高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NO释放性抗菌、抗氧化水凝胶的制备及性能

尚亚廷 李世超 周莹杰 郭江娜 严锋

尚亚廷, 李世超, 周莹杰, 郭江娜, 严锋. NO释放性抗菌、抗氧化水凝胶的制备及性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20230207001
引用本文: 尚亚廷, 李世超, 周莹杰, 郭江娜, 严锋. NO释放性抗菌、抗氧化水凝胶的制备及性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20230207001
SHANG Yating, LI Shichao, ZHOU Yingjie, GUO Jingna, YAN Feng. Preparation and Properties of Antibacterial and Antioxidant NO Releasing Hydrogels[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230207001
Citation: SHANG Yating, LI Shichao, ZHOU Yingjie, GUO Jingna, YAN Feng. Preparation and Properties of Antibacterial and Antioxidant NO Releasing Hydrogels[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230207001

NO释放性抗菌、抗氧化水凝胶的制备及性能

doi: 10.14133/j.cnki.1008-9357.20230207001
基金项目: 国家自然科学基金(21835005, U1862109和22005045);中央高效基本科研业务费专项资金项目(2232020 D-07)
详细信息
    作者简介:

    尚亚廷(1998—),女,硕士研究生,主要研究方向为生物医用材料。E-mail:shangyt0504@163.com

    通讯作者:

    郭江娜,E-mail: guojn@suda.edu.cn

    严 锋,E-mail:fyan@suda.edu.cn

  • 中图分类号: O69

Preparation and Properties of Antibacterial and Antioxidant NO Releasing Hydrogels

  • 摘要: 设计合成了具有光热和NO控释放性的抗菌、抗氧化水凝胶。利用Fe3+和戊二醛将聚赖氨酸、单宁酸交联形成水凝胶,并负载NO供体分子S-亚硝基-N-乙酰基-DL-青霉胺获得兼具光热和NO控释功能的水凝胶(NO-Fex-TA20, x = 5, 7, 9)。所合成水凝胶具有良好的光热性能,在1 W/cm2近红外光照射下10 min内温度可达到43.8 ℃。在可见光和37 °C恒温下,水凝胶3 h累计释放的NO达到36.48 µM。抗菌实验表明,水凝胶对金黄色葡萄球菌具有优异的杀菌活性,杀菌活性大于99.9%;同时,其能够高效清除2,2-联苯基-1-苦基胼基(DPPH)自由基,清除率大于84.3%,具有显著的抗氧化效果。

     

  • 图  1  SNAP的(a) 1H-NMR 图谱与(b)紫外吸收光谱

    Figure  1.  (a) 1H-NMR (b) UV-Vis absorption spectra of SNAP

    图  2  Fe9-TA20水凝胶的 (a)红外谱图与(b)流变曲线

    Figure  2.  (a) FT-IR and (b) frequency sweep test of Fe9-TA20 hydrogel

    图  3  (a) Fex-TA20水凝胶在NIR光照射下的温度曲线; (b) Fe9-TA20水凝胶在不同功率 NIR 照射下的温度曲线; (c) Fe9-TA20水凝胶的加热-冷却曲线; (d) NIR照射Fe9-TA20水凝胶的热红外图

    Figure  3.  (a) Temperature curves of Fex-TA20 hydrogels under NIR irradiation; (b) Temperature curves of Fe9-TA20 hydrogel under NIR irradiation with different irradiation power; (c) Heating-cooling curve of Fe9-TA20 hydrogel; (d) Thermal infrared images of Fe9-TA20 hydrogel irradiated by NIR

    图  4  水凝胶的抗氧化性能测试: (a) DPPH自由基清除率; (b) ABTS法综合抗氧化能力

    Figure  4.  Test of antioxidant properties of hydrogel; (a) Scavenging rate of DPPH free radicals; (b) Overall antioxidant capacity of ABTS method

    图  5  NO-Fe9-TA20水凝胶的(a) NO释放标准曲线和(b) 在不同温度下的NO释放曲线

    Figure  5.  (a) Standard curve of NO release and (b) NO release curve of at different temperatures of NO-Fe9-TA20 hydrogel

    图  6  NO- Fe9-TA20 水凝胶的抗菌性能

    Figure  6.  Antibacterial properties of NO- Fe9-TA20 hydrogel

  • [1] 郭伟, 张杰, 李颖. 细菌的致病性 [J]. 中国医疗前沿,2008(4):8-9. doi: 10.3969/j.issn.1673-5552.2008.04.005

    GUO W, ZHANG J, LI Y. Pathogenicity of bacteria [J]. China Healthcare Innovation,2008(4):8-9. doi: 10.3969/j.issn.1673-5552.2008.04.005
    [2] PRISTOVSEK P, KIDRIC J. The search for molecular determinants of LPS inhibition by proteins and peptides [J]. Current Topics,2004,4(11):1185-1201.
    [3] 郭尚春, 赵丽萍, 陶诗聪, 张长青. 胞外囊泡在细菌致病机制中作用的研究进展 [J]. 中国修复重建外科杂志,2018,32(12):1597-1604. doi: 10.7507/1002-1892.201805075

    GUO S C, ZHAO L P, TAO S C, ZHANG C Q. Research progress on the role of extracellular vesicles in bacterial pathogenesis [J]. Chinese Journal of Reparative and Reconstructive Surgery,2018,32(12):1597-1604. doi: 10.7507/1002-1892.201805075
    [4] SHARIFI S, HAJIPOUR M J, GOULD L, MORTEZA M. Nanomedicine in healing chronic wounds: opportunities and challenges [J]. Molecular Pharmaceutics,2021,18(2):550-575. doi: 10.1021/acs.molpharmaceut.0c00346
    [5] SUN B K, SIPRASHVILI Z, KHAVARI P A. Advances in skin grafting and treatment of cutaneous wounds [J]. Science,2014,346(6212):941-945. doi: 10.1126/science.1253836
    [6] ZENG Q K, QI X L, SHI G Y, ZHANG M, HACICK H. Wound dressing: From nanomaterials to diagnostic dressings and healing evaluations [J]. ACS Nano,2022,16(2):1708-1733. doi: 10.1021/acsnano.1c08411
    [7] HICKMAN D A, PAWLOWSKI C L, SEKHON U D S, MARKS J, GUPTA A S. Biomaterials and advanced technologies for hemostatic management of bleeding [J]. Advanced Materials,2017,30(4):1700859.
    [8] LIANG Y P, HE J H, GUO B. Functional hydrogels as wound dressing to enhance wound healing [J]. ACS Nano,2021,15(8):12687-12722. doi: 10.1021/acsnano.1c04206
    [9] ANDRÉN O C J, INGVERUD T, HULT D, HAKANSSON J, BOGESRAL Y, CAOUS J S, BLOM K, ZHANG Y N, ANDERSSON T, PEDERSEN E, BJORN C, LOWENHIELM P, MALKOCH M. Antibiotic‐free cationic dendritic hydrogels as surgical‐site‐infection‐inhibiting coatings[J], Advanced Healthcare Materials, 2019, 8: 1801619.
    [10] DU C S, GAO D, GAO M S, YUAN H B, LIU X N, WANG B, XING C F. Property regulation of conjugated oligoelectrolytes with polyisocyanide to achieve efficient photodynamic antibacterial biomimetic hydrogels [J]. ACS Applied Materials & Interfaces,2021,13(24):27955-2762.
    [11] YU L D, HU P, CHEN Y. Gas-generating nanoplatforms: Material chemistry, multifunctionality and gas therapy [J]. Advanced Materials,2018,30:18019.
    [12] AKHTAR M J, AHAMED M, ALHADLAQ H, ALROKAYAN S. Pt-coated Au nanoparticle toxicity is preferentially triggered via mitochondrial nitric oxide/reactive oxygen species in human liver cancer (HepG2) cells [J]. ACS Omega,2021,6(23):15431-15441. doi: 10.1021/acsomega.1c01882
    [13] KANG M L, KIM H S, YOU J. Hydrogel cross-linking programmed release of nitric oxide regulates source-dependent angiogenic behaviors of human mesenchymal stem cell[J]. Science Advances, 2020, 6(9): eaay5413.
    [14] SUN Y J, WEN R L, YU D, ZHU Y W, ZHENG L, LIU X D, WANG H R, YU B R, XU F J. Flexible electrostatic hydrogels from marine organism for nitric oxide-enhanced photodynamic therapy against multidrug-resistant bacterial infection [J]. Science China Materials,2022,65:2850-2860. doi: 10.1007/s40843-022-2024-6
    [15] ZHOU Y, TAN J Y, DAI Y P, YU Y M, ZHANG Q, MEYERHOFF M E. Synthesis and nitric oxide releasing properties of novel fluoro S-nitrosothiols [J]. Chemical Communications,2019,55(3):401-404. doi: 10.1039/C8CC08868C
    [16] DOU J, YANG R, JIN X X, LI P F, HAN X, WANG L J, CHI B, SHEN J, YUAN J. Nitric oxide-releasing polyurethane/S-nitrosated keratin mats for accelerating wound healing [J]. Regenerative Biomaterials,2022,9:rbac006. doi: 10.1093/rb/rbac006
    [17] MONDAL A, DOUGLASS M, HOPKINS S P, SINGHA P, TRAN M, HANDA H, BRISBOIS E J. Multifunctional S-nitroso-N-acetyl-penicillamine-incorporated medical-grade polymer with selenium interface for biomedical applications [J]. ACS Applied Materials & Interfaces,2019,11(38):34652-34662.
    [18] 袁颖慧. 离子液体基抗菌涂层的设计合成与性能研究[D]. 上海: 东华大学, 2022.

    YUAN Y H. Design, synthesis and performance study of ionic liquid-based antimicrobial coatings[D]. ShangHai: DongHua University, 2022.
    [19] GUO S, YAO M H, ZHANG D, HE Y M, CHANG R, REN Y K, GUAN F X. One-step synthesis of multifunctional chitosan hydrogel for full-thickness wound closure and healing [J]. Advanced Healthcare Materials,2022,11(4):e2101808. doi: 10.1002/adhm.202101808
    [20] ROPER D K, AHN W, HOEPFNER M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles [J]. The Journal of Physical Chemistry C,2007,111(9):3636-3641. doi: 10.1021/jp064341w
    [21] KIM Y E, KIM J. ROS-scavenging therapeutic hydrogels for modulation of the inflammatory response[J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23002–23021.
    [22] YU M, TANG P F, TANG Y H, WEI C, WANG Z M, ZHANG H P. Breathable, moisturizing, anti-oxidation SSD-PG-PVA/KGM fibrous membranes for accelerating diabetic wound tissue regeneration [J]. ACS Applied Bio Materials,2022,5(6):2894-2901. doi: 10.1021/acsabm.2c00255
    [23] GÜLçIN I, HUYUT Z, ELMASTAS M, ABOUL-ENEIN H Y. Radical scavenging and antioxidant activity of tannic acid [J]. Arabian Journal of Chemistry,2010,3(1):43-53. doi: 10.1016/j.arabjc.2009.12.008
    [24] PUCCI C, MARTINELLI C, PASQUALE D D, BATTAGLIMI M, LEO N D, DEGL’INNOCENTI A, GÜMÜş M B, DRAGO F, CIOFANI G. Tannic acid-iron complex-based nanoparticles as a novel tool against oxidative stress [J]. ACS Applied Materials & Interfaces,2022,14(14):15927-15941.
    [25] KANG M L, KIM H S, YOU J, CHOL Y S, KWON B J, PARK C H, BAEK W, KIM M S, LEE Y J, IM G I, YOON J K, LEE J B, SUNG H J. Hydrogel cross-linking programmed release of nitric oxide regulates source-dependent angiogenic behaviors of human mesenchymal stem cell [J]. Science Advances,2020,6(9):aay5413. doi: 10.1126/sciadv.aay5413
    [26] KIM C, DIRING S, FURUKAWA S, KITAGAWA S. Light-induced nitric oxide release from physiologically stable porous coordination polymers [J]. Dalton Transactions,2015,44(34):15324-15333. doi: 10.1039/C5DT01418B
    [27] SEYFI R, KAHAKI F A, EBRAHIMI T, MONTAZERSAHEB S, EYVAZI S, BABAEIPOUR V, TARHRIZ V. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action [J]. International Journal of Peptide Research and Therapeutics,2020,26:1451-1463. doi: 10.1007/s10989-019-09946-9
    [28] TAN P, FU H Y, MA X. Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications [J]. Nano Today,2021,39:101229. doi: 10.1016/j.nantod.2021.101229
    [29] 朱欣怡, 丁圣刚, 聂旋, 尤业字. 抗菌阳离子聚合物的研究进展[J]. 功能高分子学报, 2023, 36(3):

    ZHU X Y, DING S G, NIE X, YOU Y Z. Progress of antibacterial polycation[J]. Journal of Functional Polymers, 2023, 36(3):
    [30] YE R S, XU H Y, WAN C X, PENG S S, WANG L J, XU H, AGUILAR Z P, XIONG Y H, ZENG Z L, WEI H. Antibacterial activity and mechanism of action of ε-poly-L-lysine [J]. Biochemical and Biophysical Research Communications,2013,439(1):148-153. doi: 10.1016/j.bbrc.2013.08.001
    [31] YU S M, LI G W, LIU R, MA D, XUE W. Dendritic Fe3O4@poly(dopamine)@PAMAM nanocomposite as controllable NO-releasing material: A synergistic photothermal and NO antibacterial study [J]. Advanced Functional Materials,2018,28(20):1707440. doi: 10.1002/adfm.201707440
  • 加载中
图(6)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  8
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-07
  • 录用日期:  2023-04-10
  • 网络出版日期:  2023-04-15

目录

    /

    返回文章
    返回