AFM images and (b)WCA of SPR biosensor chips

    图  3  (a) BSA-MIP生物传感器对BSA的SPR响应,(b)标准校准曲线

    Figure  3.  (a) SPR response of BSA on BSA-MIP biosensor; (b) Standard calibration curve

    图  4  BSA-MIP生物传感器结合BSA的重复性实验

    Figure  4.  Reuse experiments of the BSA-MIP biosensor binding BSA

    表  1  SPR生物传感器芯片表面元素组成

    Table  1.   Elemental compositions on the surface of SPR biosensor chips

    Samplef/%f(N)/f(C)
    Au4fO1sN1sS2pC1s
    Au-PAA32.315.54.12.745.50.090
    BSA-MIP before elution19.917.15.52.954.70.100
    BSA-MIP14.211.313.71.465.50.209
    NIP13.514.19.41.261.80.152
    下载: 导出CSV

    表  2  BSA-MIP生物传感器的等温吸附线参数

    Table  2.   Isotherm parameters for BSA-MIP biosensor

    Model Parameter
    ΔRmax/RU KA/(μg·mL−1) KD/(mL·μg−1) $\dfrac{1}{n} $ R2
    Langmuir1) 1086.96 0.2044 4.8913 0.9975
    Freundlich2) 203.30 0.9385 0.9771
    Langmuir- Freundlich3) 454.55 0.3929 2.5455 0.9385 0.9873
    1)Langmuir: ${\Delta R=}{ {\Delta} R}_{\text{max} }\rho /\left({ {K} }_{\text{D} }+\rho \right)$, where ∆R (RU) is the adsorption capacity of biosensor calculated by measuring the change of SPR response signal between baseline signal and final adsorption signal, ρ (μg/mL) is the mass concentration of template protein BSA, KD (mL/μg ) are reverse equilibrium constants, subscript max indicates maximum; 2)Freundlich: ${\Delta }R\text{ =}{\text{Δ} }R_{\text{max} }{\rho}^{ {1/n} }$, 1/n is the Freundlich’s unmixed marker, subscript max indicates maximum; 3) Langmuir-Freundlich: $\text{Δ}R ={\text{Δ} }R_{\text{max} }{\rho}^{ {1/n} }\text{/}\left({ {K} }_{\text{D} }\text{+}{\rho }^{ {1/n} }\right)$, KD (mL/μg) and KA (μg/mL) are reverse and forward equilibrium constants, respectively, subscript max indicates maximum
    下载: 导出CSV

    表  3  对比蛋白的选择性和相对选择性系数

    Table  3.   Selectivity and relative selectivity coefficients for competitor proteins

    ProteinMwpIMIPNIPIF
    ΔRkΔRk
    BSA6.64×1044.71242.28291.534.26
    BLG1.84×1045.1280.554.43177.131.651.58
    OVA4.45×1044.5360.483.45212.631.371.70
    Lyz1.43×10411.3391.553.17192.481.512.03
    Cyt C1.23×10410.2341.203.64186.801.561.83
    下载: 导出CSV

    表  4  BSA-MIP生物传感器在混合溶液中对BSA的检测

    Table  4.   BSA detection in mixed solution by BSA-MIP biosensor

    Sampleρ(BSA)/ (μg·mL−1)ρ(Founded)/(μg·mL−1)Recovery rate/%RSD/%
    100.05± 0.03//
    20.40.39 ± 0.0697.515.3
    30.60.59 ± 0.0698.310.1
    40.80.82 ± 0.05102.56.1
    下载: 导出CSV
  • [1] WANG Y Y, HAN M, LIU G S, HOU X D, HUANG Y N, WU K B, LI C Y. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin [J]. Biosensors and Bioelectronics,2015,74:792-798. doi: 10.1016/j.bios.2015.07.046
    [2] JAHANBAN-ESFAHLAN A, OSTADRAHIMI A, JAHANBAN-ESFAHLAN R, ROUFEGARINEJAD L, TABIBIAZAR M, AMAROWICZ R. Recent developments in the detection of bovine serum albumin [J]. International Journal of Biological Macromolecules,2019,138:602-617. doi: 10.1016/j.ijbiomac.2019.07.096
    [3] JAHANBAN-ESFAHLAN A, ROUFEGARINEJAD L, JAHANBAN-ESFAHLAN R, TABIBIAZAR M, AMAROWICZ R. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers [J]. Talanta,2020,207:120317. doi: 10.1016/j.talanta.2019.120317
    [4] YU J, WAN F, ZHANG C, YAN M, ZHANG X, WANG S. Molecularly imprinted polymeric microspheres for determination of bovine serum albumin based on flow injection chemiluminescence sensor [J]. Biosensors and Bioelectronics,2010,26(2):632-637. doi: 10.1016/j.bios.2010.07.009
    [5] WANG Y, WEI T X. Surface plasmon resonance sensor chips for the recognition of bovine serum albumin via electropolymerized molecularly imprinted polymers [J]. Chinese Chemical Letters,2013,24(9):813-816. doi: 10.1016/j.cclet.2013.05.004
    [6] AKGONULLU S, ARMUTCU C, DENIZLI A. Molecularly imprinted polymer film based plasmonic sensors for detection of ochratoxin A in dried fig [J]. Polymer Bulletin,2022,79(6):4049-4067. doi: 10.1007/s00289-021-03699-6
    [7] CIMEN D, BERELI N, DENIZLI A. Surface plasmon resonance based on molecularly imprinted polymeric film for L-phenylalanine detection [J]. Biosensors,2021,11(1):21. doi: 10.3390/bios11010021
    [8] CIMEN D, BERELI N, DENIZLI A. Patulin imprinted nanoparticles decorated surface plasmon resonance chips for patulin detection [J]. Photonic Sensors,2022,12:117-129. doi: 10.1007/s13320-021-0638-1
    [9] ZHOU C Y, GAO J G, ZHANG L L, ZHOU J. A 3, 3'-dichlorobenzidine-imprinted polymer gel surface plasmon resonance sensor based on template-responsive shrinkage [J]. Analytica Chimica Acta,2014,812:129-137. doi: 10.1016/j.aca.2013.12.015
    [10] SAYLAN Y, YILMAZ F, DERAZSHAMSHIR A, YILMAZ E, DENIZLI A. Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor [J]. Journal of Molecular Recognition,2017,30(9):e2631. doi: 10.1002/jmr.2631
    [11] BAKHSHPOUR M, GOKTURK I, BERELI N, YILMAZ F, DENIZLI A. Selective detection of penicillin G antibiotic in milk by molecularly imprinted polymer-based plasmonic SPR sensor [J]. Biomimetics,2021,6(4):72. doi: 10.3390/biomimetics6040072
    [12] SULLIVAN M V, HENDERSON A, HAND R A, TURNER N W. A molecularly imprinted polymer nanoparticle-based surface plasmon resonance sensor platform for antibiotic detection in river water and milk [J]. Analytical and Bioanalytical Chemistry,2022,414(12):3687-3696. doi: 10.1007/s00216-022-04012-8
    [13] YANG J C, SHIN H K, HONG S W. PARK J Y. Lithographically patterned molecularly imprinted polymer for gravimetric detection of trace atrazine [J]. Sensors and Actuators B:Chemical,2015,216:476-481. doi: 10.1016/j.snb.2015.04.079
    [14] SAYLAN Y, AKGONULLU S, CIMEN D, DERAZSHAMSHIR A, BERELI N, YILMAZ F, DENIZLI A. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides [J]. Sensors and Actuators B:Chemical,2017,241:446-454. doi: 10.1016/j.snb.2016.10.017
    [15] KURC O, TURKMEN D. Molecularly imprinted polymers based surface plasmon resonance sensor for sulfamethoxazole detection [J]. Photonic Sensors,2022,12(4):220417. doi: 10.1007/s13320-022-0658-5
    [16] PALLADINO P, MINUNNI M, SCARANO S. Cardiac Troponin T capture and detection in real-time via epitope-imprinted polymer and optical biosensing [J]. Biosensors and Bioelectronics,2019,106:93-98.
    [17] 王玮, 滕爽, 朱业培, 徐幸莲, 周光宏. 动物过敏原牛血清白蛋白表面等离子共振传感器检测方法的建立 [J]. 南京农业大学学报,2017,40(4):739-743. doi: 10.7685/jnau.201612009

    WANG W, TENG S, ZHU Y P, XU X L, ZHOU G H. Development of a surface plasmon resonance sensor for detection of animal allergen bovine serum albumin [J]. Journal of Nanjing Agricultural University,2017,40(4):739-743. doi: 10.7685/jnau.201612009
    [18] NDUNDA E N. Molecularly imprinted polymers—A closer look at the control polymer used in determining the imprinting effect: A mini review [J]. Journal of Molecular Recognition,2020,33(11):e2855.
    [19] LI G L, QI X M, WU J T, XU L J, WAN X, LIU Y, CHEN Y W, LI Q. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite [J]. Journal of Hazardous Materials,2022,436:129107. doi: 10.1016/j.jhazmat.2022.129107
    [20] BALCIUNAS D, PLAUSINAITIS D, RATAUTAITE V, RAMANAVICIENE A, RAMANAVICIUS A. Towards electrochemical surface plasmon resonance sensor based on the molecularly imprinted polypyrrole for glyphosate sensing [J]. Talanta,2022,241:123252. doi: 10.1016/j.talanta.2022.123252
    [21] RATAUTAITE V, BRAZYS E, RAMANAVICIENEM A, RAMANAVICIUS A. Electrochemical sensors based on L-tryptophan molecularly imprinted polypyrrole and polyaniline [J]. Journal of Electroanalytical Chemistry,2022,917:116389. doi: 10.1016/j.jelechem.2022.116389
    [22] ARABI M, OSTOVAN A, LI J H, WANG X Y, ZHANG Z Y, CHOO J, CHEN L X. Molecular imprinting: Green perspectives and strategies [J]. Advanced Materials,2021,33(30):2100543. doi: 10.1002/adma.202100543
    [23] STEVENSON D, EL-SHARIF H F, REDDY S M. Selective extraction of proteins and other macromolecules from biological samples using molecular imprinted polymers [J]. Bioanalysis,2016,8(21):2255-2263. doi: 10.4155/bio-2016-0209
    [24] SAYLAN Y, YILMAZ F, OZGUR E, DERAZSHAMSHIR A, YAVUZ H, DENIZLI A. Molecular imprinting of macromolecules for sensor applications [J]. Sensors,2017,17(4):898. doi: 10.3390/s17040898
    [25] GAI Q Q, QU F, ZHANG T, ZHANG Y K. The preparation of bovine serum albumin surface-imprinted superparamagnetic polymer with the assistance of basic functional monomer and its application for protein separation [J]. Journal of Chromatography A,2011,1218(22):3489-3495. doi: 10.1016/j.chroma.2011.03.069
    [26] 龚明磊, 刘铭扬, 王潇漾, 杨金波, 陈彧, 张斌. 贻贝启发的偶氮-聚多巴胺涂层用于光电双响应忆阻器件 [J]. 功能高分子学报,2022,35(4):339-348. doi: 10.14133/j.cnki.1008-9357.20210701001

    GONG M, LIU M Y, WANG X Y, YANG J B, CHEN Y, ZHANG B. Mussel-inspired Azo-polydopamine coating for photoelectric dual response memristive device [J]. Journal of Functional Polymers,2022,35(4):339-348. doi: 10.14133/j.cnki.1008-9357.20210701001
    [27] PONZIO F, BARTHES J, BOUR J, MICHEL M, BERTANI P, HEMMERLE J, D'ISCHIA M, BALL V. Oxidant control of polydopamine surface chemistry in acids: A mechanism-based entry to superhydrophilic-superoleophobic coatings [J]. Chemistry of Materials,2016,28(13):4697-4705. doi: 10.1021/acs.chemmater.6b01587
    [28] TLILI A, ATTIA G, KHAOULANI S, MAZOUZ Z, ZERROUKI C, YAAKOUBI N, OTHMANE A, FOURATI N. Contribution to the understanding of the interaction between a polydopamine molecular imprint and a protein model: Ionic strength and pH effect investigation [J]. Sensors,2021,21(2):619. doi: 10.3390/s21020619
    [29] TAO C H, MA F S, CHEN T D, LI X Q, GUAN W J, ZHANG A Q. Facile synthesis and performance studies of BSA and PDA@Ag hollow microcapsules using SiO2 microspheres as the templates [J]. Journal of Alloys and Compounds,2017,715:154-160. doi: 10.1016/j.jallcom.2017.04.178
    [30] ZHANG M, ZHANG X H, HE X W, CHEN L X, ZHANG Y K. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein [J]. Nanoscale,2012,4(10):3141-3147. doi: 10.1039/c2nr30316g
    [31] LI X J, ZHOU J J, TIAN L, WANG Y F, ZHANG B L, ZHANG H P, ZHANG Q Y. Preparation of anti-nonspecific adsorption polydopamine-based surface protein-imprinted magnetic microspheres with the assistance of 2-methacryloyloxyethyl phosphorylcholine and its application for protein recognition [J]. Sensors and Actuators B:Chemical,2017,241:413-421. doi: 10.1016/j.snb.2016.10.105
    [32] PAN C, CHEN L J, LIU S T, ZHANG Y L, ZHANG C, ZHU H K, WANG Y M. Dopamine-assisted immobilization of partially hydrolyzed poly(2-methyl-2-oxazoline) for antifouling and biocompatible coating [J]. Journal of Materials Science,2016,51:2427-2442. doi: 10.1007/s10853-015-9556-1
    [33] TAUHARDT L, FRAMT M, PRETZEL D, HARTLIEB M, BUCHER C, HILDEBRAND G. Amine end-functionalized poly(2-ethyl-2-oxazoline) as promising coating material for antifouling applications [J]. Journal of Materials Chemistry B,2014,2(30):4883-4893. doi: 10.1039/C4TB00193A
    [34] ZHANG Y L, CHEN L J, ZHANG C, LIU S T, ZHU H K, WANG Y M. Polydopamine-assisted partial hydrolyzed poly(2-methyl-2-oxazolinze) as coating for determination of melamine in milk by capillary electrophoresis [J]. Talanta,2016,150:375-387. doi: 10.1016/j.talanta.2015.12.054
    [35] BHANDARI T, OLSON J, JOHNSON R S, NIZET V. HIF-1α influences myeloid cell antigen presentation and response to subcutaneous OVA vaccination [J]. Journal of Molecular Medicine,2013,91:1199-1205. doi: 10.1007/s00109-013-1052-y
    [36] AICKIN R, HILL D, KEMP A. Measles immunisation in children with allergy to egg [J]. BMJ,1994,309(6949):223-225. doi: 10.1136/bmj.309.6949.223
    [37] OSMAN B, UZUN L, BESIRLI N, DENIZLI A. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection [J]. Materials Science and Engineering:C,2013,33(7):3609-3614. doi: 10.1016/j.msec.2013.04.041
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  24
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 网络出版日期:  2023-04-20

目录

    /

    返回文章
    返回