Molecularly Imprinted Polymers for Determination of Bovine Serum Albumin Based Surface Plasmon Resonance Sensor
-
摘要: 以牛血清蛋白(BSA)为模板分子、多巴胺为功能单体和交联剂、高碘酸钠为氧化剂,制备了BSA表面印迹表面等离子共振(SPR)生物传感器。通过聚丙烯酸(PAA-SH)与BSA的氢键作用预先固定BSA,增加印迹效率,同时在聚多巴胺表面非印迹区域修饰部分水解的聚(2-甲基-2-噁唑啉)(PMOXA-EI)抵抗蛋白质的非特异性吸附。通过X射线光电子能谱、原子力显微镜、可变角光谱椭偏仪和静态水接触角对制备的BSA表面印迹SPR生物传感器进行表征。对质量浓度为0.1~10 μg/mL的BSA水溶液进行SPR吸附研究,检测限和定量限分别达到了53 ng/mL和161 ng/mL。以β-乳球蛋白、卵白蛋白、溶菌酶和细胞色素C为参比蛋白进行选择性研究,相应的选择性系数分别达到了4.43、3.45、3.17和3.64。上述5种蛋白混合溶液中BSA的检测回收率在97.5%~102.5%。
-
关键词:
- 牛血清蛋白 /
- 表面等离子共振 /
- 分子印迹聚合物 /
- 聚丙烯酸 /
- 水解聚(2-甲基-2-噁唑啉)
Abstract: Bovine serum albumin (BSA) molecularly imprinted polymer (MIP) surface plasmon resonance (SPR) biosensors were prepared using BSA as a model, dopamine as the functional monomer and cross-linker and sodium periodate as the oxidant. BSA molecules were fixed in advance through hydrogen bond via introducing poly(acrylic acid) (PAA-SH) to increase recognition sites, and partially hydrolyzed poly(2-methyl-2-oxazoline)(PMOXA-EI) was also introduced into the noncavity regions of polydopamine to resist nonspecific adsorption of proteins. The prepared BSA-MIP SPR sensor was characterized by X-ray photoelectron spectroscopy, atomic force microscopy, variable angle spectroscopic ellipsometry, and static water contact angle. SPR adsorption studies were carried out in aqueous BSA solutions with the mass concentration of 0.1—10 μg/mL. The limit of detection and the limit of quantification values were obtained as 53 ng/mL and 161 ng/mL, respectively. Selectivity studies were performed against β-lactoglobulin, ovalbumin, lysozyme, and cytochrome C, and the corresponding selectivity coefficients were determined to be 4.43、3.45、3.17 and 3.64, respectively. Finally, BSA-MIP biosensor was used to detect BSA in the mixture solution of the above five proteins. The BSA recovery rate was 97.5% to 102.5%. -
表 1 SPR生物传感器芯片表面元素组成
Table 1. Elemental compositions on the surface of SPR biosensor chips
Sample f/% f(N)/f(C) Au4f O1s N1s S2p C1s Au-PAA 32.3 15.5 4.1 2.7 45.5 0.090 BSA-MIP before elution 19.9 17.1 5.5 2.9 54.7 0.100 BSA-MIP 14.2 11.3 13.7 1.4 65.5 0.209 NIP 13.5 14.1 9.4 1.2 61.8 0.152 表 2 BSA-MIP生物传感器的等温吸附线参数
Table 2. Isotherm parameters for BSA-MIP biosensor
Model Parameter ΔRmax/RU KA/(μg·mL−1) KD/(mL·μg−1) $\dfrac{1}{n} $ R2 Langmuir1) 1086.96 0.2044 4.8913 — 0.9975 Freundlich2) 203.30 — — 0.9385 0.9771 Langmuir- Freundlich3) 454.55 0.3929 2.5455 0.9385 0.9873 1)Langmuir: ${\Delta R=}{ {\Delta} R}_{\text{max} }\rho /\left({ {K} }_{\text{D} }+\rho \right)$, where ∆R (RU) is the adsorption capacity of biosensor calculated by measuring the change of SPR response signal between baseline signal and final adsorption signal, ρ (μg/mL) is the mass concentration of template protein BSA, KD (mL/μg ) are reverse equilibrium constants, subscript max indicates maximum; 2)Freundlich: ${\Delta }R\text{ =}{\text{Δ} }R_{\text{max} }{\rho}^{ {1/n} }$, 1/n is the Freundlich’s unmixed marker, subscript max indicates maximum; 3) Langmuir-Freundlich: $\text{Δ}R ={\text{Δ} }R_{\text{max} }{\rho}^{ {1/n} }\text{/}\left({ {K} }_{\text{D} }\text{+}{\rho }^{ {1/n} }\right)$, KD (mL/μg) and KA (μg/mL) are reverse and forward equilibrium constants, respectively, subscript max indicates maximum 表 3 对比蛋白的选择性和相对选择性系数
Table 3. Selectivity and relative selectivity coefficients for competitor proteins
Protein Mw pI MIP NIP IF ΔR k ΔR k BSA 6.64×104 4.7 1242.28 291.53 4.26 BLG 1.84×104 5.1 280.55 4.43 177.13 1.65 1.58 OVA 4.45×104 4.5 360.48 3.45 212.63 1.37 1.70 Lyz 1.43×104 11.3 391.55 3.17 192.48 1.51 2.03 Cyt C 1.23×104 10.2 341.20 3.64 186.80 1.56 1.83 表 4 BSA-MIP生物传感器在混合溶液中对BSA的检测
Table 4. BSA detection in mixed solution by BSA-MIP biosensor
Sample ρ(BSA)/ (μg·mL−1) ρ(Founded)/(μg·mL−1) Recovery rate/% RSD/% 1 0 0.05± 0.03 / / 2 0.4 0.39 ± 0.06 97.5 15.3 3 0.6 0.59 ± 0.06 98.3 10.1 4 0.8 0.82 ± 0.05 102.5 6.1 -
[1] WANG Y Y, HAN M, LIU G S, HOU X D, HUANG Y N, WU K B, LI C Y. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin [J]. Biosensors and Bioelectronics,2015,74:792-798. doi: 10.1016/j.bios.2015.07.046 [2] JAHANBAN-ESFAHLAN A, OSTADRAHIMI A, JAHANBAN-ESFAHLAN R, ROUFEGARINEJAD L, TABIBIAZAR M, AMAROWICZ R. Recent developments in the detection of bovine serum albumin [J]. International Journal of Biological Macromolecules,2019,138:602-617. doi: 10.1016/j.ijbiomac.2019.07.096 [3] JAHANBAN-ESFAHLAN A, ROUFEGARINEJAD L, JAHANBAN-ESFAHLAN R, TABIBIAZAR M, AMAROWICZ R. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers [J]. Talanta,2020,207:120317. doi: 10.1016/j.talanta.2019.120317 [4] YU J, WAN F, ZHANG C, YAN M, ZHANG X, WANG S. Molecularly imprinted polymeric microspheres for determination of bovine serum albumin based on flow injection chemiluminescence sensor [J]. Biosensors and Bioelectronics,2010,26(2):632-637. doi: 10.1016/j.bios.2010.07.009 [5] WANG Y, WEI T X. Surface plasmon resonance sensor chips for the recognition of bovine serum albumin via electropolymerized molecularly imprinted polymers [J]. Chinese Chemical Letters,2013,24(9):813-816. doi: 10.1016/j.cclet.2013.05.004 [6] AKGONULLU S, ARMUTCU C, DENIZLI A. Molecularly imprinted polymer film based plasmonic sensors for detection of ochratoxin A in dried fig [J]. Polymer Bulletin,2022,79(6):4049-4067. doi: 10.1007/s00289-021-03699-6 [7] CIMEN D, BERELI N, DENIZLI A. Surface plasmon resonance based on molecularly imprinted polymeric film for L-phenylalanine detection [J]. Biosensors,2021,11(1):21. doi: 10.3390/bios11010021 [8] CIMEN D, BERELI N, DENIZLI A. Patulin imprinted nanoparticles decorated surface plasmon resonance chips for patulin detection [J]. Photonic Sensors,2022,12:117-129. doi: 10.1007/s13320-021-0638-1 [9] ZHOU C Y, GAO J G, ZHANG L L, ZHOU J. A 3, 3'-dichlorobenzidine-imprinted polymer gel surface plasmon resonance sensor based on template-responsive shrinkage [J]. Analytica Chimica Acta,2014,812:129-137. doi: 10.1016/j.aca.2013.12.015 [10] SAYLAN Y, YILMAZ F, DERAZSHAMSHIR A, YILMAZ E, DENIZLI A. Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor [J]. Journal of Molecular Recognition,2017,30(9):e2631. doi: 10.1002/jmr.2631 [11] BAKHSHPOUR M, GOKTURK I, BERELI N, YILMAZ F, DENIZLI A. Selective detection of penicillin G antibiotic in milk by molecularly imprinted polymer-based plasmonic SPR sensor [J]. Biomimetics,2021,6(4):72. doi: 10.3390/biomimetics6040072 [12] SULLIVAN M V, HENDERSON A, HAND R A, TURNER N W. A molecularly imprinted polymer nanoparticle-based surface plasmon resonance sensor platform for antibiotic detection in river water and milk [J]. Analytical and Bioanalytical Chemistry,2022,414(12):3687-3696. doi: 10.1007/s00216-022-04012-8 [13] YANG J C, SHIN H K, HONG S W. PARK J Y. Lithographically patterned molecularly imprinted polymer for gravimetric detection of trace atrazine [J]. Sensors and Actuators B:Chemical,2015,216:476-481. doi: 10.1016/j.snb.2015.04.079 [14] SAYLAN Y, AKGONULLU S, CIMEN D, DERAZSHAMSHIR A, BERELI N, YILMAZ F, DENIZLI A. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides [J]. Sensors and Actuators B:Chemical,2017,241:446-454. doi: 10.1016/j.snb.2016.10.017 [15] KURC O, TURKMEN D. Molecularly imprinted polymers based surface plasmon resonance sensor for sulfamethoxazole detection [J]. Photonic Sensors,2022,12(4):220417. doi: 10.1007/s13320-022-0658-5 [16] PALLADINO P, MINUNNI M, SCARANO S. Cardiac Troponin T capture and detection in real-time via epitope-imprinted polymer and optical biosensing [J]. Biosensors and Bioelectronics,2019,106:93-98. [17] 王玮, 滕爽, 朱业培, 徐幸莲, 周光宏. 动物过敏原牛血清白蛋白表面等离子共振传感器检测方法的建立 [J]. 南京农业大学学报,2017,40(4):739-743. doi: 10.7685/jnau.201612009WANG W, TENG S, ZHU Y P, XU X L, ZHOU G H. Development of a surface plasmon resonance sensor for detection of animal allergen bovine serum albumin [J]. Journal of Nanjing Agricultural University,2017,40(4):739-743. doi: 10.7685/jnau.201612009 [18] NDUNDA E N. Molecularly imprinted polymers—A closer look at the control polymer used in determining the imprinting effect: A mini review [J]. Journal of Molecular Recognition,2020,33(11):e2855. [19] LI G L, QI X M, WU J T, XU L J, WAN X, LIU Y, CHEN Y W, LI Q. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite [J]. Journal of Hazardous Materials,2022,436:129107. doi: 10.1016/j.jhazmat.2022.129107 [20] BALCIUNAS D, PLAUSINAITIS D, RATAUTAITE V, RAMANAVICIENE A, RAMANAVICIUS A. Towards electrochemical surface plasmon resonance sensor based on the molecularly imprinted polypyrrole for glyphosate sensing [J]. Talanta,2022,241:123252. doi: 10.1016/j.talanta.2022.123252 [21] RATAUTAITE V, BRAZYS E, RAMANAVICIENEM A, RAMANAVICIUS A. Electrochemical sensors based on L-tryptophan molecularly imprinted polypyrrole and polyaniline [J]. Journal of Electroanalytical Chemistry,2022,917:116389. doi: 10.1016/j.jelechem.2022.116389 [22] ARABI M, OSTOVAN A, LI J H, WANG X Y, ZHANG Z Y, CHOO J, CHEN L X. Molecular imprinting: Green perspectives and strategies [J]. Advanced Materials,2021,33(30):2100543. doi: 10.1002/adma.202100543 [23] STEVENSON D, EL-SHARIF H F, REDDY S M. Selective extraction of proteins and other macromolecules from biological samples using molecular imprinted polymers [J]. Bioanalysis,2016,8(21):2255-2263. doi: 10.4155/bio-2016-0209 [24] SAYLAN Y, YILMAZ F, OZGUR E, DERAZSHAMSHIR A, YAVUZ H, DENIZLI A. Molecular imprinting of macromolecules for sensor applications [J]. Sensors,2017,17(4):898. doi: 10.3390/s17040898 [25] GAI Q Q, QU F, ZHANG T, ZHANG Y K. The preparation of bovine serum albumin surface-imprinted superparamagnetic polymer with the assistance of basic functional monomer and its application for protein separation [J]. Journal of Chromatography A,2011,1218(22):3489-3495. doi: 10.1016/j.chroma.2011.03.069 [26] 龚明磊, 刘铭扬, 王潇漾, 杨金波, 陈彧, 张斌. 贻贝启发的偶氮-聚多巴胺涂层用于光电双响应忆阻器件 [J]. 功能高分子学报,2022,35(4):339-348. doi: 10.14133/j.cnki.1008-9357.20210701001GONG M, LIU M Y, WANG X Y, YANG J B, CHEN Y, ZHANG B. Mussel-inspired Azo-polydopamine coating for photoelectric dual response memristive device [J]. Journal of Functional Polymers,2022,35(4):339-348. doi: 10.14133/j.cnki.1008-9357.20210701001 [27] PONZIO F, BARTHES J, BOUR J, MICHEL M, BERTANI P, HEMMERLE J, D'ISCHIA M, BALL V. Oxidant control of polydopamine surface chemistry in acids: A mechanism-based entry to superhydrophilic-superoleophobic coatings [J]. Chemistry of Materials,2016,28(13):4697-4705. doi: 10.1021/acs.chemmater.6b01587 [28] TLILI A, ATTIA G, KHAOULANI S, MAZOUZ Z, ZERROUKI C, YAAKOUBI N, OTHMANE A, FOURATI N. Contribution to the understanding of the interaction between a polydopamine molecular imprint and a protein model: Ionic strength and pH effect investigation [J]. Sensors,2021,21(2):619. doi: 10.3390/s21020619 [29] TAO C H, MA F S, CHEN T D, LI X Q, GUAN W J, ZHANG A Q. Facile synthesis and performance studies of BSA and PDA@Ag hollow microcapsules using SiO2 microspheres as the templates [J]. Journal of Alloys and Compounds,2017,715:154-160. doi: 10.1016/j.jallcom.2017.04.178 [30] ZHANG M, ZHANG X H, HE X W, CHEN L X, ZHANG Y K. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein [J]. Nanoscale,2012,4(10):3141-3147. doi: 10.1039/c2nr30316g [31] LI X J, ZHOU J J, TIAN L, WANG Y F, ZHANG B L, ZHANG H P, ZHANG Q Y. Preparation of anti-nonspecific adsorption polydopamine-based surface protein-imprinted magnetic microspheres with the assistance of 2-methacryloyloxyethyl phosphorylcholine and its application for protein recognition [J]. Sensors and Actuators B:Chemical,2017,241:413-421. doi: 10.1016/j.snb.2016.10.105 [32] PAN C, CHEN L J, LIU S T, ZHANG Y L, ZHANG C, ZHU H K, WANG Y M. Dopamine-assisted immobilization of partially hydrolyzed poly(2-methyl-2-oxazoline) for antifouling and biocompatible coating [J]. Journal of Materials Science,2016,51:2427-2442. doi: 10.1007/s10853-015-9556-1 [33] TAUHARDT L, FRAMT M, PRETZEL D, HARTLIEB M, BUCHER C, HILDEBRAND G. Amine end-functionalized poly(2-ethyl-2-oxazoline) as promising coating material for antifouling applications [J]. Journal of Materials Chemistry B,2014,2(30):4883-4893. doi: 10.1039/C4TB00193A [34] ZHANG Y L, CHEN L J, ZHANG C, LIU S T, ZHU H K, WANG Y M. Polydopamine-assisted partial hydrolyzed poly(2-methyl-2-oxazolinze) as coating for determination of melamine in milk by capillary electrophoresis [J]. Talanta,2016,150:375-387. doi: 10.1016/j.talanta.2015.12.054 [35] BHANDARI T, OLSON J, JOHNSON R S, NIZET V. HIF-1α influences myeloid cell antigen presentation and response to subcutaneous OVA vaccination [J]. Journal of Molecular Medicine,2013,91:1199-1205. doi: 10.1007/s00109-013-1052-y [36] AICKIN R, HILL D, KEMP A. Measles immunisation in children with allergy to egg [J]. BMJ,1994,309(6949):223-225. doi: 10.1136/bmj.309.6949.223 [37] OSMAN B, UZUN L, BESIRLI N, DENIZLI A. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection [J]. Materials Science and Engineering:C,2013,33(7):3609-3614. doi: 10.1016/j.msec.2013.04.041 -