高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有黏附性的吸能弹性体材料的合成与性能

刘莹 张浩 黄晓娜 张帆 白云刚 周超 徐昆 王丕新

刘莹, 张浩, 黄晓娜, 张帆, 白云刚, 周超, 徐昆, 王丕新. 具有黏附性的吸能弹性体材料的合成与性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20230202001
引用本文: 刘莹, 张浩, 黄晓娜, 张帆, 白云刚, 周超, 徐昆, 王丕新. 具有黏附性的吸能弹性体材料的合成与性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20230202001
LIU Ying, ZHANG Hao, HUANG Xiaona, ZHANG Fan, BAI Yungang, ZHOU Chao, XU Kun, WANG Pixin. Synthesis and Properties of Energy-Absorbing Elastomer Materials with Adhesion[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230202001
Citation: LIU Ying, ZHANG Hao, HUANG Xiaona, ZHANG Fan, BAI Yungang, ZHOU Chao, XU Kun, WANG Pixin. Synthesis and Properties of Energy-Absorbing Elastomer Materials with Adhesion[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20230202001

具有黏附性的吸能弹性体材料的合成与性能

doi: 10.14133/j.cnki.1008-9357.20230202001
基金项目: 吉林省科技发展计划项目(20220201129 GX)
详细信息
    作者简介:

    刘莹:刘 莹(1998—),女,硕士生,主要研究方向为吸能弹性体。E-mail:liuying@ciac.ac.cn

    通讯作者:

    周 超,E-mail:zhouc@ccut.edu.cn

  • 中图分类号: TQ317.4

Synthesis and Properties of Energy-Absorbing Elastomer Materials with Adhesion

  • 摘要: 首先,以羟基封端的聚二甲基硅氧烷 (PDMS-OH)与三甲氧基硼氧六环 (TMOB)反应制备冲击硬化聚合物 (IHP);然后,采用乙烯基封端聚二甲基硅氧烷 (viny-PDMS) 与甲基含氢硅油 (PDMS-H) 反应生成交联聚二甲基硅氧烷(交联PDMS);再通过自由基聚合制备聚2-(((丁基氨基)羰基)氧代)甲基丙烯酸丁酯)(PBM)。最后,以IHP、PBM和交联PDMS预聚液通过“一锅出”的方式,制备了具有黏附性的吸能弹性体材料 (IHP-EA)。其中,IHP作为其动态交联网络提供吸能特性,交联PDMS作为其稳态交联网络提供机械强度,PBM与底物形成高密度氢键提供其黏附性能。采用多种结构表征方法及性能分析手段,探讨了IHP-EA中不同组分对性能的影响。结果表明: IHP-EA在玻璃基材上的黏附强度达198 kPa,且具备良好的转移黏附和多次黏附能力;同时IHP-EA在4.43 m/s的高速冲击下可实现78.44%的能量吸收率,表现出优异的吸能减震性能。

     

  • 图  1  (a) IHP (b)交联PDMS (c) PBM的反应方程式

    Figure  1.  Reaction equations of (a) IHP, (b) Crosslinked PDMS and (c) PBM

    图  2  IHP-EA的内部结构及黏附机理

    Figure  2.  Internal structure and adhesion mechanism of IHP-EA

    图  3  (a) IHP、PBM和IHP-EA的FT-IR谱图;(b) PBM的1H-NMR谱图; (c) Vinyl-PDMS、PDMS-H以及交联PDMS的FT-IR谱图; (d)交联PDMS的1H-NMR谱图; IHP-EA的(e)SEM和(f)TEM照片

    Figure  3.  FT-IR spectra of (a) IHP, PBM, IHP-EA and (c) crosslinking PDMS; 1H-NMR spectra of (b) PBM and (d) crosslinking PDMS; (e) SEM and (f)TEM images of IHP-EA

    图  4  IHP-EA的(a)应力-应变曲线和 (b) 流变分析曲线

    Figure  4.  (a) Stress-strain curves and (b) rheological analyses of IHP-EA

    图  5  (a) 交联PDMS,IHP以及IHP-EA在玻璃基材上的黏附强度; (b) IHP-EA悬挂重物图; (c) IHP-EA在不同基材上的黏附强度; (d) IHP-EA在不同温度下的红外光谱图; (e) IHP-EA在不同恶劣条件下的黏附强度

    Figure  5.  (a) Adhesion strength of crosslinking PDMS, IHP, IHP-EA on glass; (b) Photos of IHP-EA suspended weights; (c) Adhesion strength of IHP-EA on different substrates; (d) FT-IR spectra of IHP-EA at different temperatures; (e) Adhesion strength of IHP-EA under different harsh conditions

    图  6  IHP-EA的(a)自愈过程、(b) 自愈机理、(c) 自愈合后的应力-应变曲线和(d) 转移黏附和多次黏附强度

    Figure  6.  (a) Self-healing process、 (b) self-healing mechanism、 (c) stress-strain curves and (d) transfer adhesion and multi-adhesion strength of IHP-EA

    图  7  IHP-EA的(a)能量吸收率和(b)应力-应变曲线以及(c)流变学分析

    Figure  7.  (a) Energy absorption rate、(b) stress-strain curves and (c) rheological analysis of IHP-EA

  • [1] HAO Y F, WANG T M, XIE ZX, SUN W G, LIU Z M, FANG X, YANG M X, WEN L. A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties [J]. Journal of Micromechanics and Microengineering,2018,28(2):024004. doi: 10.1088/1361-6439/aa9d0e
    [2] HUYNH T P, HAICK H. Autonomous flexible sensors for health monitoring [J]. Advanced Materials,2018,30(50):e1802337. doi: 10.1002/adma.201802337
    [3] JIN H, HUPNH T P, HAICK H. Self-healable sensors based nanoparticles for detecting physiological markers via skin and breath: Toward disease prevention via wearable devices [J]. Nano Letters,2016,16(7):4194-4202. doi: 10.1021/acs.nanolett.6b01066
    [4] PALLEAU E, REECE S, DESAI S C, SMITH M E, DICKEY M D. Self‐healing stretchable wires for reconfigurable circuit wiring and 3 D microfluidics [J]. Advanced Materials,2013,25(11):1589-1592. doi: 10.1002/adma.201203921
    [5] LI X P, YU R, HE Y Y, ZHANG Y, YANG X, ZHAO X J, HUANG W. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3 D printing [J]. ACS Macro Letters,2019,8(11):1511-1516. doi: 10.1021/acsmacrolett.9b00766
    [6] ZHAO H H, YAN S, JIN X H, NIU P Y, ZHANG G Z, WU Y K, LI H J. Tough, self-healable and conductive elastomers based on freezing-thawing strategy [J]. Chemical Engineering Journal,2020,402:125421. doi: 10.1016/j.cej.2020.125421
    [7] CHEN X H, YIN L, LV J, GROSS A J, LE M, GUTIERREZ N G, LI Y, JEERAPAN I, GIROUD F, BEREZOVSKA A, RACHEL K, REILLY O, XU S, COSNIER S, WANG J. Stretchable and flexible buckypaper-based lactate biofuel cell for wearable electronics[J]. Advanced Functional Materials, 2019. 29(46).
    [8] GAO M, WU H X, PLAMTHOTTAM R, XIE Z X, LIU Y, HU J H, WU S W, WU L, HE X M, PEI Q B. Skin temperature-triggered, debonding-on-demand sticker for a self-powered mechanosensitive communication system [J]. Matter,2021,4(6):1962-1974. doi: 10.1016/j.matt.2021.03.003
    [9] LIU Q, NIAN G, YANG C, QU S, SUO Z. Bonding dissimilar polymer networks in various manufacturing processes [J]. Nature Communications,2018,9(1):1-11. doi: 10.1038/s41467-017-02088-w
    [10] HAMMOCK M L, CHORTOS A, TEE B C K, TOK J B H, BAO Z N. 25 th anniversary article: The evolution of electronic skin (e‐skin): A brief history, design considerations, and recent progress [J]. Advanced Materials,2013,25(42):5997-6038. doi: 10.1002/adma.201302240
    [11] ZHANG B L, ZHANG P, ZHANG H Z, YAN C, ZHENG Z J, WU B, YU Y. A transparent, highly stretchable, autonomous self‐healing poly (dimethyl siloxane) elastomer [J]. Macromolecular Rapid Communications,2017,38(15):1700110. doi: 10.1002/marc.201700110
    [12] RAO Y L, CHORTOS A, PFATTNER R, LISSEL F, CHIU Y C, FEIG V, XU J, KUROSAWA T, GU X D, W C, HE M Q, CHUNG J W, BAO Z N. Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination [J]. Journal of the American Chemical Society,2016,138(18):6020-6027. doi: 10.1021/jacs.6b02428
    [13] XU K, TAN Y, XIN J H, LIU Y, LU C G, DENG Y K, HAN C Y, HU H, WANG P X, A novel impact hardening polymer with negative Poisson’s ratio for impact protection [J]. Materials Today Communications, 2015(5): 50–59.
    [14] YANG J W, BAI R B, LI J Y, YANG C H, YAO X, LIU Q H, VLASSAK J, MOONEY D J, SUO Z G. Design molecular topology for wet–dry adhesion [J]. ACS Applied Materials & Interfaces,2019,11(27):24802-24811.
    [15] MASON R, KOBERSTEIN J T. Adhesion of PDMS elastomers to functional substrates[J]. The Journal of Adhesion, 2005, 81: 765−789.
    [16] CHEN X, ZAWASKI C E, SPIERING G A, LIU B, ORSINO M, MOOREET R B, WILLIAMS C B, LONG T E. Quadruple hydrogen bonding supramolecular elastomers for melt extrusion additive manufacturing [J]. ACS Applied Materials & Interfaces,2020,12(28):32006-32016.
    [17] LIN S B. Addition‐cured silicone adhesive technology: Vinyl silicone crosslinker [J]. Journal of Applied Polymer Science,1994,54(13):2135-2145. doi: 10.1002/app.1994.070541316
    [18] 苗蓉丽, 殷胜昔, 朱锋. 室温硫化有机硅粘合剂的应用与研究进展[J]. 中国胶粘剂, 2004, 13(4):51-54

    MIAO R L, YIN S X, ZHU F. Development and application of RTV silicone adhesives[J]. Chinese Adhesives, 2004, 13(4): 51-54.
    [19] WILSON G O, CARUSO M, SCHELKOPF S R, SOTTOS N R, WHITE S R, MOORE J S. Adhesion promotion via noncovalent interactions in self-healing polymers [J]. ACS Applied Materials & Interfaces,2011,3(8):3072-3077.
    [20] FEULA A, TANG X, GIANNAKOPOULOS I, CHIPPINDALE A M, HAMLEY I W, GRECO F, BUCKLEY C P, SIVIOUR C R, HAYES W. An adhesive elastomeric supramolecular polyurethane healable at body temperature [J]. Chemical Science,2016,7(7):4291-4300. doi: 10.1039/C5SC04864H
    [21] 周超, 王博, 徐昆, 刘燕平, 胡红, 王丕新. 新型冲击防护微凝胶的合成及应用性能研究 [J]. 功能材料,2013,44(12):1745-1749.

    ZHOU C, WANG B, XU K, LIU Y P, HU H, WANG PX. The synthesis and application of novel anti-impact protective microgel [J]. Functional Materials,2013,44(12):1745-1749.
    [22] 邓裕坤, 秦湘阁, 徐昆, 谭颖, 王丕新. 加入新型扩链剂 IPDI 的冲击硬化材料合成与性能研究 [J]. 化工新型材料,2016,44(2):126-128.

    DENG Y K, QIN X G, XU K, TAN Y, WANG P X. Synthesis and property of impact hardening materials with new chain Extender IPDI [J]. New Chemical Materials,2016,44(2):126-128.
    [23] 白炳莲, 韦珏, 王海涛, 李敏. 用红外光谱技术研究氢键的键合方式 [J]. 化学通报,2013,76(2):167-170.

    BAI B, WEI J, WANG H T, LI M. IR study on the hydrogen-bonding motif [J]. Journal of Chemical Bulletin,2013,76(2):167-170.
    [24] ZHANG Q, SHI C Y, QU D H, LONG Y T, FERINGA B L, TIAN H. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers [J]. Science Advances,2018,4(7):eaat8192. doi: 10.1126/sciadv.aat8192
    [25] BALKENENDE D W R, MONNIER C A, FIORE G L, WEDER C. Optically responsive supramolecular polymer glasses [J]. Nature Communications,2016,7(1):1-9.
    [26] INOUE A, YUK H, LU B, ZHAO X H. Strong adhesion of wet conducting polymers on diverse substrates [J]. Science Advances,2020,6(12):eaay5394. doi: 10.1126/sciadv.aay5394
    [27] ZHANG Z, GHEZAWI N, LI B, GE S, ZHAO S, SAITO T, HUN D, CAO P F. Autonomous self-healing elastomers with unprecedented adhesion force [J]. Advanced Functional Materials,2021,31(4):2006298. doi: 10.1002/adfm.202006298
    [28] DENG Y, LIANG X, PEI X, ZHAI K K, WANG C, ZHANG B C, BAI Y G, ZHANG Y M, WANG P X, TAN Y, XU K. Self-healing ability and application of impact hardening polymers [J]. Polymer Testing,2019,76:43-53. doi: 10.1016/j.polymertesting.2019.03.007
    [29] KLOSS J, MUNARO M, de SOUZA G P, GULMINE J V, WANG S H, ZAWADZKI S, AKCELRUD L. Poly (ester urethane) s with polycaprolactone soft segments: A morphological study [J]. Journal of Polymer Science Part A:Polymer Chemistry,2002,40(23):4117-4130. doi: 10.1002/pola.10499
    [30] LIU J S, WU S P, ZOU M H, ZHENG X Z, CAI Z G. Surface modification of silica and its compounding with polydimethylsiloxane matrix: Interaction of modified silica filler with PDMS [J]. Iranian Polymer Journal,2012,21(9):583-589. doi: 10.1007/s13726-012-0062-x
    [31] LUO M C, ZENG J, FU X, HUANG G S, WU J R. Toughening diene elastomers by strong hydrogen bond interactions [J]. Polymer,2016,106:21-28. doi: 10.1016/j.polymer.2016.10.056
    [32] WANG S, XUAN S H, JIANG W Q, JIANG W F, YAN L X, MAO Y, GONG X L. Rate-dependent and self-healing conductive shear stiffening nanocomposite: A novel safe-guarding material with force sensitivity[J]. J Mater Chem A, 2015, 3 (39): 19790–19799.
    [33] LIU Y, ZHOU C, LV J P, BAI Y G, XU K, ZHANG H, HUANG X N, WANG C, ZHANG F, WANG X Y, WANG J R, JIANG H, WANG P X. Dual network poly (dimethyl siloxane)–impact hardening polymer composite with autonomous self-healing and soft–stiffness switch abilities [J]. Materials Today Communications,2022,33:104489. doi: 10.1016/j.mtcomm.2022.104489
  • 加载中
图(7)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  7
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-02
  • 录用日期:  2023-04-24
  • 网络出版日期:  2023-04-28

目录

    /

    返回文章
    返回