Mechanisms and Strategies to Reduce Energy Loss in Non-fullerene Organic Solar Cells
-
摘要: 在过去20年,溶液加工制备本体异质结有机太阳能电池(BHJ-OSCs)发展迅速,其能量转换效率(PCE)已经超过19%,但器件的能量损失(Eloss)相对较大,成为限制其光伏性能的瓶颈因素。因此,通过降低能量损失进一步提高OSCs的PCE成为该领域的研究重点。通过对OSCs中光物理过程的分析,讨论了不同能量损失途径的机理,综述了以下四种策略:(1)减小给受体间的能极差,(2)降低能量无序度,(3)提高器件的发光效率,(4)减小重组能。本文系统总结了降低非富勒烯OSCs体系Eloss的最新进展,为进一步提高该类器件性能提供重要参考。Abstract: In the past two decades, solution-processed preparation of native heterojunction organic solar cells (BHJ-OSCs) have developed rapidly, and their energy conversion efficiency (PCE) has exceeded 19%, but the relatively large energy loss (Eloss) of the devices has become a bottleneck factor limiting their photovoltaic performance. Therefore, further improving the PCE of OSCs by reducing the energy loss has become the focus of research in this field. By analyzing the photophysical processes in OSCs, the mechanisms of different energy loss pathways are discussed, and the following four strategies are reviewed: (1) reducing the energy offset between donors and acceptors, (2) reducing the energy disorder, (3) improving the luminescence efficiency of the devices, and (4) reducing the reorganization energy. This paper systematically summarizes the recent progress in reducing the Eloss of non-fullerene OSCs systems, which provides an important reference for further improvement of the performance of such devices.
-
Key words:
- organic solar cell /
- energy loss /
- energy offset /
- charge transfer /
- non-radiative recombination
-
图 5 基于(a)PM6:BTP-eC9,(b)PM6:BTP-eC9:BTP-S9和(c)PM6:BTP-S9共混物的归一化EL谱、测量的EQE谱和FTPS-EQE谱作为器件能量函数的归一化半对数图[71]
Figure 5. Semilogarithmic plots of normalized EL spectra, measured EQE spectra, and FTPS-EQE spectra as a function of energy for devices based on (a) PM6:BTP-eC9, (b) PM6:BTP-eC9:BTP-S9, and (c) PM6:BTP-S9 blends[71]
表 1 基于PM6的二元OSCs的详细光伏参数
Table 1. Detailed photovoltaic parameters of PM6-based binary OSCs
Receptors VOC/V JSC/(mA·cm−2) FF/% PCE/% ΔE1/eV ΔE2/eV ΔE3/eV Eloss/eV EQEEL Eg/eV Ref eC9 0.85 26.58 78.5 17.65 0.26 0.08 0.21 0.55 2.80×10−4 1.40 c [3] HDO-4Cl 0.96 21.52 74.6 15.36 0.27 0.09 0.24 0.60 1.10×10−4 1.56 c [3] ID-4F 0.73 13.50 65.0 6.40 0.26 0.32 0.34 0.92 1.50×10−4 1.65 a [54] IDST-4F 0.82 24.90 70.0 14.30 0.32 0.01 0.26 0.59 3.00×10−3 1.41 a [54] BTP-eC9 0.84 26.62 78.1 17.46 0.26 0.05 0.21 0.53 2.20×10–5 1.38 b [55] L8-BO-F 0.93 23.42 76.9 16.82 0.27 0.05 0.19 0.51 4.70 ×10−4 1.46 b [55] BDTC-F 0.89 19.01 59.2 10.05 0.26 0.10 0.23 0.59 1.19 ×10−4 1.48 a [56] BDTC-Cl 0.88 19.21 61.0 10.30 0.26 0.08 0.23 0.57 1.14 ×10−4 1.45 a [56] BTP-C11-N2F 0.90 23.70 70.1 15.00 0.26 0.04 0.20 0.50 3.65×10−4 1.39 b [57] BTP-C9-N2F 0.89 24.40 72.3 15.80 0.26 0.04 0.21 0.51 3.09×10−4 1.39 b [57] BTP-C9-IC4F 0.82 25.70 75.7 16.20 0.26 0.05 0.25 0.56 5.40×10−4 1.38 b [57] BTP-C9-N4F 0.85 26.30 75.7 17.00 0.26 0.05 0.23 0.54 1.56×10−4 1.38 b [57] 2BTP-2F-T 0.91 25.50 78.3 18.19 0.26 0.07 0.20 0.53 ~ 1.45 b [53] PYF-T-o 0.89 24.80 71.9 15.86 0.26 0.05 0.21 0.52 ~ 1.42 b [53] Y5 0.95 13.89 57.3 7.56 0.27 0.07 0.18 0.52 8.60×10−4 1.47 b [58] BTP-C9-ICB 0.98 12.25 57.3 6.88 0.27 0.08 0.15 0.50 3.42×10−3 1.48 b [58] BTP-C9-ICN 1.00 13.62 57.0 7.76 0.27 0.10 0.15 0.52 2.53×10−3 1.52 b [58] BTP-C9-ICT 0.99 17.49 66.0 11.42 0.27 0.07 0.15 0.49 2.90×10−3 1.48 b [58] Y11 0.83 26.74 74.3 16.54 0.26 0.03 0.20 0.50 3.50×10−4 1.32 a [59] BTP-eC7 0.84 24.10 73.5 14.90 0.26 0.06 0.23 0.58 ~ 1.40 a [60] BTP-eC9 0.84 26.20 81.1 17.80 0.26 0.06 0.23 0.56 ~ 1.40 a [60] BTP-eC11 0.85 25.70 77.5 16.90 0.26 0.06 0.23 0.55 ~ 1.40 a [60] BDC-4F-C8 0.90 21.32 65.6 12.53 ~ ~ ~ 0.51 ~ 1.41 b [61] Y5 0.94 12.80 58.9 7.20 0.27 0.06 0.18 0.51 8.03 ×10−4 1.46 b [62] BTP-C2C4-N 0.93 18.20 57.1 10.30 0.27 0.04 0.21 0.52 2.59×10−4 1.43 b [62] BTP-C4C6-N 0.94 20.70 62.1 12.10 0.27 0.04 0.18 0.49 8.10 ×10−4 1.43 b [62] BTP-C6C8-N 0.95 20.20 62.0 11.90 0.27 0.04 0.18 0.49 8.61 ×10−4 1.43 b [62] Y6 0.84 25.91 76.0 16.61 0.27 0.04 0.25 0.56 ~ 1.39 b [4] L8-BO 0.87 25.72 81.5 18.32 0.27 0.05 0.24 0.55 ~ 1.42 b [4] L8-HD 0.88 25.08 78.8 17.39 0.27 0.05 0.25 0.55 ~ 1.43 b [4] L8-OD 0.89 24.57 74.6 16.26 0.27 0.05 0.22 0.53 ~ 1.42 b [4] CH17 0.88 26.19 77.2 17.84 0.27 0.04 0.19 0.50 4.17×10−4 1.38 a [63] Y6 0.85 25.91 73.7 16.27 0.24 0.05 0.24 0.53 0.60×10−4 1.38 a [63] AQx-1 0.89 22.18 67.1 13.31 0.26 0.05 0.21 0.52 1.30×10−4 1.41 a [64] AQx-2 0.86 25.38 76.2 16.64 0.26 0.05 0.22 0.54 8.60×10−5 1.40 a [64] PTIC 0.93 16.23 67.2 10.14 ~ ~ 0.30 0.63 ~ 1.56 c [65] PTB4F 0.94 14.55 51.5 7.04 ~ ~ 0.32 0.67 ~ 1.61 c [65] PTB4Cl 0.93 19.01 72.2 12.76 ~ ~ 0.28 0.61 ~ 1.54 c [65] Qx-1 0.91 26.10 75.5 17.90 0.26 0.03 0.21 0.51 2.53×10−4 1.42 b [66] Qx-2 0.93 26.50 73.7 18.20 0.26 0.03 0.19 0.48 6.60×10−4 1.42 b [66] Y6 0.86 25.60 75.3 16.60 0.26 0.07 0.23 0.56 1.21×10−4 1.42 b [66] BTP-4F 0.83 24.90 75.3 15.60 0.26 0.07 0.23 0.57 1.40 ×10−4 1.41 a [28] BTP-4Cl 0.87 25.40 75.0 16.50 0.26 0.07 0.21 0.53 3.47 ×10−4 1.40 a [28] ANT-4F 0.93 19.00 73.9 13.10 ~ ~ 0.22 0.60 1.70×10−4 1.54 b [67] A4T-16 0.88 21.80 79.8 15.20 0.33 0.01 0.30 0.63 1.08 ×10−5 1.51 a [68] A4T-21 0.94 5.55 30.3 1.57 0.33 0.22 0.26 0.80 5.29× 10−5 1.74 a [68] A4T-23 0.87 21.00 56.8 10.40 0.36 0.03 0.23 0.62 1.56×10−4 1.49 a [68] IT-4F 0.85 21.30 75.7 13.70 0.33 0.11 0.34 0.78 2.30×10−6 1.63 a [68] Y6 0.84 25.50 73.7 15.80 0.27 0.05 0.23 0.55 1.58×10−4 1.39 a [68] BTP-S1 0.93 22.39 72.7 15.21 0.27 0.07 0.22 0.56 1.10×10−4 1.49 b [69] BTP-S2 0.95 24.07 72.0 16.37 0.27 0.06 0.20 0.53 2.30×10−4 1.48 b [69] Y6 0.84 26.05 72.0 15.79 0.26 0.07 0.25 0.58 4.40×10−5 1.42 b [69] BO-4F 0.83 26.04 77.2 16.73 0.28 0.03 0.23 0.54 1.30×10−4 1.37 b [70] BO-4Cl 0.84 26.03 79.4 17.43 0.28 0.04 0.22 0.54 1.40×10−4 1.38 b [70] BO-5Cl 0.96 22.57 70.1 15.02 0.29 0.06 0.18 0.52 1.04×10−3 1.48 b [70] BO-6Cl 0.94 23.22 72.9 15.94 0.29 0.06 0.19 0.54 7.20×10−4 1.48 b [70] Y6 0.83 26.04 74.0 16.07 0.28 0.04 0.25 0.57 6.00×10−5 1.40 b [70] BTP-eC9 0.85 27.57 78.0 18.00 0.25 0.07 0.22 0.54 1.78×10−4 1.38 b [71] BTP-S9 0.85 26.72 77.1 17.50 0.25 0.08 0.20 0.53 4.71×10−4 1.38 b [71] BTP-4F-12 0.85 24.50 77.9 16.20 0.26 0.04 0.24 0.54 ~ 1.39 a [72] BTP-BO4Cl 0.83 25.97 74.7 16.13 0.26 0.06 0.23 0.56 9.00×10−5 1.40 b [73] BTP-T-2Cl 0.94 22.32 71.6 14.89 0.26 0.04 0.19 0.49 6.06×10−4 1.43 a [74] BTP-T-3Cl 0.89 26.02 75.8 17.61 0.26 0.03 0.22 0.51 2.34×10−4 1.40 a [74] BTTPC-Br 0.94 22.16 69.6 14.46 0.26 0.04 0.19 0.49 6.99×10−4 1.43 a [74] BTP-4Cl-BO 0.84 26.74 76.2 17.20 0.26 0.04 0.25 0.55 7.45×10−5 1.39 a [74] CH8 0.89 19.70 53.5 9.37 0.30 0.05 0.23 0.59 1.04×10−4 1.48 a [75] a: Intersection of normalized absorption and emission spectra of thin films;b:Derivative of the Fourier-transform photocurrent spectroscopy-external quantum efficiency (FTPS)-EQE curve; c: Calculated from the formula Eg = Voc+Eloss; ~:This value was not reported in the literature 表 2 基于PM6的三元OSCs的详细光伏参数
Table 2. Detailed photovoltaic parameters of PM6-based ternary OSCs
Materials VOC/V JSC/(mA·cm−2) FF/% PCE/% ΔE1/eV ΔE2/eV ΔE3/eV Eloss/eV EQEEL Eg/eV Ref PM6:PTO2:Y6 0.91 25.58 73.3 17.05 0.24 0.058 0.216 0.518 2.24×10−4 1.42b [76] PM6:ITIC-M:Y6 0.86 26.35 80.1 18.13 0.26 0.054 0.229 0.547 1.42×10−4 1.41a [77] PM6:HDO-4Cl:eC9 0.87 27.05 80.5 18.86 0.26 0.08 0.19 0.53 5.30×10−4 1.40c [3] PM6:BTP-eC9:L8-BO-F 0.85 27.35 80.0 18.66 0.27 0.053 0.192 0.519 3.50×10−4 1.38b [55] PM6:BO-4Cl:BO-5Cl 0.87 26.93 78.8 18.56 0.28 0.028 0.192 0.496 4.60×10−4 1.37b [70] PM6:BTP-eC9:BTP-S9 0.86 27.50 79.3 18.80 0.25 0.048 0.203 0.501 2.95×10−4 1.36b [71] PM6:BTP-4F-12:MeIC 0.86 25.4 79.2 17.40 0.26 0.038 0.227 0.526 1.58×10−4 1.39a [72] PM6:CH17:F-2F 0.89 26.62 76.6 18.13 0.28 0.02 0.19 0.49 4.71×10−4 1.38a [63] PM6:DRTB-T-C4:Y6 0.85 24.68 80.9 17.05 0.25 0.078 0.233 0.559 1.07×10−4 1.41a [78] PM6:Y6:BTP-M 0.88 26.56 73.5 17.03 ~ ~ ~ 0.45 ~ 1.33a [79] PM6:Y6:ZY-4Cl 0.89 26.1 75.5 17.33 0.23 0.079 0.227 0.538 1.46×10−4 1.42b [80] PM6:BTP-2F:BTP-4F 0.85 26.30 77.0 17.28 0.27 0.08 0.21 0.56 ~ 1.41 a [81] PM6:BTP-4F-12:IT-M 0.89 25.95 78.0 17.71 ~ ~ ~ 0.557 ~ 1.43 a [82] PM6:5BDTBDD
:BTPBO4Cl0.84 26.83 77.4 17.54 0.26 0.059 0.224 0.545 1.39×10−4 1.39b [73] PM6:PB2F:BTP-eC9 0.86 26.6 79.9 18.60 0.23 0.045 0.218 0.531 2.20×10−4 1.39a [10] PM6:BTID-2F:Y6 0.85 27.66 76.4 17.98 0.26 0.054 0.236 0.551 1.17×10−4 1.40c [83] PM6:TiC12:Y6 0.85 26.80 75.4 17.25 0.26 0.06 0.23 0.55 ~ 1.40b [84] PM6:IT-4F:IT-MCA 0.88 20.98 76.0 14.00 ~ ~ 0.262 0.74 4.20×10−3 1.62a [85] a: Intersection of normalized absorption and emission spectra of thin films;b:Derivative of the Fourier-transform photocurrent spectroscopy-external quantum efficiency (FTPS)-EQE curve; c: Calculated from the formula Eg = Voc+Eloss; ~:This value was not reported in the literature -
[1] DENG D, ZHANG Y, ZHANG J, WANG Z, ZHU L, FANG J, XIA B, WANG Z, LU K, MA W, WEI Z. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells [J]. Nature Communications,2016,7:13740. doi: 10.1038/ncomms13740 [2] CUI Y, XU Y, YAO H, BI P, HONG L, ZHANG J, ZU Y, ZHANG T, QIN J, REN J, CHEN Z, HE C, HAO X, WEI Z, HOU J. Single-junction organic photovoltaic cell with 19% efficiency [J]. Advanced Materials,2021,33(41):2102420. doi: 10.1002/adma.202102420 [3] BI P, ZHANG S, CHEN Z, XU Y, CUI Y, ZHANG T, REN J, QIN J, HONG L, HAO X, HOU J. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency [J]. Joule,2021,5(9):2408-2419. doi: 10.1016/j.joule.2021.06.020 [4] LI C, ZHOU J, SONG J, XU J, ZHANG H, ZHANG X, GUO J, ZHU L, WEI D, HAN G, MIN J, ZHANG Y, XIE Z, YI Y, YAN H, GAO F, LIU F, SUN Y. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells [J]. Nature Energy,2021,6(6):605-613. doi: 10.1038/s41560-021-00820-x [5] QIN J, CHEN Z, BI P, YANG Y, ZHANG J, HUANG Z, WEI Z, AN C, YAO H, HAO X, ZHANG T, CUI Y, HONG L, LIU C, ZU Y, HE C, HOU J. The royal society of chemistry, 2021.17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure [J]. Energy and Environmental Science,2021,14(11):5903-5910. [6] ZHANG L, ZHU X, DENG D, WANG Z, ZHANG Z, LI Y, ZHANG J, LV K, LIU L, ZHANG X, ZHOU H, ADE H, WEI Z. High miscibility compatible with ordered molecular packing enables an excellent efficiency of 16.2% in all-small-molecule organic solar cells [J]. Advanced Materials,2022,34(5):e2106316. doi: 10.1002/adma.202106316 [7] YU H, PAN M, SUN R, AGUNAWELA I, ZHANG J, LI Y, QI Z, HAN H, ZOU X, ZHOU W, CHEN S, LAI J Y L, LUO S, LUO Z, ZHAO D, LU X, ADE H, HUANG F, MIN J, YAN H. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2% efficiency [J]. Angewandte Chemie,2021,60(18):10137-10146. doi: 10.1002/anie.202016284 [8] GURNEY S R, LIDZEY G D, WANG T. A review of non-fullerene polymer solar cells: From device physics to morphology control [J]. Rep Prog Phys, 2019, 82(3): 036601. [9] DIMITROV S D, DURRANT J R. Materials design considerations for charge generation in organic solar cells [J]. Chemistry of Materials,2014,26(1):616-630. doi: 10.1021/cm402403z [10] ZHANG T, AN C, BI P, LV Q, QIN J, HONG L, CUI Y, ZHANG S, HOU J. A thiadiazole-based conjugated polymer with ultradeep homo level and strong electroluminescence enables 18.6% efficiency in organic solar cell [J]. Advanced Energy Materials,2021,11(35):2101705. doi: 10.1002/aenm.202101705 [11] SUN R, WU Y, YANG X, GAO Y, CHEN Z, LI K, QIAO J, WANG T, GUO J, LIU C, HAO X, ZHU H, MIN J. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor [J]. Advanced Materials,2022,34(26):2110147. doi: 10.1002/adma.202110147 [12] CHONG K, XU X, MENG H, XUE J, YU L, MA W, PENG Q. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination [J]. Advanced Materials,2022,34(13):2109516. doi: 10.1002/adma.202109516 [13] HAN C, WANG J, ZHANG S, CHEN L, BI F, WANG J, YANG C, WANG P, LI Y, BAO X. Over 19% efficiency organic solar cells by regulating multidimensional intermolecular interactions [J]. Advanced Materials,2023,35(10):2208986. doi: 10.1002/adma.202208986 [14] DENG M, XU X, DUAN Y, YU L, LI R, PENG Q. Y-Type non-fullerene acceptors with outer branched side chains and inner cyclohexane side chains for 19.36% efficiency polymer solar cells [J]. Advanced Materials,2023,35(10):2210760. doi: 10.1002/adma.202210760 [15] LI D, DENG N, FU Y, GUO C, ZHOU B, WANG L, ZHOU J, LIU D, LI W, WANG K, SUN Y, WANG T. Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells [J]. Advanced Materials,2023,35(6):2208211. doi: 10.1002/adma.202208211 [16] LEE M M, TEUSCHER J, MIYASAKA T, MURAKAMI T N, SNAITH H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites [J]. Science,2012,338(6107):643-647. doi: 10.1126/science.1228604 [17] GUO X, ZHOU N, LOU S J, SMITH J, TICE D B, HENNEK J W, ORTIZ R P, NAVARRETE J T L, LI S, STRZALKA J, CHEN L X, CHANG R P H, FACCHETTI A, MARKS T J. Polymer solar cells with enhanced fill factors [J]. Nature Photonics,2013,7(10):825-833. doi: 10.1038/nphoton.2013.207 [18] JI Y, XU L, HAO X, GAO K. Energy loss in organic solar cells: Mechanisms, strategies, and prospects [J]. Solar RRL,2020,4(7):2000130. doi: 10.1002/solr.202000130 [19] JEONG M, CHOI I W, GO E M, CHO Y, KIM M, LEE B, JEONG S, JO Y, CHOI H W, LEE J, BAE J H, KWAK S K, KIM D S, YANG C. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss [J]. Science,2020,369(6511):1615-1620. doi: 10.1126/science.abb7167 [20] SONG J, ZHU L, LI C, XU J, WU H, ZHANG X, ZHANG Y, TANG Z, LIU F, SUN Y. High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy [J]. Matter,2021,4(7):2542-2552. doi: 10.1016/j.matt.2021.06.010 [21] CHENG P, ZHAN X. Stability of organic solar cells: Challenges and strategies [J]. Chemical Society Reviews,2016,45(9):2544-2582. doi: 10.1039/C5CS00593K [22] LIU J, CHEN S, QIAN D, GAUTAM B, YANG G, ZHAO J, BERGQVIST J, ZHANG F, MA W, ADE H, INGANÄS O, GUNDOGDU K, GAO F, YAN H. Fast charge separation in a non-fullerene organic solar cell with a small driving force [J]. Nature Energy,2016,1(7):16089. doi: 10.1038/nenergy.2016.89 [23] Contents: (Small Methods 12/2017)[J]. Small Methods, 2017, 1(12). [24] YUAN J, ZHANG Y, ZHOU L, ZHANG C, LAU T K, ZHANG G, LU X, YIP H L, SO S K, BEAUPRÉ S, MAINVILLE M, JOHNSON P A, LECLERC M, CHEN H, PENG H, LI Y, ZOU Y. Fused benzothiadiazole: A building block for n-type organic acceptor to achieve high-performance organic solar cells [J]. Advanced Materials,2019,31(17):e1807577. doi: 10.1002/adma.201807577 [25] QIAN D, ZHENG Z, YAO H, TRESS W, HOPPER T R, CHEN S, LI S, LIU J, CHEN S, ZHANG J, LIU X K, GAO B, OUYANG L, JIN Y, POZINA G, BUYANOVA I A, CHEN W M, INGANÄS O, COROPCEANU V, BREDAS J L, YAN H, HOU J, ZHANG F, BAKULIN A A, GAO F. Design rules for minimizing voltage losses in high-efficiency organic solar cells [J]. Nature Materials,2018,17(8):703-709. doi: 10.1038/s41563-018-0128-z [26] YUAN J, HUANG T, CHENG P, ZOU Y, ZHANG H, YANG J L, CHANG S Y, ZHANG Z, HUANG W, WANG R, MENG D, GAO F, YANG Y. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics [J]. Nature Communications,2019,10(1):570. doi: 10.1038/s41467-019-08386-9 [27] ZHANG Z, WANG L, WANG J, JIANG X, LI X, HU Z, JI Y, WU X, CHEN C. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment [J]. Advanced Materials,2022,34(35):2205637. doi: 10.1002/adma.202205637 [28] CUI Y, YAO H, ZHANG J, ZHANG T, WANG Y, HONG L, XIAN K, XU B, ZHANG S, PENG J, WEI Z, GAO F, HOU J. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages [J]. Nature Communications,2019,10(1):2515. doi: 10.1038/s41467-019-10351-5 [29] HAN G, YI Y. Origin of photocurrent and voltage losses in organic solar cells [J]. Advanced Theory and Simulations,2019,2(8):1900067. doi: 10.1002/adts.201900067 [30] ELUMALAI N K, UDDIN A. Open circuit voltage of organic solar cells: An in-depth review [J]. Energy & Environmental Science,2016,9(2):391-410. [31] AZZOUZI M, KIRCHARTZ T, NELSON J. Factors controlling open-circuit voltage losses in organic solar cells [J]. Trends in Chemistry,2019,1(1):49-62. doi: 10.1016/j.trechm.2019.01.010 [32] MENKE S M, RAN N A, BAZAN G C, FRIEND R H. Understanding energy loss in organic solar cells: Toward a new efficiency regime [J]. Joule,2018,2(1):25-35. doi: 10.1016/j.joule.2017.09.020 [33] WALKER B, LIU J, KIM C, WELCH G C, PARK J K, LIN J, ZALAR P, PROCTOR C M, SEO J H, BAZAN G C, NGUYEN T Q. Optimization of energy levels by molecular design: Evaluation of bis-diketopyrrolopyrrole molecular donor materials for bulk heterojunction solar cells [J]. Energy & Environmental Science,2013,6(3):952. [34] BENDUHN J, TVINGSTEDT K, PIERSIMONI F, ULLBRICH S, FAN Y, TROPIANO M, MCGARRY K A, ZEIKA O, RIEDE M K, DOUGLAS C J, BARLOW S, MARDER S R, NEHER D, SPOLTORE D, VANDEWAL K. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells [J]. Nature Energy,2017,2(6):17053. doi: 10.1038/nenergy.2017.53 [35] EISNER F D, AZZOUZI M, FEI Z, HOU X, ANTHOPOULOS T D, DENNIS T J S, HEENEY M, NELSON J. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells [J]. Journal of the American Chemical Society,2019,141(15):6362-6374. doi: 10.1021/jacs.9b01465 [36] HAN G, YI Y. Local excitation/charge-transfer hybridization simultaneously promotes charge generation and reduces nonradiative voltage loss in nonfullerene organic solar cells [J]. The Journal of Physical Chemistry Letters,2019,10(11):2911-2918. doi: 10.1021/acs.jpclett.9b00928 [37] CHEN X K, QIAN D, WANG Y, KIRCHARTZ T, TRESS W, YAO H, YUAN J, HÜLSBECK M, ZHANG M, ZOU Y, SUN Y, LI Y, HOU J, INGANÄS O, COROPCEANU V, BREDAS J L, GAO F. A unified description of non-radiative voltage losses in organic solar cells [J]. Nature Energy,2021,6(8):799-806. doi: 10.1038/s41560-021-00843-4 [38] YAO J, KIRCHARTZ T, VEZIE M S, FAIST M A, GONG W, HE Z, WU H, TROUGHTON J, WATSON T, BRYANT D, NELSON J. Quantifying losses in open-circuit voltage in solution-processable solar cells [J]. Physical Review Applied,2015,4(1):014020. doi: 10.1103/PhysRevApplied.4.014020 [39] WANG Y, QIAN D, CUI Y, ZHANG H, HOU J, VANDEWAL K, KIRCHARTZ T, GAO F. Optical gaps of organic solar cells as a reference for comparing voltage losses [J]. Advanced Energy Materials,2018,8:1801352. doi: 10.1002/aenm.201801352 [40] VANDEWAL K, TVINGSTEDT K, G. DINKU A, INGANAS O, MANCA J. On the origin of the open-circuit voltage of polymer-fullerene solar cells [J]. Nature Materials,2009,8:904-909. doi: 10.1038/nmat2548 [41] ULLBRICH S, BENDUHN J, JIA X, NIKOLIS V C, TVINGSTEDT K, PIERSIMONI F, ROLAND S, LIU Y, WU J, FISCHER A, NEHER D, REINEKE S, SPOLTORE D, VANDEWAL K. Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses [J]. Nature Materials,2019,18(5):459-464. doi: 10.1038/s41563-019-0324-5 [42] HEUMUELLER T, BURKE T M, MATEKER W R, SACHS-QUINTANA I T, VANDEWAL K, BRABEC C J, MCGEHEE M D. Disorder-induced open-circuit voltage losses in organic solar cells during photoinduced burn-in [J]. Advanced Energy Materials,2015,5(14):1500111. doi: 10.1002/aenm.201500111 [43] VANDEWAL K, ALBRECHT S, HOKE E T, GRAHAM K R, WIDMER J, DOUGLAS J D, SCHUBERT M, MATEKER W R, BLOKING J T, BURKHARD G F, SELLINGER A, FRÉCHET J M J, AMASSIAN A, RIEDE M K, MCGEHEE M D, NEHER D, SALLEO A. Efficient charge generation by relaxed charge-transfer states at organic interfaces [J]. Nature Materials,2014,13(1):63-68. doi: 10.1038/nmat3807 [44] GAO F, INGANAS O. Charge generation in polymer-fullerene bulk-heterojunction solar cells [J]. Physical Chemistry Chemical Physics,2014,16:20291-20304. doi: 10.1039/C4CP01814A [45] YUAN J, ZHANG C, CHEN H, ZHU C, CHEUNG S H, QIU B, CAI F, WEI Q, LIU W, YIN H, ZHANG R, ZHANG J, LIU Y, ZHANG H, LIU W, PENG H, YANG J, MENG L, GAO F, SO S K, LI Y, ZOU Y. Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells [J]. Science China Chemistry,2020,63(8):1159-1168. doi: 10.1007/s11426-020-9747-9 [46] BERDEBES D, MEMBER S, BHOSALE J, MONTGOMERY K H, WANG X, MEMBER S, RAMDAS A K, WOODALL J M, LUNDSTROM M S. Photoluminescence excitation spectroscopy for in-line optical characterization of crystalline solar cells[J]. 2013, 3(4): 1342-1347. [47] XIE S, XIA Y, ZHENG Z, ZHANG X, YUAN J, ZHOU H, ZHANG Y. Effects of nonradiative losses at charge transfer states and energetic disorder on the open-circuit voltage in nonfullerene organic solar cells [J]. Advanced Functional Materials,2018,28(5):1705659. doi: 10.1002/adfm.201705659 [48] QIN Y, ZHANG S, XU Y, YE L, WU Y, KONG J, XU B, YAO H, ADE H, HOU J. Reduced nonradiative energy loss caused by aggregation of nonfullerene acceptor in organic solar cells [J]. Advanced Energy Materials,2019,9(35):1901823. doi: 10.1002/aenm.201901823 [49] CHEN X K, RAVVA M K, LI H, RYNO S M, BRÉDAS J L. Effect of molecular packing and charge delocalization on the nonradiative recombination of charge-transfer states in organic solar cells [J]. Advanced Energy Materials, 2016, 6(24): 1601325. [50] AN N, CAI Y, WU H, TANG A, ZHANG K, HAO X, MA Z, GUO Q, RYU H S, WOO H Y, SUN Y, ZHOU E. Solution-processed organic solar cells with high open-circuit voltage of 1.3 V and low non-radiative voltage loss of 0.16 V [J]. Advanced Materials,2020,32(39):2002122. doi: 10.1002/adma.202002122 [51] VANDEWAL K, TVINGSTEDT K, GADISA A, INGANÄS O, MANCA J V. Relating the open-circuit voltage to interface molecular properties of donor: Acceptor bulk heterojunction solar cells [J]. Physical Review B,2010,81(12):125204. doi: 10.1103/PhysRevB.81.125204 [52] HOU J, INGANÄS O, FRIEND R H, GAO F. Organic solar cells based on non-fullerene acceptors [J]. Nature Materials,2018,17(2):119-128. doi: 10.1038/nmat5063 [53] ZHANG L, ZHANG Z, DENG D, ZHOU H, ZHANG J, WEI Z. “N-π-N” Type oligomeric acceptor achieves an opv efficiency of 18.19% with low energy loss and excellent stability [J]. Advanced Science,2022,9(23):e2202513. doi: 10.1002/advs.202202513 [54] GUO Q, LIN J, LIU H, DONG X, GUO X, YE L, MA Z, TANG Z, ADE H, ZHANG M, LI Y. Asymmetrically noncovalently fused-ring acceptor for high-efficiency organic solar cells with reduced voltage loss and excellent thermal stability [J]. Nano Energy,2020,74:104861. doi: 10.1016/j.nanoen.2020.104861 [55] CAI Y, LI Y, WANG R, WU H, CHEN Z, ZHANG J, MA Z, HAO X, ZHAO Y, ZHANG C, HUANG F, SUN Y. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6% [J]. Advanced Materials,2021,33(33):2101733. doi: 10.1002/adma.202101733 [56] HU T, ZHANG Y, LU B, MA Y, ZHU Y, WANG Y, ZHANG B, ZHANG Z, WANG J, YANG Y, ZHANG H. Unfused-ring small molecule acceptors based on A1-D-A2-D-A1 architecture with low non-radiative energy loss and excellent air stability [J]. Materials Today Energy,2021,21:100802. doi: 10.1016/j.mtener.2021.100802 [57] SHI Y, PAN J, YU J, ZHANG J, GAO F, LU K, WEI Z. Optimizing the charge carrier and light management of nonfullerene acceptors for efficient organic solar cells with small nonradiative energy losses [J]. Solar RRL,2021,5(4):2100008. doi: 10.1002/solr.202100008 [58] XIE M, SHI Y, ZHANG H, PAN J, ZHANG J, WEI Z, LU K. Aryl-substituted-indanone end-capped nonfullerene acceptors for organic solar cells with a low nonradiative loss [J]. Chemical Communications,2022,58(31):4877-4880. doi: 10.1039/D2CC00593J [59] LIU S, YUAN J, DENG W, LUO M, XIE Y, LIANG Q, ZOU Y, HE Z, WU H, CAO Y. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder [J]. Nature Photonics,2020,14(5):300-305. doi: 10.1038/s41566-019-0573-5 [60] CUI Y, YAO H, ZHANG J, XIAN K, ZHANG T, HONG L, WANG Y, XU Y, MA K, AN C, HE C, WEI Z, GAO F, HOU J. Single-junction organic photovoltaic cells with approaching 18% efficiency [J]. Advanced Materials,2020,32(19):1908205. doi: 10.1002/adma.201908205 [61] LUO D, LAI X, ZHENG N, DUAN C, WANG Z, WANG K, KYAW A K K. High-performance and low-energy loss organic solar cells with non-fused ring acceptor by alkyl chain engineering [J]. Chemical Engineering Journal,2021,420:129768. doi: 10.1016/j.cej.2021.129768 [62] PAN J, SHI Y, YU J, ZHANG H, LIU Y, ZHANG J, GAO F, YU X, LU K, WEI Z. π-Extended nonfullerene acceptors for efficient organic solar cells with a high open-circuit voltage of 0.94 V and a low energy loss of 0.49 eV [J]. ACS Appl Mater Interfaces,2021,13(19):22531-22539. doi: 10.1021/acsami.1c04273 [63] CHEN H, ZOU Y, LIANG H, HE T, XU X, ZHANG Y, MA Z, WANG J, ZHANG M, LI Q, LI C, LONG G, WAN X, YAO Z, CHEN Y. Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension[J]. Science China Chemistry, 2022(65): 1362-1373. [64] ZHOU Z, LIU W, ZHOU G, ZHANG M, QIAN D, ZHANG J, CHEN S, XU S, YANG C, GAO F, ZHU H, LIU F, ZHU X. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation [J]. Advanced Materials,2020,32(4):1906324. doi: 10.1002/adma.201906324 [65] WEN T, LIU Z, CHEN Z, ZHOU J, SHEN Z, XIAO Y, LU X, XIE Z, ZHU H, LI C, CHEN H. Simple non-fused electron acceptors leading to efficient organic photovoltaics [J]. Angewandte Chemie International Edition,2021,60(23):12964-12970. doi: 10.1002/anie.202101867 [66] SHI Y, CHANG Y, LU K, CHEN Z, ZHANG J, YAN Y, QIU D, LIU Y, ADIL M A, MA W, HAO X, ZHU L, WEI Z. Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells [J]. Nature Communications,2022,13(1):3256. doi: 10.1038/s41467-022-30927-y [67] YAO C, LIU B, ZHU Y, HONG L, MIAO J, HOU J, HE F, MENG H. The royal society of chemistry, 2019. Highly fluorescent anthracene derivative as a non-fullerene acceptor in OSCs with small non-radiative energy loss of 0.22 eV and high PCEs of over 13% [J]. Journal of Materials Chemistry A,2019,7(17):10212-10216. doi: 10.1039/C9TA02332A [68] MA L, ZHANG S, ZHU J, WANG J, REN J, ZHANG J, HOU J. Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell [J]. Nature Communications,2021,12(1):5093. doi: 10.1038/s41467-021-25394-w [69] LI S, ZHAN L, JIN Y, ZHOU G, LAU T K, QIN R, SHI M, LI C Z, ZHU H, LU X, ZHANG F, CHEN H. Asymmetric electron acceptors for high-efficiency and low-energy-loss organic photovoltaics [J]. Advanced Materials,2020,32(24):2001160. doi: 10.1002/adma.202001160 [70] HE C, CHEN Z, WANG T, SHEN Z, LI Y, ZHOU J, YU J, FANG H, LI Y, LI S, LU X, MA W, GAO F, XIE Z, COROPCEANU V, ZHU H, BREDAS J L, ZUO L, CHEN H. Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18% [J]. Nature Communications,2022,13(1):2598. doi: 10.1038/s41467-022-30225-7 [71] ZHAN L, LI S, LI Y, SUN R, MIN J, BI Z, MA W, CHEN Z, ZHOU G, ZHU H, SHI M, ZUO L, CHEN H. Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics [J]. Joule,2022,6(3):662-675. doi: 10.1016/j.joule.2022.02.001 [72] MA X, WANG J, GAO J, HU Z, XU C, ZHANG X, ZHANG F. Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss[J]. Advanced Energy Materials, 2020, 10(31): 2001404. [73] XIA H, ZHANG Y, DENG W, LIU K, XIA X, SU C J, JENG U S, ZHANG M, HUANG J, HUANG J, YAN C, WONG W Y, LU X, ZHU W, LI G. Novel oligomer enables green solvent processed 17.5% ternary organic solar cells: Synergistic energy loss reduction and morphology fine-tuning [J]. Advanced Materials,2022,34(10):2107659. doi: 10.1002/adma.202107659 [74] PAN Y, ZHENG X, GUO J, CHEN Z, LI S, HE C, YE S, XIA X, WANG S, LU X, ZHU H, MIN J, ZUO L, SHI M, CHEN H. A new end group on nonfullerene acceptors endows efficient organic solar cells with low energy losses [J]. Advanced Functional Materials,2022,32(9):2108614. doi: 10.1002/adfm.202108614 [75] CHEN H, CAO X, XU X, LI C, WAN X, YAO Z, CHEN Y. A low reorganization energy and two-dimensional acceptor with four end units for organic solar cells with low eloss [J]. Chinese Journal of Polymer Science,2022,40(8):921-927. doi: 10.1007/s10118-022-2730-4 [76] JIANG B H, PENG Y J, SU Y W, CHANG J F, CHUEH C C, SHIEH T S, HUANG C I, CHEN C P. A polymer donor with versatility for fabricating high-performance ternary organic photovoltaics [J]. Chemical Engineering Journal,2022,431:133950. doi: 10.1016/j.cej.2021.133950 [77] ZENG Y, LI D, WU H, CHEN Z, LENG S, HAO T, XIONG S, XUE Q, MA Z, ZHU H, BAO Q. Enhanced charge transport and broad absorption enabling record 18.13% efficiency of PM6: Y6 based ternary organic photovoltaics with a high fill factor over 80% [J]. Advanced Functional Materials,2022,32(13):2110743. doi: 10.1002/adfm.202110743 [78] ZENG Y, LI D, XIAO Z, WU H, CHEN Z, HAO T, XIONG S, MA Z, ZHU H, DING L, BAO Q. Exploring the charge dynamics and energy loss in ternary organic solar cells with a fill factor exceeding 80% [J]. Advanced Energy Materials,2021,11(31):2101338. doi: 10.1002/aenm.202101338 [79] ZHAN L, LI S, LAU T K, CUI Y, LU X, SHI M, LI C, LI H, HOU J, CHEN H. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model [J]. Energy & Environmental Science,2020,13(2):635-645. [80] JIANG B, WANG Y, SU Y, CHANG J, CHUEH C, SHEN M, SHIEH T, JENG R, CHEN C. Realizing stable high-performance and low-energy-loss ternary photovoltaics through judicious selection of the third component [J]. Solar RRL,2021,5(9):2100450. doi: 10.1002/solr.202100450 [81] BI Z, NAVEED H B, WU H, ZHANG C, ZHOU X, WANG J, WANG M, WU X, ZHU Q, ZHOU K, CHEN K, WANG C, TANG Z, MA W. Tuning acceptor composition in ternary organic photovoltaics-impact of domain purity on non-radiative voltage losses [J]. Advanced Energy Materials,2022,12(18):2103735. doi: 10.1002/aenm.202103735 [82] GAO J, MA X, XU C, WANG X, SON J H, JEONG S Y, ZHANG Y, ZHANG C, WANG K, NIU L, ZHANG J, WOO H Y, ZHANG J, ZHANG F. Over 17.7% efficiency ternary-blend organic solar cells with low energy-loss and good thickness-tolerance [J]. Chemical Engineering Journal,2022,428:129276. doi: 10.1016/j.cej.2021.129276 [83] YAN Y, ZHANG Y, LIU Y, SHI Y, QIU D, DENG D, ZHANG J, WANG B, ADIL M A, AMIN K, MEMON W A, WANG M, ZHOU H, ZHANG X, WEI Z. Simultaneously decreasing the bandgap and voc loss in efficient ternary organic solar cells [J]. Advanced Energy Materials,2022,12(20):2200129. doi: 10.1002/aenm.202200129 [84] TANG W, PENG W, ZHU M, JIANG H, WANG W, XIA H, YANG R, INGANÄS O, TAN H, BIAN Q, WANG E, ZHU W. 17.25% High efficiency ternary solar cells with increased open-circuit voltage using a high HOMO level small molecule guest donor in a PM6: Y6 blend [J]. Journal of Materials Chemistry A,2021,9(36):20493-20501. doi: 10.1039/D1TA05284E [85] LIU X, LIU Y, NI Y, FU P, WANG X, YANG Q, GUO X, LI C. Reducing non-radiative recombination energy loss via a fluorescence intensifier for efficient and stable ternary organic solar cells [J]. Materials Horizons,2021,8(8):2335-2342. doi: 10.1039/D1MH00868D [86] ZHAO J, LI Y, LIN H, LIU Y, JIANG K, MU C, MA T, LIN LAI J Y, HU H, YU D, YAN H. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor [J]. Energy & Environmental Science,2015,8(2):520-525. [87] HE Y, LI Y. The Royal society of chemistry, 2011. Fullerene derivative acceptors for high performance polymer solar cells [J]. Physical Chemistry Chemical Physics,2011,13(6):1970-1983. doi: 10.1039/C0CP01178A [88] LIN Y, WANG J, ZHANG Z, BAI H, LI Y, ZHU D, ZHAN X. An electron acceptor challenging fullerenes for efficient polymer solar cells [J]. Advanced Materials,2015,27(7):1170-1174. doi: 10.1002/adma.201404317 [89] LIN H, CHEN S, LI Z, LAI J Y L, YANG G, MCAFEE T, JIANG K, LI Y, LIU Y, HU H, ZHAO J, MA W, ADE H, YAN H. High-performance non-fullerene polymer solar cells based on a pair of donor-acceptor materials with complementary absorption properties [J]. Advanced Materials,2015,27(45):7299-7304. doi: 10.1002/adma.201502775 [90] YE L, SUN K, JIANG W, ZHANG S, ZHAO W, YAO H, WANG Z, HOU J. Enhanced efficiency in fullerene-free polymer solar cell by incorporating fine-designed donor and acceptor materials [J]. ACS Applied Materials & Interfaces,2015,7(17):9274-9280. [91] NIU M, WANG K, YANG X, BI P, ZHANG K, FENG X, CHEN F, QIN W, XIA J, HAO X. Hole transfer originating from weakly bound exciton dissociation in acceptor-donor-acceptor nonfullerene organic solar cells[J]. The Journal of Physical Chemistry Letters, 2019, 10(22): 7100-7106. [92] QIU N, ZHANG H, WAN X, LI C, KE X, FENG H, KAN B, ZHANG H, ZHANG Q, LU Y, CHEN Y. A new nonfullerene electron acceptor with a ladder type backbone for high-performance organic solar cells[J]. Adv Mater, 2017, 29: 1604964. [93] WANG Z S, REN X, XU X, PENG Q, SHA W E I, CHOY W C H. A comprehensively theoretical and experimental study of carrier generation and transport for achieving high performance ternary blend organic solar cells [J]. Nano Energy,2018,51:206-215. doi: 10.1016/j.nanoen.2018.06.069 [94] HSIEH C M, LIAO Y S, LIN Y R, CHEN C P, TSAI C M, DIAU E W G, CHUANG S C. Low-temperature, simple and efficient preparation of perovskite solar cells using Lewis bases urea and thiourea as additives: Stimulating large grain growth and providing a PCE up to 18.8% [J]. RSC Advances,2018,8(35):19610-19615. doi: 10.1039/C8RA03175D [95] SINGH O V, GABANI P. Extremophiles: Radiation resistance microbial reserves and therapeutic implications [J]. Journal of Applied Microbiology,2011,110(4):851-861. doi: 10.1111/j.1365-2672.2011.04971.x [96] NORIEGA R, RIVNAY J, VANDEWAL K, KOCH F P V, STINGELIN N, SMITH P, TONEY M F, SALLEO A. A general relationship between disorder, aggregation and charge transport in conjugated polymers [J]. Nature Materials,2013,12(11):1038-1044. doi: 10.1038/nmat3722 [97] JURCHESCU O D, POPINCIUC M, van WEES B J, PALSTRA T T M. Interface-controlled, high-mobility organic transistors [J]. Advanced Materials,2007,19(5):688-692. doi: 10.1002/adma.200600929 [98] COLLINS S D, PROCTOR C M, RAN N A, NGUYEN T Q. Understanding open-circuit voltage loss through the density of states in organic bulk heterojunction solar cells [J]. Advanced Energy Materials,2016,6(4):1501721. doi: 10.1002/aenm.201501721 [99] MENDELS D, TESSLER N. A comprehensive study of the effects of chain morphology on the transport properties of amorphous polymer films [J]. Scientific Reports,2016,6(1):29092. doi: 10.1038/srep29092 [100] CRACIUN N I, WILDEMAN J, BLOM P W M. Universal arrhenius temperature activated charge transport in diodes from disordered organic semiconductors [J]. Physical Review Letters,2008,100(5):056601. doi: 10.1103/PhysRevLett.100.056601 [101] GARCIA BELMONTE G, BOIX P, BISQUERT J, LENES M, BOLINK H, LA ROSA A, FILIPPONE S, MARTIN N. Influence of the intermediate density-of-states occupancy on open-circuit voltage of bulk heterojunction solar cells with different fullerene acceptors [J]. Journal of Physical Chemistry Letters,2010,1(17):2566-2571. doi: 10.1021/jz100956d [102] GARCIA-BELMONTE G, BISQUERT J. Open-circuit voltage limit caused by recombination through tail states in bulk heterojunction polymer-fullerene solar cells [J]. Applied Physics Letters,2010,96(11):113301. doi: 10.1063/1.3358121 [103] KUIK M, KOSTER L J A, WETZELAER G A H, BLOM P W M. Trap-assisted recombination in disordered organic semiconductors [J]. Physical Review Letters,2011,107(25):256805. doi: 10.1103/PhysRevLett.107.256805 [104] BURKE T M, SWEETNAM S, VANDEWAL K, MCGEHEE M D. Beyond Langevin recombination: How equilibrium between free carriers and charge transfer states determines the open-circuit voltage of organic solar cells [J]. Advanced Energy Materials,2015,5(11):1500123. doi: 10.1002/aenm.201500123 [105] ZHANG Z, LI Y, CAI G, ZHANG Y, LU X, LIN Y. Selenium heterocyclic electron acceptor with small urbach energy for as-cast high-performance organic solar cells [J]. Journal of the American Chemical Society,2020,142(44):18741-18745. doi: 10.1021/jacs.0c08557 [106] QI B, WANG J. Fill factor in organic solar cells [J]. Physical Chemistry Chemical Physics,2013,15(23):8972-8982. doi: 10.1039/c3cp51383a [107] YAMAGUCHI M, NAKAMURA K, OZAKI R, KOJIMA N, OHSHITA Y. Loss analysis of high-efficiency perovskite/Si tandem solar cells for large market applications [J]. Energy and Power Engineering,2022,14(4):167-180. doi: 10.4236/epe.2022.144009 [108] COWAN S R, BANERJI N, LEONG W L, HEEGER A J. Charge formation, recombination, and sweep-out dynamics in organic solar cells [J]. Advanced Functional Materials,2012,22(6):1116-1128. doi: 10.1002/adfm.201101632 [109] TAN J K, PNG R Q, ZHAO C, HO P K H. Ohmic transition at contacts key to maximizing fill factor and performance of organic solar cells [J]. Nature Communications,2018,9(1):3269. doi: 10.1038/s41467-018-05200-w [110] CHAI G, CHANG Y, ZHANG J, XU X, YU L, ZOU X, LI X, CHEN Y, LUO S, LIU B, BAI F, LUO Z, YU H, LIANG J, LIU T, WONG K S, ZHOU H, PENG Q, YAN H. Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency [J]. Energy & Environmental Science,2021,14(6):3469-3479. [111] DU X, YUAN Y, ZHOU L, LIN H, ZHENG C, LUO J, CHEN Z, TAO S, LIAO L S. Delayed fluorescence emitter enables near 17% efficiency ternary organic solar cells with enhanced storage stability and reduced recombination energy loss [J]. Advanced Functional Materials,2020,30(15):1909837. doi: 10.1002/adfm.201909837 [112] XIE G, ZHANG Z, SU Z, ZHANG X, ZHANG J. 16.5% Efficiency ternary organic photovoltaics with two polymer donors by optimizing molecular arrangement and phase separation [J]. Nano Energy,2020,69:104447. doi: 10.1016/j.nanoen.2020.104447 [113] WANG D, QIN R, ZHOU G, LI X, XIA R, LI Y, ZHAN L, ZHU H, LU X, YIP H L, CHEN H, LI C Z. High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions [J]. Advanced Materials,2020,32(32):2001621. doi: 10.1002/adma.202001621 [114] KARAPALA V K, CHEN T W, MA K J, LU P L, SU Y J, FU W D, SHIH H M, LU S J, LEE T Y, CHANG C F, CHEN J T, HSU C S. Exploring ternary organic solar cells for the improved efficiency of 16.5% with the compatible nonacyclic carbazole-based nonfullerene acceptors as the third component [J]. Applied Energy Materials,2021,4(3):2847-2855. doi: 10.1021/acsaem.1c00149 [115] GUO X, FAN Q, WU J, LI G, PENG Z, SU W, LIN J, HOU L, QIN Y, ADE H, YE L, ZHANG M, LI Y. Optimized active layer morphologies via ternary copolymerization of polymer donors for 17.6% efficiency organic solar cells with enhanced fill factor [J]. Angewandte Chemie International Edition,2021,60(5):2322-2329. doi: 10.1002/anie.202010596 [116] LI D, ZHU L, LIU X, XIAO W, YANG J, MA R, DING L, LIU F, DUAN C, FAHLMAN M, BAO Q. Enhanced and balanced charge transport boosting ternary solar cells over 17% efficiency [J]. Advanced Materials,2020,32(34):2002344. doi: 10.1002/adma.202002344 [117] YAN T, GE J, LEI T, ZHANG W, SONG W, FANADY B, ZHANG D, CHEN S, PENG R, GE Z. 16.55% Efficiency ternary organic solar cells enabled by incorporating a small molecular donor [J]. Journal of Materials Chemistry A,2019,7(45):25894-25899. doi: 10.1039/C9TA10145D [118] LIU J, ZHANG H, DONG H, MENG L, JIANG L, JIANG L, WANG Y, YU J, SUN Y, HU W, HEEGER A J. High mobility emissive organic semiconductor [J]. Nature Communications,2015,6:10032. doi: 10.1038/ncomms10032 [119] LU H, LIU W, JIN H, HUANG H, TANG Z, BO Z. High-efficiency organic solar cells with reduced nonradiative voltage loss enabled by a highly emissive narrow bandgap fused ring acceptor [J]. Advanced Functional Materials,2022,32(9):2107756. doi: 10.1002/adfm.202107756 [120] YAN C, BARLOW S, WANG Z, YAN H, JEN A K Y, MARDER S R, ZHAN X. Non-fullerene acceptors for organic solar cells [J]. Nature Reviews Materials,2018,3:18003. [121] CHENG P, LI G, ZHAN X, YANG Y. Next-generation organic photovoltaics based on non-fullerene acceptors [J]. Nature Photonics,2018,12(3):131-142. doi: 10.1038/s41566-018-0104-9 [122] CHEN Y, JIANG C, WANG J, TANG A, ZHANG B, LIU X, CHEN X, WEI Z, ZHOU E. Introducing methoxy or fluorine substitutions on the conjugated side chain to reduce the voltage loss of organic solar cells [J]. Journal of Materials Chemistry C,2021,9(34):11163-11171. doi: 10.1039/D1TC02700J [123] LIN Y, HE Q, ZHAO F, HUO L, MAI J, LU X, SU C J, LI T, WANG J, ZHU J, SUN Y, WANG C, ZHAN X. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency [J]. Journal of the American Chemical Society,2016,138(9):2973-2976. doi: 10.1021/jacs.6b00853 [124] LI M, LIU Y, NI W, LIU F, FENG H, ZHANG Y, LIU T, ZHANG H, WAN X, KAN B, ZHANG Q, RUSSELL T P, CHEN Y. A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8% [J]. Journal of Materials Chemistry A,2016,4(27):10409-10413. doi: 10.1039/C6TA04358E [125] WANG J, WANG W, WANG X, WU Y, ZHANG Q, YAN C, MA W, YOU W, ZHAN X. Enhancing performance of nonfullerene acceptors via side-chain conjugation strategy [J]. Advanced Materials,2017,29(35):1702125. doi: 10.1002/adma.201702125 [126] CHEN M, YAN L, ZHAO Y, MURTAZA I, MENG H, HUANG W. Anthracene-based semiconductors for organic field-effect transistors [J]. Journal of Materials Chemistry C,2018,6(28):7416-7444. doi: 10.1039/C8TC01865K [127] BAE Y J, KANG G, MALLIAKAS C D, NELSON J N, ZHOU J, YOUNG R M, WU Y L, van DUYNE R P, SCHATZ G C, WASIELEWSKI M R. Singlet fission in 9, 10-bis(phenylethynyl)anthracene thin films [J]. Journal of the American Chemical Society,2018,140(45):15140-15144. doi: 10.1021/jacs.8b07498 [128] CHEN M, ZHAO Y, YAN L, YANG S, ZHU Y, MURTAZA I, HE G, MENG H, HUANG W. A unique blend of 2-fluorenyl-2-anthracene and 2-anthryl-2-anthracence showing white emission and high charge mobility [J]. Angewandte Chemie International Edition,2017,56(3):722-727. doi: 10.1002/anie.201608131 [129] NAKANO K, CHEN Y, XIAO B, HAN W, HUANG J, YOSHIDA H, ZHOU E, TAJIMA K. Anatomy of the energetic driving force for charge generation in organic solar cells [J]. Nature Communications,2019,10(1):2520. doi: 10.1038/s41467-019-10434-3 [130] CAI G, WANG W, ZHOU J, XIAO Y, LIU K, XIE Z, LU X, LIAN J, ZENG P, WANG Y, ZHAN X. Comparison of linear- and star-shaped fused-ring electron acceptors [J]. ACS Materials Letters,2019,1(3):367-374. doi: 10.1021/acsmaterialslett.9b00253 [131] SWICK S M, ZHU W, MATTA M, ALDRICH T J, HARBUZARU A, NAVARRETE J T L, ORTIZ R P, KOHLSTEDT K L, SCHATZ G C, FACCHETTI A, MELKONYAN F S, MARKS T J. Closely packed, low reorganization energy π-extended postfullerene acceptors for efficient polymer solar cells [J]. Proceedings of the National Academy of Sciences,2018,115(36):E8341-E8348. -