Synthesis and Properties of Energy-Absorbing Elastomer Materials with Adhesion
-
摘要: 首先,以羟基封端的聚二甲基硅氧烷 (PDMS-OH)与三甲氧基硼氧六环 (TMOB)反应制备冲击硬化聚合物 (IHP);然后,采用乙烯基封端聚二甲基硅氧烷 (viny-PDMS) 与甲基含氢硅油 (PDMS-H) 反应生成交联聚二甲基硅氧烷(交联PDMS);再通过自由基聚合制备聚2-(((丁基氨基)羰基)氧代)甲基丙烯酸丁酯)(PBM)。最后,以IHP、PBM和交联PDMS预聚液通过“一锅出”的方式,制备了具有黏附性的吸能弹性体材料 (IHP-EA)。其中,IHP作为其动态交联网络提供吸能特性,交联PDMS作为其稳态交联网络提供机械强度,PBM与底物形成高密度氢键提供其黏附性能。采用多种结构表征方法及性能分析手段,探讨了IHP-EA中不同组分对性能的影响。结果表明: IHP-EA在玻璃基材上的黏附强度达198 kPa,且具备良好的转移黏附和多次黏附能力;同时IHP-EA在4.43 m/s的高速冲击下可实现78.44%的能量吸收率,表现出优异的吸能减震性能。Abstract: Flexible electronic devices have developed rapidly in recent years, but there are also some drawbacks such as weak interface adhesion and poor energy absorption and buffer ability. Aiming at the above defects, a series of impact hardening polymer elastomer with adhesion (IHP-EA) is designed by in situ crosslinking strategy using the combination of stable and dynamic crosslinking. Herein, the impact harden polymer (IHP) synthesized by silanol-terminated polydimethysiloxane (PDMS-OH) and trimethoxyboroxine (TMOB) constructed a dynamic crosslinking network to provide self-healing and energy absorption characteristics; the chemical crosslinked polydimethysiloxane (PDMS) network increased mechanical strength; while poly2-((((butylamino)carbonyl)oxo) methacrylate) (PBM) was prepared by free radical polymerization as an adhesion functional component to form high density hydrogen bonds with the substrate. The tensile strength and elongation at break of IHP-EA are 0.26 MPa and 177%, respectively, at strain rates of 50 mm/min. Normally, the toughness of PDMS materials rapidly decreased with the increasing of strain rate, while on the contrast, IHP-EA showed an obviously increasing toughness together with the increasing tensile rate, which indicated the significant strain rate responsiveness of IHP-EA. Therefore, IHP-EA has outstanding energy absorption and buffer effect, and the impact energy absorption efficiency could reach higher than 78% under an impact velocity of 4.43 m/s , much higher than that of conventional PDMS elastomer. In addition, IHP-EA has excellent interfacial adhesion performance, with the adhesion strength on glass substrate up to 198 kPa, almost 100 times higher than ordinary PDMS materials. In addition, IHP-EA also performed self-healing characteristic (healing efficiency exceeds 88%) and transparent performance (greater than 90%). These outstanding properties make the IHP-EA a potential candidate for application in flexible electronics and wearable protective materials.
-
Key words:
- interface adhesion /
- energy absorbing elastomer /
- cushioning /
- self-healing /
- mechanical strength
-
图 5 (a) 交联PDMS,IHP以及IHP-EA在玻璃基材上的黏附强度; (b) IHP-EA悬挂重物图; (c) IHP-EA在不同基材上的黏附强度; (d) IHP-EA在不同温度下的红外光谱图; (e) IHP-EA在不同恶劣条件下的黏附强度
Figure 5. (a) Adhesion strength of crosslinking PDMS, IHP, IHP-EA on glass; (b) Photos of IHP-EA suspended weights; (c) Adhesion strength of IHP-EA on different substrates; (d) FT-IR spectra of IHP-EA at different temperatures; (e) Adhesion strength of IHP-EA under different harsh conditions
-
[1] HAO Y F, WANG T M, XIE ZX, SUN W G, LIU Z M, FANG X, YANG M X, WEN L. A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties [J]. Journal of Micromechanics and Microengineering,2018,28(2):024004. doi: 10.1088/1361-6439/aa9d0e [2] HUYNH T P, HAICK H. Autonomous flexible sensors for health monitoring [J]. Advanced Materials,2018,30(50):e1802337. doi: 10.1002/adma.201802337 [3] JIN H, HUPNH T P, HAICK H. Self-healable sensors based nanoparticles for detecting physiological markers via skin and breath: Toward disease prevention via wearable devices [J]. Nano Letters,2016,16(7):4194-4202. doi: 10.1021/acs.nanolett.6b01066 [4] PALLEAU E, REECE S, DESAI S C, SMITH M E, DICKEY M D. Self‐healing stretchable wires for reconfigurable circuit wiring and 3 D microfluidics [J]. Advanced Materials,2013,25(11):1589-1592. doi: 10.1002/adma.201203921 [5] LI X P, YU R, HE Y Y, ZHANG Y, YANG X, ZHAO X J, HUANG W. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3 D printing [J]. ACS Macro Letters,2019,8(11):1511-1516. doi: 10.1021/acsmacrolett.9b00766 [6] ZHAO H H, YAN S, JIN X H, NIU P Y, ZHANG G Z, WU Y K, LI H J. Tough, self-healable and conductive elastomers based on freezing-thawing strategy [J]. Chemical Engineering Journal,2020,402:125421. doi: 10.1016/j.cej.2020.125421 [7] CHEN X H, YIN L, LV J, GROSS A J, LE M, GUTIERREZ N G, LI Y, JEERAPAN I, GIROUD F, BEREZOVSKA A, RACHEL K, REILLY O, XU S, COSNIER S, WANG J. Stretchable and flexible buckypaper-based lactate biofuel cell for wearable electronics[J]. Advanced Functional Materials, 2019. 29(46). [8] GAO M, WU H X, PLAMTHOTTAM R, XIE Z X, LIU Y, HU J H, WU S W, WU L, HE X M, PEI Q B. Skin temperature-triggered, debonding-on-demand sticker for a self-powered mechanosensitive communication system [J]. Matter,2021,4(6):1962-1974. doi: 10.1016/j.matt.2021.03.003 [9] LIU Q, NIAN G, YANG C, QU S, SUO Z. Bonding dissimilar polymer networks in various manufacturing processes [J]. Nature Communications,2018,9(1):1-11. doi: 10.1038/s41467-017-02088-w [10] HAMMOCK M L, CHORTOS A, TEE B C K, TOK J B H, BAO Z N. 25 th anniversary article: The evolution of electronic skin (e‐skin): A brief history, design considerations, and recent progress [J]. Advanced Materials,2013,25(42):5997-6038. doi: 10.1002/adma.201302240 [11] ZHANG B L, ZHANG P, ZHANG H Z, YAN C, ZHENG Z J, WU B, YU Y. A transparent, highly stretchable, autonomous self‐healing poly (dimethyl siloxane) elastomer [J]. Macromolecular Rapid Communications,2017,38(15):1700110. doi: 10.1002/marc.201700110 [12] RAO Y L, CHORTOS A, PFATTNER R, LISSEL F, CHIU Y C, FEIG V, XU J, KUROSAWA T, GU X D, W C, HE M Q, CHUNG J W, BAO Z N. Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination [J]. Journal of the American Chemical Society,2016,138(18):6020-6027. doi: 10.1021/jacs.6b02428 [13] XU K, TAN Y, XIN J H, LIU Y, LU C G, DENG Y K, HAN C Y, HU H, WANG P X, A novel impact hardening polymer with negative Poisson’s ratio for impact protection [J]. Materials Today Communications, 2015(5): 50–59. [14] YANG J W, BAI R B, LI J Y, YANG C H, YAO X, LIU Q H, VLASSAK J, MOONEY D J, SUO Z G. Design molecular topology for wet–dry adhesion [J]. ACS Applied Materials & Interfaces,2019,11(27):24802-24811. [15] MASON R, KOBERSTEIN J T. Adhesion of PDMS elastomers to functional substrates[J]. The Journal of Adhesion, 2005, 81: 765−789. [16] CHEN X, ZAWASKI C E, SPIERING G A, LIU B, ORSINO M, MOOREET R B, WILLIAMS C B, LONG T E. Quadruple hydrogen bonding supramolecular elastomers for melt extrusion additive manufacturing [J]. ACS Applied Materials & Interfaces,2020,12(28):32006-32016. [17] LIN S B. Addition‐cured silicone adhesive technology: Vinyl silicone crosslinker [J]. Journal of Applied Polymer Science,1994,54(13):2135-2145. doi: 10.1002/app.1994.070541316 [18] 苗蓉丽, 殷胜昔, 朱锋. 室温硫化有机硅粘合剂的应用与研究进展[J]. 中国胶粘剂, 2004, 13(4):51-54MIAO R L, YIN S X, ZHU F. Development and application of RTV silicone adhesives[J]. Chinese Adhesives, 2004, 13(4): 51-54. [19] WILSON G O, CARUSO M, SCHELKOPF S R, SOTTOS N R, WHITE S R, MOORE J S. Adhesion promotion via noncovalent interactions in self-healing polymers [J]. ACS Applied Materials & Interfaces,2011,3(8):3072-3077. [20] FEULA A, TANG X, GIANNAKOPOULOS I, CHIPPINDALE A M, HAMLEY I W, GRECO F, BUCKLEY C P, SIVIOUR C R, HAYES W. An adhesive elastomeric supramolecular polyurethane healable at body temperature [J]. Chemical Science,2016,7(7):4291-4300. doi: 10.1039/C5SC04864H [21] 周超, 王博, 徐昆, 刘燕平, 胡红, 王丕新. 新型冲击防护微凝胶的合成及应用性能研究 [J]. 功能材料,2013,44(12):1745-1749.ZHOU C, WANG B, XU K, LIU Y P, HU H, WANG PX. The synthesis and application of novel anti-impact protective microgel [J]. Functional Materials,2013,44(12):1745-1749. [22] 邓裕坤, 秦湘阁, 徐昆, 谭颖, 王丕新. 加入新型扩链剂 IPDI 的冲击硬化材料合成与性能研究 [J]. 化工新型材料,2016,44(2):126-128.DENG Y K, QIN X G, XU K, TAN Y, WANG P X. Synthesis and property of impact hardening materials with new chain Extender IPDI [J]. New Chemical Materials,2016,44(2):126-128. [23] 白炳莲, 韦珏, 王海涛, 李敏. 用红外光谱技术研究氢键的键合方式 [J]. 化学通报,2013,76(2):167-170.BAI B, WEI J, WANG H T, LI M. IR study on the hydrogen-bonding motif [J]. Journal of Chemical Bulletin,2013,76(2):167-170. [24] ZHANG Q, SHI C Y, QU D H, LONG Y T, FERINGA B L, TIAN H. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers [J]. Science Advances,2018,4(7):eaat8192. doi: 10.1126/sciadv.aat8192 [25] BALKENENDE D W R, MONNIER C A, FIORE G L, WEDER C. Optically responsive supramolecular polymer glasses [J]. Nature Communications,2016,7(1):1-9. [26] INOUE A, YUK H, LU B, ZHAO X H. Strong adhesion of wet conducting polymers on diverse substrates [J]. Science Advances,2020,6(12):eaay5394. doi: 10.1126/sciadv.aay5394 [27] ZHANG Z, GHEZAWI N, LI B, GE S, ZHAO S, SAITO T, HUN D, CAO P F. Autonomous self-healing elastomers with unprecedented adhesion force [J]. Advanced Functional Materials,2021,31(4):2006298. doi: 10.1002/adfm.202006298 [28] DENG Y, LIANG X, PEI X, ZHAI K K, WANG C, ZHANG B C, BAI Y G, ZHANG Y M, WANG P X, TAN Y, XU K. Self-healing ability and application of impact hardening polymers [J]. Polymer Testing,2019,76:43-53. doi: 10.1016/j.polymertesting.2019.03.007 [29] KLOSS J, MUNARO M, de SOUZA G P, GULMINE J V, WANG S H, ZAWADZKI S, AKCELRUD L. Poly (ester urethane) s with polycaprolactone soft segments: A morphological study [J]. Journal of Polymer Science Part A:Polymer Chemistry,2002,40(23):4117-4130. doi: 10.1002/pola.10499 [30] LIU J S, WU S P, ZOU M H, ZHENG X Z, CAI Z G. Surface modification of silica and its compounding with polydimethylsiloxane matrix: Interaction of modified silica filler with PDMS [J]. Iranian Polymer Journal,2012,21(9):583-589. doi: 10.1007/s13726-012-0062-x [31] LUO M C, ZENG J, FU X, HUANG G S, WU J R. Toughening diene elastomers by strong hydrogen bond interactions [J]. Polymer,2016,106:21-28. doi: 10.1016/j.polymer.2016.10.056 [32] WANG S, XUAN S H, JIANG W Q, JIANG W F, YAN L X, MAO Y, GONG X L. Rate-dependent and self-healing conductive shear stiffening nanocomposite: A novel safe-guarding material with force sensitivity[J]. J Mater Chem A, 2015, 3 (39): 19790–19799. [33] LIU Y, ZHOU C, LV J P, BAI Y G, XU K, ZHANG H, HUANG X N, WANG C, ZHANG F, WANG X Y, WANG J R, JIANG H, WANG P X. Dual network poly (dimethyl siloxane)–impact hardening polymer composite with autonomous self-healing and soft–stiffness switch abilities [J]. Materials Today Communications,2022,33:104489. doi: 10.1016/j.mtcomm.2022.104489 -