高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共聚微球稳定皮克林乳液的研究及酶固定化应用

王康静 李婷 丁重阳 东为富

王康静, 李 婷, 丁重阳, 东为富. 共聚微球稳定皮克林乳液的研究及酶固定化应用[J]. 功能高分子学报,2023,36(4):1-7 doi: 10.14133/j.cnki.1008-9357.20230208001
引用本文: 王康静, 李 婷, 丁重阳, 东为富. 共聚微球稳定皮克林乳液的研究及酶固定化应用[J]. 功能高分子学报,2023,36(4):1-7 doi: 10.14133/j.cnki.1008-9357.20230208001
WANG Kangjing, LI Ting, DING Zhongyang, DONG Weifu. Stabilization of Pickering Emulsion by Terpolymer Microspheres and Application of Immobilized Enzyme[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230208001
Citation: WANG Kangjing, LI Ting, DING Zhongyang, DONG Weifu. Stabilization of Pickering Emulsion by Terpolymer Microspheres and Application of Immobilized Enzyme[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230208001

共聚微球稳定皮克林乳液的研究及酶固定化应用

doi: 10.14133/j.cnki.1008-9357.20230208001
基金项目: 国家自然科学基金资助项目(21975108)
详细信息
    作者简介:

    王康静(1995—),女,山东济南人,博士研究生,主要研究方向为酶固定化材料。E-mail: 7180610007@stu.jiangnan.edu.cn

    通讯作者:

    东为富, E-mail: wfdong@jiangnan.edu.cn

  • 中图分类号: Q814.2

Stabilization of Pickering Emulsion by Terpolymer Microspheres and Application of Immobilized Enzyme

  • 摘要: 以苯乙烯(St)、马来酸酐(MA)、甲基丙烯酸缩水甘油酯(GMA)为单体,通过自稳定沉淀聚合反应制备了带有环氧基团的形貌规整、粒径均一的纳米粒子(PMG),该纳米粒子可作为乳化剂稳定皮克林乳液,并利用环氧基团来固定化脂肪酶。系统研究了单体投料比、溶剂对纳米粒子形貌和组成的影响,以及纳米粒子添加量、脂肪酶质量浓度、溶剂对皮克林乳液粒径和酶催化反应的影响。结果表明,当n(GMA)∶n(St)∶n(MA)为2∶1∶1、纳米粒子质量分数为0.5%、脂肪酶初始质量浓度为3 mg/mL、正庚烷与去离子水体积比为5∶5时,固定化脂肪酶的催化比活性最高,是游离酶催化比活性的7.5倍,且具有优良的重复使用性能。

     

  • 图  1  PMG的合成反应示意图

    Figure  1.  Synthesis scheme of PMG

    图  2  PMG的红外光谱图

    Figure  2.  FT-IR spectra of PMG

    图  3  PMG的扫描电镜照片

    Figure  3.  SEM images of PMG

    (a, d)—IPA; (b, e) — IPA/DMB (8/2, Volume ratio); (c, f) —DMB

    图  4  Pickering乳液的照片

    Figure  4.  Pictures of Pickering emulsion

    图  5  Pickering乳液的光学显微镜照片

    Figure  5.  Optical microscope pictures of Pickering emulsion

    (a) Contact angle of 37°, (b) Contact angle of 56°; RO/W(c) 3∶7, (d) 4∶6, (e) 5∶5

    图  6  PMG纳米粒子稳定的Pickering乳液固定化脂肪酶的荧光显微镜照片

    Figure  6.  Fluorescence microscope images of lipase immobilized with Pickering emulsion stabilized by PMG nanoparticles

    图  7  (a)PMG粒子质量分数,(b)脂肪酶质量浓度,(c)单体摩尔比,(d)溶剂体积比对固定化脂肪酶的催化比活性的影响

    Figure  7.  Relative enzyme activity of immobilized enzymes with (a) particle mass fraction, (b) lipase concentration, (c) molar ratio of GMA to St, (d) RO/W

    图  8  不同使用次数的固定化脂肪酶的相对酶比活性

    Figure  8.  Relative activity of immobilized lipase with different repeat times

  • [1] WONG H, SCHOTZ M C. The lipase gene family [J]. Journal of Lipid Research,2002,43(7):993-999. doi: 10.1194/jlr.R200007-JLR200
    [2] GIRELLI A M, ASTOLFI M L, SCUTO F R. Agro-industrial wastes as potential carriers for enzyme immobilization: A review [J]. Chemosphere,2020,244:125368. doi: 10.1016/j.chemosphere.2019.125368
    [3] SHWETA S, MUNISHWAR N G. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system [J]. Process Biochemistry,2007,42(3):409-414. doi: 10.1016/j.procbio.2006.09.024
    [4] 齐耿耿, 孙建中, 周其云, 蔡智奇. 酶催化聚合研究进展 [J]. 功能高分子学报,2022,15(3):347-354.

    QI G G, SUN J Z, ZHOU Q Y, CAI Z Q. Advance in enzyme-catalyzed polymerization [J]. Journal of Functional Polymers,2022,15(3):347-354.
    [5] 靳计灿, 刘海峰, 黎根盛, 李瑞, 林锐, 曾晖, 张少雄. 酶在液体洗涤剂中的稳定性研究进展 [J]. 应用化工,2020,49(11):2901-2905. doi: 10.3969/j.issn.1671-3206.2020.11.049

    JIN J C, LIU H F, LI G S, LI R, LIN R, ZENG H, ZHANG S X. Research progress of enzyme stability in liquid detergent [J]. Applied Chemical Industry,2020,49(11):2901-2905. doi: 10.3969/j.issn.1671-3206.2020.11.049
    [6] Shintaro Furusaki, Isao Endo , Ryuichi Matsuno. Biochemical Engineering for 2001[M]. Springer, Tokyo. Proceedings of Asia-Pacific Biochemical Engineering Conference 1992,1992: 92-95. Shibatani, T., Matsumae, H., Tosa, T. (1992). Asymmetric Hydrolysis of Phenylglycidate Ester by Esterase from Serratia marcescens. In: Furusaki, S., Endo, I., Matsuno, R. (eds) Biochemical Engineering for 2001. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68180-9_22
    [7] CHANDRA P, ENESPA, SINGH R, ARORA P K. Microbial lipases and their industrial applications: A comprehensive review [J]. Microbial Cell Factories,2020,19(1):169-211. doi: 10.1186/s12934-020-01428-8
    [8] 孙建华, 戴荣继, 邓玉林. 酶固定化技术研究进展 [J]. 化工进展,2010,29(4):715-721.

    SUN J H, DAI R J, DENG Y L. Progress in enzyme immobilization technigue [J]. Chemical lndustry and Engineering Progress,2010,29(4):715-721.
    [9] BINKS B P. Particles as surfactants-similarities and differences [J]. Current Opinion in Colloid and Interface Science,2002,7(1-2):21-41. doi: 10.1016/S1359-0294(02)00008-0
    [10] MAO Z W, XU H L, WANG A Y. Molecular mimetic self-assembly of colloidal particles[J]. Advanced Functional Materials, 2010, 20(7): 1053-1074.
    [11] WEI L J, ZHANG M, ZHANG X M, XIN H C, YANG H Q. Pickering emulsion as an efficient platform for enzymatic reactions without stirring [J]. ACS Sustainable Chemistry and Engineering,2016,4(12):6838-6843. doi: 10.1021/acssuschemeng.6b01776
    [12] JIANG H, LI Y X, HONG L Z, NGAI T. Submicron inverse Pickering emulsions for highly efficient and recyclable enzymatic catalysis [J]. Chemistry: An Asian Journal,2018,13(22):3533-3539. doi: 10.1002/asia.201800853
    [13] WENG M M, XIA C M, XU S, LIU Q Z, LIU Y, LIU H, HUO C F, ZHANG R L, ZHANG C G, MIAO Z C. Lipase/chitosan nanoparticle-stabilized Pickering emulsion for enzyme catalysis [J]. Colloid and Polymer Science,2022,300(1):41-50. doi: 10.1007/s00396-021-04923-5
    [14] GURAVE P M, DUBEY S, NANDAN B, SRIVASTAVA R K. Pickering emulsion-templated nanocomposite membranes for excellent demulsification and oil-water separation[J]. ACS Applied Materials & Interfaces, 2022, 14(48): 54233-54244.
    [15] ZHANG A L, QIU T, XU H B, YAN Y T, YE J, HE L F, GUO L H, LI X Y. A role of visible light-mediated surface grafting on nano-SiO2 in Pickering emulsions [J]. Colloid and Polymer science,2021,299(11):1819-1831. doi: 10.1007/s00396-021-04880-z
    [16] WANG T, CHEN K R, LI Z Y, JIANG L Z, YU D A Y, CHENG J J, WANG L Q. Construction of an enzyme-Pickering emulsion catalytic system and its application in the interfacial catalytic reaction of rice bran oil deacidification [J]. LWT-Food Science and Technology,2021,150:111921. doi: 10.1016/j.lwt.2021.111921
    [17] 黄晓梅. 载脂肪酶颗粒的构建及其皮克林乳液界面稳定和催化效能研究稳定和催化效能研究[D]. 广东: 华南理工大学, 2020.

    HUANG X M. Fabrication of Pickering emulsion stabilized by lipase-loaded surface active particles and the mechanism of interfacial biocatalysis[D]. Guangdong: South China University of Technology, 2020.
    [18] WANG Y D, CHEN D, WANG G, ZHANG C W, MA Y H, YANG W T. Immobilization of cellulase on styrene/maleic anhydride copolymer nanoparticles with improved stability against pH changes [J]. Chemical Engineering Journal,2018,336:152-159. doi: 10.1016/j.cej.2017.11.030
    [19] WANG K J, ZHAO L T, LI T, WANG Q, DING Z Y, DONG W F. Selective immobilization of his-tagged phosphomannose isomerase on Ni chelated nanoparticles with good reusability and activity [J]. Chembiochem,2022,23(4):e202100497.
    [20] 刘晓锦, 李婷, 汪洋, 东为富. 具有广谱紫外屏蔽性能的三元共聚物微球的制备 [J]. 高等学校化学学报,2021,42(6):1965-1977.

    LIU X J, LI T, WANG Y, DONG W F. Preparation of terpolymer microspheres with broad band UV-blocking performance [J]. Chemical Journal of Chinese Universities,2021,42(6):1965-1977.
  • 加载中
图(8)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  17
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 录用日期:  2023-03-22
  • 网络出版日期:  2023-03-29

目录

    /

    返回文章
    返回