高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝光热激活延迟荧光分子设计策略概述

陶伟 崔林松

陶 伟, 崔林松. 蓝光热激活延迟荧光分子设计策略概述[J]. 功能高分子学报,2023,36(3):1-21 doi: 10.14133/j.cnki.1008-9357.20230223002
引用本文: 陶 伟, 崔林松. 蓝光热激活延迟荧光分子设计策略概述[J]. 功能高分子学报,2023,36(3):1-21 doi: 10.14133/j.cnki.1008-9357.20230223002
TAO Wei, CUI Linsong. An Overview of Molecular Design Strategies for Blue Thermally Activated Delayed Fluorescence[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230223002
Citation: TAO Wei, CUI Linsong. An Overview of Molecular Design Strategies for Blue Thermally Activated Delayed Fluorescence[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230223002

蓝光热激活延迟荧光分子设计策略概述

doi: 10.14133/j.cnki.1008-9357.20230223002
基金项目: 国家自然科学基金青年项目(52103242);中国科学技术大学青年创新重点基金项目(YD2060002026)
详细信息
    作者简介:

    陶伟:陶 伟(1997—),男,硕士,研究方向为电致发光显示材料设计。E-mail:wtao619@mail.ustc.edu.cn

    崔林松,中国科学技术大学特任教授、博士生导师。2017年获日本九州大学博士学位,师从TADF OLED发明人Chihaya Adachi教授。2018~2021年在英国剑桥大学卡文迪许实验室从事博士后研究,合作导师为剑桥大学卡文迪许实验室主任Richard Friend院士。2021年2月加入中国科学技术大学,主要从事有机发光显示材料与器件研究,包括:有机发光显示材料设计与合成;分子激发态性质;发光器件集成应用等。迄今为止,以通讯或第一作者在NatureNature PhotonicsNature MaterialsNature ElectronicsNature Communications等国际学术期刊上发表SCI论文56篇

    通讯作者:

    崔林松,E-mail:lscui@ustc.edu.cn

  • 中图分类号: TB34

An Overview of Molecular Design Strategies for Blue Thermally Activated Delayed Fluorescence

  • 摘要: 热激活延迟荧光(thermally activated delayed fluorescence,TADF)分子由于三重态上的激子可以通过反向系间窜越到单重态并辐射发出荧光,因此在有机发光二极管(organic light-emitting diode, OLED)中理论上可以实现100%的激子利用率。具有TADF特性的发光材料融合了第一代荧光材料和第二代磷光材料的优点,不仅可以实现100%的内量子效率,还有助于降低器件的材料成本,被誉为第三代OLED发光材料,并成为突破高效稳定蓝光OLED瓶颈的潜在解决方案。本文从发光机理出发,系统阐述了高效稳定蓝光TADF分子的设计策略,包括高荧光量子产率、短延迟荧光寿命、窄发射光谱半峰宽、显著的水平分子取向和良好的光电稳定性等。本文旨在为高性能蓝光TADF分子的开发提供理论支持。最后,总结了当前蓝光TADF材料存在的问题,并对其未来的发展前景进行了展望。

     

  • 图  1  有机电致发光材料的发展历程:第一代传统荧光OLED(a)、第二代磷光OLED(b)和第三代热活化延迟荧光OLED(c)电致发光机制的示意图(F和P分别对应荧光和磷光)

    Figure  1.  Development of organic electroluminescent materials: Schematic diagram of electroluminescence (EL) mechanism of the first-generation of traditional fluorescent OLED (a), the second-generation phosphorescent OLED (b) and the third-generation of TADF OLED (c) (F and P represent fluorescence and phosphorescence)

    图  2  高性能蓝光TADF分子设计策略的示意图

    Figure  2.  Schematic diagram of design strategy for high-performance blue TADF molecules

    图  3  蓝光TADF分子内电子给体与电子受体的连接方式

    Figure  3.  Different linkages between donor and acceptor units for design of blue TADF molecules

    图  4  构建蓝光TADF分子常用的电子给体和电子受体

    Figure  4.  Common donor and acceptor units for design of blue TADF molecules

    图  5  不同光色TADF分子能级分布的示意图,从左到右分别代表深蓝、天蓝、绿光TADF分子的典型发光机制(ISC,IC,RIC,$ {E}_{{}_{}{}^{3}\mathrm{C}\mathrm{T}} $$ {E}_{{}_{}{}^{3}\mathrm{L}\mathrm{E}} $分别代表系间窜越,内转换,反向内转换,3CT的能级及3LE的能级)[41]

    Figure  5.  Schematic diagram of molecular energy level distribution of TADF materials with different light colors . From left to right, each picture represents typical emission mechanism of deep blue, sky blue and green TADF molecules (ISC, IC, RIC, $ {E}_{{}_{}{}^{3}\mathrm{C}\mathrm{T}} $ and $ {E}_{{}_{}{}^{3}\mathrm{L}\mathrm{E}} $ represent intersystem crossing, internal conversion, reverse internal conversion, energy level of 3CT and energy level of 3LE)[41]

    图  6  基于不同给受体二面角的蓝光TADF分子的化学结构式(λem表示荧光光谱的峰值)[42,43]

    Figure  6.  Chemical structures of blue TADF molecules with different dihedral angles between donor and acceptor units (λem represents the peak of the fluorescence spectrum)[42,43]

    图  7  具有较小的ΔEST的蓝光TSCT-TADF分子的化学结构式[45-49]

    Figure  7.  Chemical structures of blue TSCT-TADF molecules with small ΔEST[45-49]

    图  8  具有较高的kRISC的蓝光TADF分子的化学结构式[53-58]

    Figure  8.  Chemical structures of blue TADF molecules with fast kRISC[53-58]

    图  9  示例分子的化学结构、HOMO和LUMO[62-64]

    Figure  9.  Chemical structures, HOMO and LUMO distributions of the reported molecules[62-64]

    图  10  具有刚性结构的蓝光TSCT-TADF分子的化学结构式[65-67]

    Figure  10.  Chemical structures of blue TSCT-TADF molecules with rigid structure[65-67]

    图  11  光耗损途径示意图

    Figure  11.  Schematic diagram of the optical loss pathway

    图  12  具有水平取向的蓝光TADF分子的化学结构式(Θ表示水平偶极子比)[69-71]

    Figure  12.  Chemical structures of blue TADF molecules with excellent horizontal orientation (Θ represents horizontal dipole ratio)[69-71]

    图  13  商业化应用中使用滤光片提高OLED发光色纯度的示意图[72]:器件结构(a)和使用滤光片与没有使用滤光片的对照光谱的示意图(b)

    Figure  13.  Schematic diagram of the use of color filters (CF) strategy to improve color purity of OLED in commercial applications[72]: Schematic diagram of device structure (a) and the comparison of emission spectra with and without CF (b)

    图  14  Franck-Condon原理与分子光谱关系的示意图:发光分子辐射跃迁(a)和荧光光谱的示意图(b)

    Figure  14.  Schematic diagram of the relationship between Franck-Condon principle and molecular spectrum: Schematic diagram of radiative transitions of luminescent molecules (a) and fluorescence spectrum (b)

    图  15  减小发光分子光谱FWHM的策略示意图:通过减少分子振动能级减小光谱展宽的示意图(a);普通OLED分子的光谱示意图(b)和通过减小分子S1S0构型差异减小光谱展宽示意图(c)

    Figure  15.  Schematic diagram of the strategy for narrowing FWHM of luminescent molecules: Schematic diagram of suppressing the spectral broadening by suppressing molecular vibration energy level (a); Schematic diagram of the emission spectrum of OLED molecules (b) and schematic diagram of suppressing the spectral broadening by suppressing the configuration difference between S1 and S0 (c)

    图  16  窄FWHM的蓝光TADF分子的化学结构式[74-81]

    Figure  16.  Chemical structures of blue TADF molecules with narrow FWHM[74-81]

    图  17  一般TADF分子中化学键的键解离能(a);蓝光TADF发射体的降解机制示意图(b);蓝光TADF材料电氧化和光氧化协同过程的降解机制示意图(c)

    Figure  17.  Bond dissociation energy of the chemical bonds in common TADF molecules (a); Schematic diagram of the degradation mechanism of blue TADF emitters (b); Schematic diagram of the degradation mechanism of blue TADF materials by means of synergistic processes of electro-oxidation and photo-oxidation (c)

    表  1  示例分子及其器件的常用参数列表

    Table  1.   List of common parameters for the reported molecule and their device

    MoleculeΔEST/eVkRISC/s−1PLQY/%EQEmax/%CIET50/h
    Cz-TRZ30.171.53×10460.019.200.15, 0.10
    TDBA-PAS0.151.53×10692.322.350.16, 0.04
    P-Ac95-TRZ050.0251.012.100.18, 0.27
    P1-050.043.3×10629.07.100.17, 0.17
    4CzIPN0.042.03×10694.0
    3Cz2DPhCzBN0.159.90×10580.020.900.21, 0.44
    5CzTRZ0.021.50×10792.029.30
    3CTF0.042.57×10622.600.29, 0.57
    MCz-TXT1.10×10879.025.800.21, 0.46
    CzBSe0.151.80×10898.023.900.10, 0.24
    BCzT95.621.70
    2a0.0974.020.800.19, 0.35
    2b0.2857.016.800.17, 0.27
    2c0.3272.014.600.18, 0.28
    PXZN-B0.284.54×10493.012.700.13, 0.15
    DMACN-B0.272.45×10490.010.000.15, 0.05
    DM-B0.171.80×10596.027.400.20, 0.44
    mCz-Xo-TRZ0.163.00×10590.021.000.15, 0.20
    PNBTAc-TRZ54.40×10681.018.800.20, 0.31
    SBA-2DPS0.075.38×10560.025.500.15, 0.20
    CzBPCN0.2714.000.14, 0.1211.01)
    v-DABNA0.022.00×10582.034.400.12, 0.11
    BN30.152.55×10598.037.600.14, 0.08
    DABNA-20.141.48×10489.720.200.12, 0.13
    BOBS-Z0.128.60×10593.026.900.14, 0.06
    mDBIC0.315.0×10368.013.500.16, 0.05
    BCZ-TRZ0.3192.020.500.18, 0.3432.02)
    1) L0 = 200 cd/m2;2) L0 = 500 cd/cm2T50 represents the time to reach 50% of inital lunminance
    下载: 导出CSV
  • [1] TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Applied Physics Letters,1987,51(12):913-915. doi: 10.1063/1.98799
    [2] 陈金鑫, 黄孝文. OLED 梦幻显示器: 材料与器件 [M]. 北京: 人民邮电出版社, 2011: 2-7.

    Chen JX, Huang XW. OLED Dream Display: Materials and Devices [M]. Beijing: Posts and Telecommunications Press, 2011: 2-7.
    [3] MA Y G, ZHANG H Y, SHEN J C, CHE C M. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synthetic Metals,1998,94(3):245-248. doi: 10.1016/S0379-6779(97)04166-0
    [4] BALDO M A, O'BRIEN D F, YOU Y, SHOUSTIKOV A, SIBLEY S, THOMPSON M E, FORREST S R. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature,1998,395(6698):151-154. doi: 10.1038/25954
    [5] KIDO J, LIZUMI Y. Fabrication of highly efficient organic electroluminescent devices [J]. Applied Physics Letters,1998,73(19):2721-2723. doi: 10.1063/1.122570
    [6] ENDO A, SATO K, YOSHIMURA K, KAI T, KAWADA A, MIYAZAKI H, ADACHI C. Efficient upconversion of triplet excitons into a singlet state and its application for organic light emitting diodes [J]. Applied Physics Letters,2011,98(8):083302-083304. doi: 10.1063/1.3558906
    [7] ADACHI C. Third-generation organic electroluminescence materials [J]. Japanese Journal of Applied Physics, 2014, 53(6): 060101.
    [8] SONEIRA R M. Display color gamuts: NTSC to Rec. 2020 [J]. Information Display,2016,32(4):26-31. doi: 10.1002/j.2637-496X.2016.tb00920.x
    [9] MONKMAN A. Why do we still need a stable long lifetime deep blue OLED emitter? [J]. ACS Applied Materials & Interfaces,2022,14(18):20463-20467.
    [10] NAKANOTANI H, HIGUCHI T, FURUKAWA T, MASUI K, MORIMOTO K, NUMATA M, TANAKA H, SAGARA Y, YASUDA T, ADACHI C. High-efficiency organic light-emitting diodes with fluorescent emitters [J]. Nature Communications,2014,5:4016-4022. doi: 10.1038/ncomms5016
    [11] NASU K, NAKAGAWA T, NOMURA H, LIN C J, CHENG C H, TSENG M R, YASUDA T, ADACHI C. A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence [J]. Chemical Communications,2013,49(88):10385-10387. doi: 10.1039/C3CC44179B
    [12] WANG Y S, YANG J, TIAN Y, FANG M M, LIAO Q Y, WANG L W, HU W P, TANG B Z, LI Z. Persistent organic room temperature phosphorescence: What is the role of molecular dimers? [J]. Chemical Science,2020,11:833-838. doi: 10.1039/C9SC04632A
    [13] YIN C, ZHANG D D, DUAN L. A perspective on blue TADF materials based on carbazole-benzonitrile derivatives for efficient and stable OLEDs [J]. Applied Physics Letters,2020,116(12):120503. doi: 10.1063/1.5143501
    [14] CHEN Z X, WU Z B, NI F, ZHONG C, ZENG W X, WEI D Q, AN K B, MA D G, YANG C L. Emitters with a pyridine-3, 5-dicarbonitrile core and short delayed fluorescence lifetimes of about 1.5 μs: Orange-red TADF-based OLEDs with very slow efficiency roll-offs at high luminance [J]. Journal of Materials Chemistry C,2018,6(24):6543-6548. doi: 10.1039/C8TC01698D
    [15] RAJAMALLI P, SENTHILKUMAR N, GANDEEPAN P, WU C C R, LIN H W, CHENG C H. A method for reducing the singlet-triplet energy gaps of TADF materials for improving the blue OLED efficiency [J]. ACS Applied Materials & Interfaces,2016,8(40):27026-27034.
    [16] NODA H, NAKANOTANI H, ADACHI C. Excited state engineering for efficient reverse intersystem crossing [J]. Science Advances,2018,4(6):eaao6910. doi: 10.1126/sciadv.aao6910
    [17] MURAWSKI C, LEO K, GATHER M C. Efficiency roll-off in organic light-emitting diodes [J]. Advanced Materials,2013,25(47):6801-6827. doi: 10.1002/adma.201301603
    [18] XIA G Q, QU C, ZHU Y L, YE J J, YE K Q, ZHANG Z L, WANG Y. A TADF emitter featuring linearly arranged spiro-donor and spiro acceptor groups: Efficient nondoped and doped deep-blue OLEDs with CIEy < 0 [J]. Angewandte Chemie International Edition,2021,60(17):9598-9603. doi: 10.1002/anie.202100423
    [19] REINEKE S, SCHWARTZ G, WALZER K, LEO K. Reduced efficiency roll-off in phosphorescent organic light emitting diodes by suppression of triplet-triplet annihilation [J]. Applied Physics Letters,2007,91(12):123508. doi: 10.1063/1.2786840
    [20] LEE J, JEONG C, BATAGODA T, COBURN C, THOMPSON M E, FORREST S R. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes [J]. Nature Communications,2017,8(1):15566. doi: 10.1038/ncomms15566
    [21] MUNKHBAT B, WERSÄLL M, BARANOV D G, ANTOSIEWICZ T J, SHEGAI T. Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas [J]. Science Advances,2018,4(7):eaas9552. doi: 10.1126/sciadv.aas9552
    [22] LEE D Y, KIM M, JEON S K, HWANG S H, LEE C W, LEE J Y. Design strategy for 25% external quantum efficiency in green and blue thermally activated delayed fluorescent devices [J]. Advanced Materials,2015,27(39):5861-5867. doi: 10.1002/adma.201502053
    [23] XIE F M, AN Z D, XIE M, LI Y Q, ZHANG G H, ZOU S J, CHEN L, CHEN J D, CHENG T, TANG J X. Tert-butyl substituted hetero-donor TADF compounds for efficient solution-processed non-doped blue OLEDs [J]. Journal of Materials Chemistry C,2020,8(17):5769-5776. doi: 10.1039/D0TC00718H
    [24] KREIZA G, BANEVIČIUS D, JOVAIŠAITĖ J, MALECKAITĖ K, GUDEIKA D, VOLYNIUK D, GRAŽULEVIČIUS J V, JURŠĖNAS S, KAZLAUSKAS K. Suppression of benzophenone-induced triplet quenching for enhanced TADF performance [J]. Journal of Materials Chemistry C,2019,7(37):11522-11531. doi: 10.1039/C9TC02408E
    [25] SERDIUK I E, RYOO C H, KOZAKIEWICZ K, MOŃKA M, LIBEREK B, PARK S Y. Twisted acceptors in the design of deep-blue TADF emitters: Crucial role of excited-state relaxation in the photophysics of methyl-substituted s-triphenyltriazine derivatives [J]. Journal of Materials Chemistry C,2020,8(18):6052-6062. doi: 10.1039/C9TC07102D
    [26] SEREVIČIUS T, DODONOVA J, SKAISGIRIS R, BANEVIČIUS D, KAZLAUSKAS K, JURŠĖNAS S, TUMKEVIČIUS S. Optimization of the carbazole-pyrimidine linking pattern for achieving efficient TADF [J]. Journal of Materials Chemistry C,2020,8(32):11192-11200. doi: 10.1039/D0TC02194F
    [27] MA M Y, LI J Y, LIU D, MEI Y Q, DONG R Z. Rational utilization of intramolecular hydrogen bonds to achieve blue TADF with EQEs of nearly 30% and single emissive layer all-TADF WOLED [J]. ACS Applied Materials & Interfaces,2021,13(37):44615-44627.
    [28] WANG J S, ZHANG J F, JIANG C F, YAO C, XI X G. Effective design strategy for aggregation-induced emission and thermally activated delayed fluorescence emitters achieving 18% external quantum efficiency pure-blue OLEDs with extremely low roll-off [J]. ACS Applied Materials & Interfaces,2021,13(48):57713-57724.
    [29] YOKOYAMA D. Molecular orientation in small-molecule organic light-emitting diodes [J]. Journal of Materials Chemistry C,2011,21(48):19187-19202. doi: 10.1039/c1jm13417e
    [30] XIANG Y P, LI P, GONG S L, HUANG Y H, WANG C Y, ZHONG C, ZENG W X, CHEN Z X, LEE W K, YIN X J, WU C C, YANG C L. Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters [J]. Science Advances,2020,6(41):eaba7855. doi: 10.1126/sciadv.aba7855
    [31] COLMAN E Z. Molecular designs offer fast exciton conversion [J]. Nature Photonics,2020,14(10):593-594. doi: 10.1038/s41566-020-0696-8
    [32] MARIAN C M. Spin-orbit coupling and intersystem crossing in molecules [J]. Computational Molecular Science,2011,2(2):187-203.
    [33] PENFOLD T J, GINDENSPERGER E, DANIEL C, MARIAN C M. Spin-vibronic mechanism for intersystem crossing [J]. Chemical Reviews,2018,118(15):6975-7025. doi: 10.1021/acs.chemrev.7b00617
    [34] WANG J J, MIAO J S, JIANG C L, LUO S, YANG C L, LI K. Engineering intramolecular π-stacking interactions of through-space charge-transfer TADF emitters for highly efficient OLEDs with improved color purity [J]. Advanced Optical Materials,2022,10(20):2201071. doi: 10.1002/adom.202201071
    [35] CHEN X K, TSUCHIYA Y, ISHIKAWA Y, ZHONG C, ADACHI C, BRÉDAS J L. A new design strategy for efficient thermally activated delayed fluorescence organic emitters: From twisted to planar structures [J]. Advanced Materials,2017,29(46):1702767. doi: 10.1002/adma.201702767
    [36] ZHANG D D, CAI M H, ZHANG Y E, ZHANG D Q, DUAN L. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability [J]. Materials Horizons,2016,3(2):145-151. doi: 10.1039/C5MH00258C
    [37] WU K L, WANG Z A, ZHAN L S, ZHONG C, GONG S L, XIE G H, YANG C L. Realizing highly efficient solution-processed homojunction-like sky-blue OLEDs by using thermally activated delayed fluorescent emitters featuring an aggregation-induced emission property [J]. The Journal of Physical Chemistry Letters,2018,9(7):1547-1553. doi: 10.1021/acs.jpclett.8b00344
    [38] LI C Y, DUAN C B, HAN C M, XU H. Secondary acceptor optimization for full-exciton radiation: Toward sky-blue thermally activated delayed fluorescence diodes with external quantum efficiency of ≈30% [J]. Advanced Materials,2018,30(50):1804228. doi: 10.1002/adma.201804228
    [39] LI Y C, LIU J Y, ZHAO Y D, CAO Y C. Recent advancements of high efficient donor-acceptor type blue small molecule applied for OLEDs [J]. Materials Today,2016,20(5):258-266.
    [40] BUI T T, GOUBARD F, OUALI M I, GIGMES D, DUMUR F. Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs) [J]. Beilstein Journal of Organic Chemistry,2018,14(1):282-308.
    [41] CAI X Y, LI X L, XIE G Z, HE Z Z, GAO K, LIU K K, CHEN D C, CAO Y, SU S J. “Rate-limited effect”of reverse intersystem crossing process: The key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes [J]. Chemical Science,2016,7(7):4264-4275. doi: 10.1039/C6SC00542J
    [42] CUI L S, NOMURA H, GENG Y, KIM J U, NAKANOTANI H, ADACHI C. Controlling singlet-triplet energy splitting for deep-blue thermally activated delayed fluorescence emitters [J]. Angewandte Chemie International Edition,2017,56(6):1571-1575. doi: 10.1002/anie.201609459
    [43] TAN H J, YANG G X, DENG Y L, CAO C, TAN J H, ZHU Z L, CHEN W C, XIANG Y, JIAN J X, LEE C S, TONG Q X. Deep-blue OLEDs with Rec. 2020. blue gamut compliance and EQE over 22% achieved by conformation engineering [J]. Advanced Materials,2022,34(18):2200537.
    [44] ZHAO Z N, ZENG C, PENG X M, LIU Y C, ZHAO H S, HUA L, SU S J, YAN S K, REN Z J. Tuning intramolecular stacking of rigid heteroaromatic compounds for high-efficiency deep-blue through-space charge-transfer emission [J]. Angewandte Chemie International Edition,2022,61(39):e202210864. doi: 10.1002/anie.202210864
    [45] SHI Y Z, WANG K, LI X, DAI G L, LIU W, KE K, ZHANG M, TAO S L, ZHENG C J, OU X M, ZHANG X H. Intermolecular charge-transfer transition emitter showing thermally activated delayed fluorescence for efficient non-doped OLEDs [J]. Angewandte Chemie International Edition,2018,57(30):9480-9484. doi: 10.1002/anie.201804483
    [46] GENG Y, D'ALEO A, INADA K, CUI L S, KIM J U, NAKANOTANI H, ADACHI C. Donor-σ-acceptor motifs: Thermally activated delayed fluorescence emitters with dual upconversion [J]. Angewandte Chemie International Edition,2017,56(52):16536-16540. doi: 10.1002/anie.201708876
    [47] TANG X, CUI L S, LI H C, GILLETT A J, AURAS F, QU Y K, ZHONG C, JONES S T E, JIANG Z Q, FRIEND R H, LIAO L S. Highly efficient luminescence from space-confined charge-transfer emitters [J]. Nature Materials,2020,19(12):1332-1338. doi: 10.1038/s41563-020-0710-z
    [48] SHAO S Y, HU J, WANG X D, WANG L X, JING X B, WANG F S. Blue thermally activated delayed fluorescence polymers with nonconjugated backbone and through-space charge transfer effect [J]. Journal of The American Chemical Society,2017,139(49):17739-17742. doi: 10.1021/jacs.7b10257
    [49] HU J, LI Q, WANG X D, SHAO S Y, WANG L X, JING X B, WANG F S. Developing through-space charge transfer polymers as a general approach to realize full-color and white emission with thermally activated delayed fluorescence [J]. Angewandte Chemie International Edition,2019,58(25):8405-8409. doi: 10.1002/anie.201902264
    [50] HAASE N, DANOS A, PFLUMM C, MORHERR A, STACHELEK P, MEKIC A, BRÜTTING W, MONKMAN A P. Kinetic modeling of transient photoluminescence from thermally activated delayed fluorescence [J]. The Journal of Physical Chemistry C,2018,122(51):29173-29179. doi: 10.1021/acs.jpcc.8b11020
    [51] MATSUO K, YASUDA T. Blue thermally activated delayed fluorescence emitters incorporating acridan analogues with heavy group 14 elements for high-efficiency doped and non-doped OLEDs [J]. Chemical Science,2019,10(46):10687-10697. doi: 10.1039/C9SC04492B
    [52] WANG J X, ARZALUZ L G A, WANG X J, HE T Y, ZHANG Y H, EDDAOUDI M, BAKR O M, MIHAMMED O F. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators [J]. Nature Photonics,2022,16(12):869-875. doi: 10.1038/s41566-022-01092-x
    [53] HOSOKAI T, MATSUZAKI H, NAKANOTANI H, TOKUMARU K, TSUTSUI T, FURUBE A, NASU K, NOMURA H, YAHIRO M, ADACHI C. Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states [J]. Science Advances,2017,3(5):e1603282. doi: 10.1126/sciadv.1603282
    [54] CUI L S, GILLETT A J, ZHANG S F, YE H, LIU Y, CHEN X K, LIN Z S, EVANS E W, MYERS W K, RONSON T K, NAKANOTANI H, REINEKE S, BREDAS J L, ADACHI C, FRIEND R H. Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states [J]. Nature Photonics,2020,14(10):636-642. doi: 10.1038/s41566-020-0668-z
    [55] HUANG T Y, WANG Q, XIAO S, ZHANG D D, ZHANG Y W, YIN C, YANG D Z, MA D G, WANG Z H, DUAN L. Simultaneously enhanced reverse intersystem crossing and radiative decay in thermally activated delayed fluorophors with multiple through-space charge transfers [J]. Angewandte Chemie International Edition,2021,60(44):23771-23776. doi: 10.1002/anie.202109041
    [56] CAI M H, AUFFRAY M, ZHANG D D, ZHANG Y W, NAGATA R, LIN Z S, TANG X, CHAN C Y, LEE Y T, HUANG T Y, SONG X Z, TSUCHIYA Y, ADACHI C, DUAN L. Enhancing spin-orbital coupling in deep-blue/blue TADF emitters by minimizing the distance from the heteroatoms in donors to acceptors [J]. Chemical Engineering Journal,2021,420:127591. doi: 10.1016/j.cej.2020.127591
    [57] AIZAWA N, MATSUMOTO A, YASUDA T. Thermal equilibration between singlet and triplet excited states in organic fluorophore for submicrosecond delayed fluorescence [J]. Science Advances,2021,7(7):eabe5769. doi: 10.1126/sciadv.abe5769
    [58] PARK I S, MIN H, YASUDA T. Ultrafast triplet-singlet exciton interconversion in narrowband blue organoboron emitters doped with heavy chalcogens [J]. Angewandte Chemie International Edition,2022,61(31):e202205684.
    [59] ROTHBERG L J, LOVINGER A J. Status of and prospects for organic electroluminescence [J]. Journal of Materials Research,1996,11(12):3174-3187. doi: 10.1557/JMR.1996.0403
    [60] LIU X K, XU W D, BAI S, JIN Y Z, WANG J P, FRIEND R H, GAO F. Metal halide perovskites for light-emitting diodes [J]. Nature Materials,2020,20(1):10-21.
    [61] GAO F F, DU R M, HAN C M, ZHANG J, WEI Y, LU G, XU H. High-efficiency blue thermally activated delayed fluorescence from donor-acceptor-donor systems via the through-space conjugation effect [J]. Chemical Science,2019,10(21):5556-5567. doi: 10.1039/C9SC01240K
    [62] SHIZU K, NODA H, TANAKA H, TANEDA M, UEJIMA M, SATO T, TANAKA K, KAJI H, ADACHI C. Highly efficient blue electroluminescence using delayed-fluorescence emitters with large overlap density between luminescent and ground states [J]. The Journal of Physical Chemistry C,2015,119(47):26283-26189. doi: 10.1021/acs.jpcc.5b07798
    [63] HIRATA S, SAKAI Y, MASUI K, TANAKA H, LEE S Y, NOMURA H, NAKAMURA N, YASUMATSU M, NAKANOTANI H, ZHANG Q S, SHIZU K, MIYAZAKI H, ADACHI C. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence [J]. Nature Materials,2014,14(3):330-336.
    [64] KHAN A, TANG X, ZHONG C, WANG Q, YANG S Y, KONG F C, YUAN S, SANDANAYAKA A S D, ADACHI C, JIANG Z Q, LIAO L S. Intramolecular-locked high efficiency ultrapure violet-blue (CIE-y < 0.046) thermally activated delayed fluorescence emitters exhibiting amplified spontaneous emission [J]. Advanced Functional Materials,2021,31(15):2009488.
    [65] TSUJIMOTO H, HA D G, MARKOPOULOS, CHAE H S, BALDO M A, SWAGER T M. Thermally activated delayed fluorescence and aggregation induced emission with through-space charge transfer [J]. Journal of The American Chemical Society,2017,139(13):4894-4900. doi: 10.1021/jacs.7b00873
    [66] HUANG T Y, WANG Q, MENG G Y, DUAN L, ZHANG D D. Accelerating radiative decay in blue through-space charge transfer emitters by minimizing the face-to-face donor-acceptor distances [J]. Angewandte Chemie International Edition,2022,61(12):e202200059.
    [67] LI Q, HU J, LV J H, WANG X D, SHAO S Y, WANG L X, JING X B, WANG F S. Through-space charge-transfer polynorbornenes with fixed and controllable spatial alignment of donor and acceptor for high efficiency blue thermally activated delayed fluorescence [J]. Angewandte Chemie International Edition,2020,59(45):20174-20182. doi: 10.1002/anie.202008912
    [68] CARMONA F T, LEE O S, CROVINI E, NEFERU A M, MURAWSKI C, OLIVIER Y, COLMAN E Z, GATHER M C. Identification of the key parameters for horizontal transition dipole orientation in fluorescent and TADF organic light-emitting diodes [J]. Advanced Materials,2021,33(37):2100677. doi: 10.1002/adma.202100677
    [69] ZHENG X, PAN K C, LEE W K, GONG S L, NI F, XIAO X, ZENG W X, XIANG Y P, ZHAN L S, ZHANG Y, WU C C, YANG C L. High-efficiency pure blue thermally activated delayed fluorescence emitters with a preferentially horizontal emitting dipole orientation via a spiro-linked double D-A molecular architecture [J]. Journal of Materials Chemistry C,2019,7(35):10851-10859. doi: 10.1039/C9TC03582F
    [70] LI W, LI M K, LI W Q, XU Z D, GAN L, LIU K K, ZHENG N, NING C Y, CHEN D C, WU Y C, SU S J. Spiral donor design strategy for blue thermally activated delayed fluorescence emitters [J]. ACS Applied Materials & Interfaces,2021,13(4):5302-5311.
    [71] LI W, LI B B, CAI X Y, GAN L, XU Z D, LI W Q, LIU K K, CHEN D C, SU S J. Tri-spiral donor for high efficiency and versatile blue thermally activated delayed fluorescence materials [J]. Angewandte Chemie International Edition,2019,58(33):11301-11305. doi: 10.1002/anie.201904272
    [72] HAN J M, HUANG Z Y, LV X L, MIAO J S, QIU Y T, CAO X S, YANG C L. Simple molecular design strategy for multiresonance induced TADF emitter: Highly efficient deep blue to blue electroluminescence with high color purity [J]. Advanced Optical Materials,2022,10(4):2102092. doi: 10.1002/adom.202102092
    [73] CHO Y J, JEON S K, LEE S S, YU E S, LEE J Y. Donor interlocked molecular design for fluorescence-like narrow emission in deep blue thermally activated delayed fluorescent emitters [J]. Chemistry of Materials,2016,28(15):5400-5405. doi: 10.1021/acs.chemmater.6b01484
    [74] KONDA Y, YOSHIURA K, KITERA S, NISHI H, ODA S, GOTOH H, SASADA Y, YANAI M, HATAKEYAMA T. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter [J]. Nature Photonics,2019,13(10):678-682. doi: 10.1038/s41566-019-0476-5
    [75] LV X L, MIAO J S, LIU M H, PENG Q, ZHONG C, HU Y X, CAO X S, WU H, YANG Y Y, ZHOU C J, MA J Z, ZOU Y, YANG C L. Extending the π-skeleton of multi-resonance TADF materials towards high-efficiency narrowband deep-blue emission [J]. Angewandte Chemie International Edition,2022,61(29):e202201588.
    [76] PARK I S, YANG M L, SHIBATA H, AMANOKURA N, YASUDA T. Achieving ultimate narrowband and ultrapure blue organic light-emitting diodes based on polycyclo-heteraborin multi-resonance delayed-fluorescence emitters [J]. Advanced Materials,2022,34(9):2107951. doi: 10.1002/adma.202107951
    [77] CHEON H J, WOO S J, BAEK S H, LEE J H, KIM Y H. Dense local triplet states and steric shielding of a multi-resonance TADF emitter enable high-performance deep-blue OLEDs [J]. Advanced Materials,2022,34(50):2207416. doi: 10.1002/adma.202207416
    [78] MENG G Y, DAI H Y, HUANG T Y, WEI J B, ZHOU J P, LI X, WANG X, HONG X C, YIN C, ZENG X, ZHANG Y W, YANG D Z, MA D G, LI G M, ZHANG D D, DUAN L. Amine-directed formation of B―N bonds for BN-fused polycyclic aromatic multiple resonance emitters with narrowband emission [J]. Angewandte Chemie International Edition,2022,61(40):e202207293.
    [79] WANG X, ZHANG Y W, DAI H Y, LI G M, LIU M H, MENG G Y, ZENG X, HUANG T Y, WANG L, PENG Q, YANG D Z, MA D G, ZHANG D D, DUAN L. Mesityl-functionalized multi-resonance organoboron delayed fluorescent frameworks with wide-range color tunability for narrowband OLEDs [J]. Angewandte Chemie International Edition,2022,61(38):e202206916.
    [80] DU C Z, LV Y, DAI H Y, HONG X C, ZHOU J P, LI J K, GAO R R, ZHANG D D, DUAN L, WANG X Y. Indole-fused BN-heteroarenes as narrowband blue emitters for organic light-emitting diodes [J]. Journal of Materials Chemistry C, 2023, 11(7): 2469-2474.
    [81] BIAN J K, CHEN S, QIU L L, TIAN R D, MAN Y, WANG Y D, CHEN S, ZHANG J, DUAN C B, HAN C M, XU H. Ambipolar self-host functionalization accelerates blue multi-resonance thermally activated delayed fluorescence with internal quantum efficiency of 100% [J]. Advanced Materials,2022,34(17):2110547. doi: 10.1002/adma.202110547
    [82] SWAYAMPRABHA S S, DUBEY D K, SHAHNAWAZ, YADAV R A K, NAGAR M R, SHARMA A, TUNG F C, JOU J H. Approaches for long lifetime organic light emitting diodes [J]. Advanced Science,2021,8(1):2002254. doi: 10.1002/advs.202002254
    [83] WANG R, WANG Y L, LIN N, ZHANG R Y, DUAN L, QIAO J. Effects of ortho-linkages on the molecular stability of organic light-emitting diode materials [J]. Chemistry of Materials,2018,30(24):8771-8781. doi: 10.1021/acs.chemmater.8b03142
    [84] LIU Z S, CAO F Y, TSUBOI T, YUE Y, DENG C, NI X F, SUN W L, ZHANG Q S. A high fluorescence rate is key for stable blue organic light-emitting diodes [J]. Journal of Materials Chemistry C,2018,6(29):7728-7733. doi: 10.1039/C8TC01471J
    [85] CUI L S, DENG Y L, TSANG D P K, JIANG Z Q, ZHANG Q S, LIAO L S, ADACHI C. Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices [J]. Advanced Materials,2016,28(35):7620-7625. doi: 10.1002/adma.201602127
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  42
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 网络出版日期:  2023-04-24

目录

    /

    返回文章
    返回