高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙烯基环丙烷自由基开环聚合研究进展

张东阳 陈殿峰

张东阳, 陈殿峰. 乙烯基环丙烷自由基开环聚合研究进展[J]. 功能高分子学报,2023,36(3):261-274 doi: 10.14133/j.cnki.1008-9357.20221231002
引用本文: 张东阳, 陈殿峰. 乙烯基环丙烷自由基开环聚合研究进展[J]. 功能高分子学报,2023,36(3):261-274 doi: 10.14133/j.cnki.1008-9357.20221231002
ZHANG Dongyang, CHEN Dianfeng. Advances in Radical Ring-Opening Polymerization of Vinylcyclopropanes[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20221231002
Citation: ZHANG Dongyang, CHEN Dianfeng. Advances in Radical Ring-Opening Polymerization of Vinylcyclopropanes[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20221231002

乙烯基环丙烷自由基开环聚合研究进展

doi: 10.14133/j.cnki.1008-9357.20221231002
基金项目: 国家自然科学基金(22101273);安徽省自然科学基金(2108085MB30)
详细信息
    作者简介:

    张东阳(1989—),男,博士,主要从事可控自由基聚合研究。E-mail:zdyang@ustc.edu.cn

    陈殿峰,中国科学技术大学特任教授,博士生导师。2010年毕业于中国海洋大学, 2015年博士毕业于中国科学技术大学化学系,2015~2020年在美国从事博士后研究。2020年11月加入中国科学技术大学独立开展工作,从事新型可控聚合方法的研究。近年来,主持海外高层次人才引进计划青年项目和国家自然科学青年基金等多个项目,在J Am Chem Soc, Angew Chem Int Ed等发表论文20余篇

    通讯作者:

    陈殿峰,E-mail:cdf@ustc.edu.cn

  • 中图分类号: O63

Advances in Radical Ring-Opening Polymerization of Vinylcyclopropanes

  • 摘要: 乙烯基环丙烷(VCP)是重要的环状单体之一,具有典型的高张力三元环结构,在自由基聚合条件下,能够发生1,5-开环及多种环化反应,生成含有2-戊烯等重复单元的复杂聚合物。聚乙烯基环丙烷(PVCP)具有较小的体积收缩率,是重要的修复材料,在临床等多个领域具有潜在应用价值。本文结合近年来的重要成果,梳理了VCP单体自由基开环聚合的发展过程,重点介绍单体结构设计、聚合物结构控制策略以及结构和材料性能之间的关系。最后,对VCP自由基开环聚合研究领域仍然存在的问题和解决方法进行了总结和展望。

     

  • 图  1  (a)VCP的结构特点[5];(b)丁二烯合成VCP[7];(c)烯丙基化途径合成VCP及其衍生官能化[8]

    Figure  1.  (a) Orbitals in VCP[5]; (b) Butadiene routes for VCP synthesis[7]; (c) Allylic alkylation route for VCP synthesis and further derivatizations[8]

    图  2  (a)C1-取代基效应[10-12];(b)C1单取代VCP的自由基开环聚合[6];(c)C1二取代VCP的自由基开环聚合[8];(d)C1螺缩酮VCP的自由基开环聚合[7,15,16]

    Figure  2.  (a) C1-substituents effects on polymerizability[10-12]; (b) 1,5-Radical ring-opening polymerization of C1-monosubstituted VCP[6]; (c) 1,5-Radical ring-opening polymerization of C1-disubstituted VCP[8]; (d) Radical-ring opening polymerization of C1-spiroketal VCP[7,15,16]

    图  3  (a)取代基效应对聚合体积收缩效应的影响;(b)SL和聚合体积收缩效应的关系[2,8,19-21]

    Figure  3.  (a) Substituents effects on polymerization volume change; (b) Correlation of SL value and polymerization volume change[2,8,19-21]

    图  4  (a)含硅乙烯基环丙烷单体及其自由基开环聚合[22];(b)其他官能化VCP单体[24-29]

    Figure  4.  (a) Radical ring-opening polymerization of silyl-containing VCP[22]; (b) Selected examples of functionalized VCP[24-29]

    图  5  基于单体侧链氢键的聚合加速效应:(a)酯键连接的氢键效应[31];(b)酰胺键连接的氢键效应[32]

    Figure  5.  Accelerating radical ring-opening polymerization by side-chain hydrogen bonds: (a) ester-linked side chains[31]; (b) amide-linked side chains[32]

    图  6  (a)基于侧链活性五氟苯酯的胺酯交换后修饰[25,35-37];(b)基于主链C=C双键的双官能化后修饰[38]

    Figure  6.  (a) Aminoesterifications of side-chain pentafluorophenyl esters[25,35-37]; (b) Difunctionalizations of main-chain C=C double bonds[38]

    图  7  (a)温度响应PVCP的合成[41];(b)PVCP溶液透明度(τ)-温度曲线(λ=600 nn)[41]

    Figure  7.  (a) Synthetic routes to thermoresponsivePVCP[41]; (b) Transmittance (τ) as a function of temperature for PVCP aqueous solution (λ=600 nn)[41]

    图  8  PEG侧链型PVCP的(a)结构及其(b)LCST温度响应曲线[42]

    Figure  8.  (a) PEG side-chain containing PVCP and (b) its LCST thermoresponsive character[42]

    图  9  新型VCP单体和交联剂[44-49]

    Figure  9.  Novel VCP monomers and crosslinkers[44-49]

    图  10  (a)基于Cu-ATRP策略的VCP自由基开环聚合[50];(b)有机光催化的VCP自由基开环聚合[21];(c)有机光催化的自由基开环聚合机理[21]

    Figure  10.  (a) Cu-ATRP strategy in radical ring-opening polymerization of VCP[50]; (b) Organocatalyzed radical ring-opening polymerization of vinyl cyclopropanes[21]; (c) Mechanism of organocatalyzed rROP of VCPs[21]

    图  11  (a)聚合动力学[21];(b)光照脉冲实验[21](c)聚合物分子量与单体转化率的关系[21];(d)嵌段共聚物的合成[21]

    Figure  11.  (a) Polymerization kinetics[21]; (b) Polymerization under pulsed irradiation[21]; (c) Number-averaged molecular weight as a function of monomer conversion[21]; (d) Synthesis of chain-extension[21]

    图  12  (a)基于N,N′-二芳基二氢吩嗪的二维和三维COF材料2D-PN-2-OMe和3D-PN-1[55];(b)2D-PN-2-OMe和3D-PN-1的固态紫外-可见光吸收光谱[55];(c)2D-PN-2-OMe和3D-PN-1的固态循环伏安曲线[55];(d)三线态2D-PN-2-OMe和3D-PN-1的瞬态吸收衰减曲线[55];(e)2D-PN-2-OMe和3D-PN-1对单体EtVCP和引发剂M2BP的捕获差异[55]

    Figure  12.  (a) Chemical structures of N,N′-diaryl-dihydrophenazine-based COFs, 2D-PN-2-OMe and 3D-PN-1[55]; (b) Solid-state UV-Vis spectra of 2D-PN-2-OMe and 3D-PN-1[55]; (c) Solid-state CV curves of 2D-PN-2-OMe and 3D-PN-1[55]; (d) Transient absorption decay curves of triplet states of 2D-PN-2-OMe and 3D-PN-1[55]; (e) EtVCP and M2BP uptake of 2D-PN-2-OMe and 3D-PN-1[55]

    图  13  (a)可见光致氧化还原催化的自由基聚合[56];(b)可见光诱导可逆断裂-结合自由基聚合[56];(c)五氟苯酯VCP单体的可控自由基开环聚合[56];(d)五氟苯酯侧VCP的嵌段共聚[56]

    Figure  13.  (a) Photoredox-controlled radical polymerization[56]; (b) Photoinduced rebound-controlled radical polymerization[56]; (c) Controlled radical ring-opening polymerization of EtVCP-PFP[56]; (d) Block copolymerization of EtVCP-PFP[56]

    图  14  PVCP侧链“氟效应”对聚合物热学和材料性能的响应[56]

    Figure  14.  Side-chain fluorine effect of PVCP on its thermal and material properties[56]

  • [1] TARDY A, NICOLAS J, GIGMES D, LEFAY C, GUILLANEUF Y. Radical ring-opening polymerization: Scope, limitations, and application to (bio)degradable materials [J]. Chemical Review,2017,117(3):1319-1406. doi: 10.1021/acs.chemrev.6b00319
    [2] 潘才元. 膨胀聚合反应及其应用[M]. 成都: 四川教育出版社, 1988.

    PAN C Y. Expansion Polymerization and Its Application [M]. Chengdu: Sichuan Education Press, 1988.
    [3] MATYJASZEWSKI K, DAVIS T P. Handbook of Radical Polymerization [M]. Hoboken: John Wiley & Sons, 2002.
    [4] SMITH R A, FU G, MCATEER O, XU M, GUTEKUNST W R. Radical approach to thioester-containing polymers [J]. Journal of the American Chemical Society,2019,141(4):1446-1451. doi: 10.1021/jacs.8b12154
    [5] de MEIJERE A. Bonding properties of cyclopropane and their chemical consequences [J]. Angewandte Chemie International Edition,1979,18(11):809-826.
    [6] ENDO T, WATANABE M, SUGA K, YOKOZAWA T. Radical ring-opening polymerization behavior of vinylcyclopropane derivatives bearing an ester group [J]. Journal of Polymer Science Part A: Polymer Chemistry,1987,25(11):3039-3048. doi: 10.1002/pola.1987.080251109
    [7] SANDA F, TAKATA T, ENDO T. Vinylcyclopropanone cyclic acetal-synthesis, polymerization, structure of the polymer and mechanism of the polymerization [J]. Macromolecules,1994,27(5):1099-1111. doi: 10.1021/ma00083a006
    [8] SANDA F, TAKATA T, ENDO T. Radical polymerizaion behavior of 1, 1-disubstituted 2-vinylcyclopropanes [J]. Macromolecules,1993,26(8):1818-1824. doi: 10.1021/ma00060a004
    [9] VOLKENBURGH R V, GREENLEE K W, DERFER J M, BOORD C E. A synthesis of vinylcyclopropane [J]. Journal of the American Chemical Society,1949,71(11):3595-3597. doi: 10.1021/ja01179a004
    [10] TAKAHASHI T, YAMASHITA I, MIYAKAW T. The polymerization of 1, 1-dichloro-2-vinylcyclopropane [J]. Bulletin of the Chemical Society of Japan,1964,37(1):131-132. doi: 10.1246/bcsj.37.131
    [11] TAKAHASHI T, YAMASHITA I. 1, 5-Polymerization of vinylcyclopropane [J]. Journal of Polymer Science Part B:Polymer Letters,1965,3(4):251-255. doi: 10.1002/pol.1965.110030403
    [12] TAKAHASHI T. Polymerization of vinylcyclopropanes.Ⅱ [J]. Journal of Polymer Science Part A-1:Polymer Chemistry,1968,6(2):403-414. doi: 10.1002/pol.1968.150060210
    [13] CHO I, LEE J Y. Exploratory ring-opening polymerization, 10: Radical isomerization polymerization of phenyl-substituted vinylcyclopropanes [J]. Die Makromolekulare Chemie: Rapid Communications,1984,5(5):263-267. doi: 10.1002/marc.1984.030050504
    [14] CHO I, SONG S S. Ring-opening polymerization of 1-(p-substituted phenyl)-2-vinylcyclopropanes by Ziegler-Natta catalysts [J]. Journal of Polymer Science Part A: Polymer Chemistry,1989,27(9):3151-3159. doi: 10.1002/pola.1989.080270919
    [15] SANDA F, TAKATA T, ENDO T. Vinylcyclopropanone cyclic acetal: A hybrid monomer undergoing radical double ring-opening polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry,1993,31(10):2659-2662. doi: 10.1002/pola.1993.080311028
    [16] OKAZAKI T, SANDA F, ENDO T. Synthesis and radical ring-opening polymerization behavior of vinylcyclopropane bearing six-membered cyclic acetal moiety [J]. Journal of Polymer Science Part A: Polymer Chemistry,1996,34(10):2029-2035. doi: 10.1002/(SICI)1099-0518(19960730)34:10<2029::AID-POLA20>3.0.CO;2-I
    [17] HIRANO T, TABUCHI A, SENO M, SATO T. Kinetic and ESR studies of ring-opening radical polymerization of 1, 1-bis(ethoxycarbonyl)-2-vinylcyclopropane [J]. Macromolecules,2001,34(14):4737-4741. doi: 10.1021/ma001962t
    [18] MOSZNER N, ZEUNER F, VÖLKEL T, RHEINBERGER V. Synthesis and polymerization of vinylcyclopropanes [J]. Macromolecular Chemistry and Physics,1999,200(10):2173-2187.
    [19] SUGIYAMA J, OHASHI K, UEDA M. Free radical polymerization of volume expandable vinylcyclopropane [J]. Macromolecules,1994,27(20):5543-5546. doi: 10.1021/ma00098a005
    [20] SUGIYAMA J, KAYAMORI N, SHIMADA S. Free radical ring-opening polymerization of 1, 1-bis[(1-adamantyloxy)carbonyl]-2-vinylcyclopropane [J]. Macromolecules,1996,29(6):1943-1950. doi: 10.1021/ma9513675
    [21] CHEN D F, BOYLE B M, MCCARTHY B G, LIM C H, MIYAKE G M. Controlling polymer composition in organocatalyzed photoredox radical ring-opening polymerization of vinylcyclopropanes [J]. Journal of the American Chemical Society,2019,141(33):13268-13277. doi: 10.1021/jacs.9b07230
    [22] MIZUKAMI S, KIHARA N, ENDO T. Novel poly(silyl enol ether)s via radical ring-opening polymerization and their conversion to polyketones [J]. Journal of the American Chemical Society, 1994, 116(14): 6453-6454.
    [23] SANDA F, MURATA J, ENDO T. Synthesis and reactions of a polymer bearing allylsilane structure by radical ring-opening polymerization of a vinylcyclopropane [J]. Macromolecules,1997,30(1):160-162. doi: 10.1021/ma961338+
    [24] CASPER P, RITTER H. A novel liquid-crystalline vinylcyclopropane-derivative bearing cholesterol: Synthesis and polymerization [J]. Journal of Macromolecular Science Part A: Pure and Applied Chemistry,2003,40(2):107-113. doi: 10.1081/MA-120017254
    [25] SEUYEP N D H, LUINSTRA G A, THEATO P. Post-polymerization modification of reactive polymers derived from vinylcyclopropane: 1. Synthesis and thermo-responsive behaviour [J]. Polymer Chemistry,2013,4(9):2724-2730. doi: 10.1039/c3py00109a
    [26] GALLI G, BALDINI A, CHIELLINI E, GALLOT B. New chiral liquid-crystalline poly(vinylcyclopropane)s with cyclic and linear repeat units [J]. Molecular Crystals and Liquid Crystals,2005,441(1):227-235. doi: 10.1080/154214091009824
    [27] GALLI G, GASPERETTI S, BERTOLUCCI M, GALLOT B, CHIELLINI F. New architecture of liquid-crystalline polymers from fluorinated vinylcyclopropanes [J]. Macromolecular Rapid Communications, 2002, 23(14): 814-818.
    [28] ZEUNER F, ANGERMANN J, MOSZNER N. Synthesis of novel 2-vinylcyclopropane phosphonic acids: Synthetic[J]. Communications, 2006, 36 (24): 3679-3691.
    [29] HO H T, MONTEMBAULT V, ROLLET M, ABOUDOU S, MABROUK K, PASCUAL S, FONTAINE L, GIGMES D, PHAN T N T. Radical ring-opening polymerization of novel azlactone-functionalized vinyl cyclopropanes [J]. Polymer Chemistry,2020,11(24):4013-4021. doi: 10.1039/D0PY00493F
    [30] CONTRERAS P P, KUTTNER C, FERY A, STAHLSCHMIDT U, JÉRÔME V, FREITAG R, AGARWAL S. Renaissance for low shrinking resins: All-in-one solution by bi-functional vinylcyclopropane-amides [J]. Chemical Communications,2015,51(59):11899-11902. doi: 10.1039/C5CC03901K
    [31] SCHUMACHER S, PANTAWANE S, GEKLE S, AGARWAL S. Theoretical and experimental study of monofunctional vinyl cyclopropanes bearing hydrogen bond enabling side chains [J]. Macromolecules,2021,54(1):11-21. doi: 10.1021/acs.macromol.0c02490
    [32] SCHUMACHER S, PANTAWANE S, GEKLE S, AGARWAL S. The effect of hydrogen bonding on polymerization behavior of monofunctional vinyl cyclopropane-amides with different side chains [J]. Macromolecular Chemistry and Physics,2022,223(22):2200155.
    [33] TAKAHASHI N, SUDO A, ENDO T. Isolation of epimers in the synthesis of vinylcyclopropane bearing two alanine moieties and their radical ring-opening polymerization [J]. Macromolecules,2017,50(15):5679-5686. doi: 10.1021/acs.macromol.6b02778
    [34] BLASCO E, SIMS M B, GOLDMANN A S, SUMERLIN B S, BARNER-KOWOLLIK C. 50th Anniversary perspective: Polymer functionalization [J]. Macromolecules,2017,50(14):5215-5252. doi: 10.1021/acs.macromol.7b00465
    [35] SEUYEP N D H, SZOPINSKI D, LUINSTRA G A, THEATO P. Post-polymerization modification of reactive polymers derived from vinylcyclopropane: A poly(vinylcyclopropane) derivative with physical gelation and UCST behaviour in ethanol-water mixtures [J]. Polymer Chemistry,2014,5(19):5823-5828. doi: 10.1039/C4PY00740A
    [36] NTOUKAMA D H S, JIWORRAWATHANAKUL S, HOVEN V P, LUINSTRA G A, THEATO P. 1, 1-Disubstituted-2-vinylcyclopropanes for the synthesis of amphiphilic polymers [J]. European Polymer Journal,2015,66:319-327. doi: 10.1016/j.eurpolymj.2015.02.023
    [37] NTOUKAMA D H S, LUINSTRA G A, THEATO P. Postpolymerization modification of reactive polymers derived from vinylcyclopropane: Ⅲ. Polymer sequential functionalization using a combination of amines with alkoxyamines, hydrazides, isocyanates, or acyl halides [J]. Journal of Polymer Science Part A: Polymer Chemistry,2014,52(19):2841-2849. doi: 10.1002/pola.27311
    [38] NTOUKAMA D H S, MUTLU H, THEATO P. Post-polymerization modification of poly(vinylcyclopropanes): A potential route to periodic copolymers [J]. European Polymer Journal, 2020, 122: 109319.
    [39] CHO Z, CHANG K. Characteristics of liquid-crystalline cholesteryl and cyanobiphenyl side chains pendent to trans-polypentenamer [J]. Macromolecular Rapid Communications,1997,18(1):45-51. doi: 10.1002/marc.1997.030180107
    [40] LUO G F, CHEN W H, ZHANG X Z. 100th Anniversary of macromolecular science viewpoint: Poly(N-isopropylacrylamide)-based thermally responsive micelles [J]. ACS Macro Letters,2020,9(6):872-881. doi: 10.1021/acsmacrolett.0c00342
    [41] RITTER H, CHENG J, TABATABAI M. Influence of cyclodextrin on the solubility of a classically prepared 2-vinylcyclopropane macromonomer in aqueous solution [J]. Beilstein Journal of Organic Chemistry,2012,8:1528-1535. doi: 10.3762/bjoc.8.173
    [42] STANOJKOVIC J, OH J, KHAN A, STUPARU M C. Synthesis of thermoresponsiveoligo(ethylene glycol) polymers through radical ring-opening polymerization of vinylcyclopropane monomers [J]. RSC Advances,2020,10(4):2359-2363. doi: 10.1039/C9RA10721E
    [43] MOSZNER N, SALZ U. Recent developments of new components for dental adhesives and composites [J]. Macromolecular Materials and Engineering,2007,292(3):245-271. doi: 10.1002/mame.200600414
    [44] MOSZNER N, VOELKEL T, ZEUNER F, STEIN, S, RHEINBERGER V. Hydrolyzable and polymerizable vinylcyclopropanesilanes: United States, US006034151A [P]. 2000-03-07.
    [45] MOSZNER N, RHEINBERGER V, VOELKEL T, FISCHER U K. Vinylcyclopropane-(meth)acrylates and their use: United States, US006136887A [P]. 2000-10-24.
    [46] MOSZNER N, de MEIJERE A, ZEUNER F, FISCHER U K. Polymerizable bicyclic cyclopropane derivatives and their use for the preparation of dental materials: United States, US007585901B2 [P]. 2009-09-08.
    [47] MOSZNER N, RITTER H, FISCHER U K, TABATABAI M, SCHAUB M, UTTERODT A. Process for preparing dental materials having low polymerization shrinkage: United States, US008466212B2 [P]. 2013-06-18.
    [48] MOSZNER N, CATEL Y, FISCHER U K, TAUSCHER S. Dental material based on monofunctional vinylcyclopropane derivatives: United States, US010512593B2 [P]. 2019-12-24.
    [49] MOSZNER N, CATEL Y, FISCHER U K, TAUSCHER S. Dental material based on urethane-group-containing vinylcyclopropane derivatives: United States, US011135136B2 [P]. 2021-10-05.
    [50] SINGHA N K, KAVITHA A, SARKER P, RIMMER S. Copper-mediated controlled radical ring-opening polymerization (RROP) of a vinylcycloalkane [J]. Chemical Communications,2008(26):3049-3051. doi: 10.1039/b801149d
    [51] MITTAL A, SIVARAM S, BASKARAN D. Unfavorable coordination of copper with methyl vinyl ketone in atom transfer radical polymerization [J]. Macromolecules, 2006, 39(16): 5555-5558.
    [52] ATA S, MAL D, SINGHA N K. Copper catalyzed ring opening copolymerization of a vinyl cyclopropane and methyl methacrylate [J]. RSC Advances, 2013, 3(34): 14486-14494.
    [53] CHEN M, ZHONG, M, JOHNSON J A. Light-controlled radical polymerization: Mechanisms, methods, and applications [J]. Chemical Reviews,2016,116(17):10167-10211. doi: 10.1021/acs.chemrev.5b00671
    [54] CHEN D F, BERNSTEN S, MIYAKE G M. Organocatalyzed photoredox radical ring-opening polymerization of functionalized vinylcyclopropanes [J]. Macromolecules,2020,53(19):8352-8359. doi: 10.1021/acs.macromol.0c01367
    [55] WANG K, KANG X, YUAN C, HAN X, LIU Y, CUI Y. Porous 2D and 3D covalent organic frameworks with dimensionality-dependent photocatalytic activity in promoting radical ring-opening polymerization [J]. Angewandte Chemie International Edition, 2021, 60(35): 19466-19476.
    [56] ZHANG D Y, HAN D, LI Y, CHEN D F. Expanding monomer scope and enabling post-modification in photocontrolled radical ring-opening polymerization of vinylcyclopropanes by an iodine transfer strategy [J]. Polymer Chemistry,2022,13(40):5691-5699. doi: 10.1039/D2PY00874B
  • 加载中
图(14)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  43
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-31
  • 录用日期:  2023-02-28
  • 网络出版日期:  2023-03-07

目录

    /

    返回文章
    返回