Advances in Radical Ring-Opening Polymerization of Vinylcyclopropanes
-
摘要: 乙烯基环丙烷(VCP)是重要的环状单体之一,具有典型的高张力三元环结构,在自由基聚合条件下,能够发生1,5-开环及多种环化反应,生成含有2-戊烯等重复单元的复杂聚合物。聚乙烯基环丙烷(PVCP)具有较小的体积收缩率,是重要的修复材料,在临床等多个领域具有潜在应用价值。本文结合近年来的重要成果,梳理了VCP单体自由基开环聚合的发展过程,重点介绍单体结构设计、聚合物结构控制策略以及结构和材料性能之间的关系。最后,对VCP自由基开环聚合研究领域仍然存在的问题和解决方法进行了总结和展望。Abstract: Vinylcyclopropane (VCP), one of the most important cyclic monomers, features a highlystrained three-member ring bearing high strain energy, which leads to feasible 1,5-ring-opening process and other transformations under radical conditions, producing polymers with complex chemical structures including the 2-pentenyl repeat unit. Poly(vinylcyclopropane) (PVCP) often exhibits minimal volume shrinkage even volume expansion and can be used as excellent restorative materials with potential clinical applications. In fact, the free radical polymerization technique facilitates rapid and high-yielding polymerizations of a wealth of VCP monomers with diverse chemical structures, affording corresponding high molecular weight polymers, albeit with uncontrolled mixed repeat units. To selectively access the microstructures of PVCP, the merge of VCP chemistry and modern synthetic strategies, including atom transfer radical polymerization and visible-light photoredox catalysis, have extended the radical ring-opening polymerization (rROP) of VCP to new domains. This review provides a comprehensive overview of the development of the rROP for VCP, focusing on monomer design, strategies to tailor the polymeric structures, and the structure-property relationship. In closing, we offer our perspective on its future development based on the challenges still facing the rROP of VCP.
-
图 2 (a)C1-取代基效应[10-12];(b)C1单取代VCP的自由基开环聚合[6];(c)C1二取代VCP的自由基开环聚合[8];(d)C1螺缩酮VCP的自由基开环聚合[7,15,16]
Figure 2. (a) C1-substituents effects on polymerizability[10-12]; (b) 1,5-Radical ring-opening polymerization of C1-monosubstituted VCP[6]; (c) 1,5-Radical ring-opening polymerization of C1-disubstituted VCP[8]; (d) Radical-ring opening polymerization of C1-spiroketal VCP[7,15,16]
图 12 (a)基于N,N′-二芳基二氢吩嗪的二维和三维COF材料2D-PN-2-OMe和3D-PN-1[55];(b)2D-PN-2-OMe和3D-PN-1的固态紫外-可见光吸收光谱[55];(c)2D-PN-2-OMe和3D-PN-1的固态循环伏安曲线[55];(d)三线态2D-PN-2-OMe和3D-PN-1的瞬态吸收衰减曲线[55];(e)2D-PN-2-OMe和3D-PN-1对单体EtVCP和引发剂M2BP的捕获差异[55]
Figure 12. (a) Chemical structures of N,N′-diaryl-dihydrophenazine-based COFs, 2D-PN-2-OMe and 3D-PN-1[55]; (b) Solid-state UV-Vis spectra of 2D-PN-2-OMe and 3D-PN-1[55]; (c) Solid-state CV curves of 2D-PN-2-OMe and 3D-PN-1[55]; (d) Transient absorption decay curves of triplet states of 2D-PN-2-OMe and 3D-PN-1[55]; (e) EtVCP and M2BP uptake of 2D-PN-2-OMe and 3D-PN-1[55]
图 13 (a)可见光致氧化还原催化的自由基聚合[56];(b)可见光诱导可逆断裂-结合自由基聚合[56];(c)五氟苯酯VCP单体的可控自由基开环聚合[56];(d)五氟苯酯侧VCP的嵌段共聚[56]
Figure 13. (a) Photoredox-controlled radical polymerization[56]; (b) Photoinduced rebound-controlled radical polymerization[56]; (c) Controlled radical ring-opening polymerization of EtVCP-PFP[56]; (d) Block copolymerization of EtVCP-PFP[56]
-
[1] TARDY A, NICOLAS J, GIGMES D, LEFAY C, GUILLANEUF Y. Radical ring-opening polymerization: Scope, limitations, and application to (bio)degradable materials [J]. Chemical Review,2017,117(3):1319-1406. doi: 10.1021/acs.chemrev.6b00319 [2] 潘才元. 膨胀聚合反应及其应用[M]. 成都: 四川教育出版社, 1988.PAN C Y. Expansion Polymerization and Its Application [M]. Chengdu: Sichuan Education Press, 1988. [3] MATYJASZEWSKI K, DAVIS T P. Handbook of Radical Polymerization [M]. Hoboken: John Wiley & Sons, 2002. [4] SMITH R A, FU G, MCATEER O, XU M, GUTEKUNST W R. Radical approach to thioester-containing polymers [J]. Journal of the American Chemical Society,2019,141(4):1446-1451. doi: 10.1021/jacs.8b12154 [5] de MEIJERE A. Bonding properties of cyclopropane and their chemical consequences [J]. Angewandte Chemie International Edition,1979,18(11):809-826. [6] ENDO T, WATANABE M, SUGA K, YOKOZAWA T. Radical ring-opening polymerization behavior of vinylcyclopropane derivatives bearing an ester group [J]. Journal of Polymer Science Part A: Polymer Chemistry,1987,25(11):3039-3048. doi: 10.1002/pola.1987.080251109 [7] SANDA F, TAKATA T, ENDO T. Vinylcyclopropanone cyclic acetal-synthesis, polymerization, structure of the polymer and mechanism of the polymerization [J]. Macromolecules,1994,27(5):1099-1111. doi: 10.1021/ma00083a006 [8] SANDA F, TAKATA T, ENDO T. Radical polymerizaion behavior of 1, 1-disubstituted 2-vinylcyclopropanes [J]. Macromolecules,1993,26(8):1818-1824. doi: 10.1021/ma00060a004 [9] VOLKENBURGH R V, GREENLEE K W, DERFER J M, BOORD C E. A synthesis of vinylcyclopropane [J]. Journal of the American Chemical Society,1949,71(11):3595-3597. doi: 10.1021/ja01179a004 [10] TAKAHASHI T, YAMASHITA I, MIYAKAW T. The polymerization of 1, 1-dichloro-2-vinylcyclopropane [J]. Bulletin of the Chemical Society of Japan,1964,37(1):131-132. doi: 10.1246/bcsj.37.131 [11] TAKAHASHI T, YAMASHITA I. 1, 5-Polymerization of vinylcyclopropane [J]. Journal of Polymer Science Part B:Polymer Letters,1965,3(4):251-255. doi: 10.1002/pol.1965.110030403 [12] TAKAHASHI T. Polymerization of vinylcyclopropanes.Ⅱ [J]. Journal of Polymer Science Part A-1:Polymer Chemistry,1968,6(2):403-414. doi: 10.1002/pol.1968.150060210 [13] CHO I, LEE J Y. Exploratory ring-opening polymerization, 10: Radical isomerization polymerization of phenyl-substituted vinylcyclopropanes [J]. Die Makromolekulare Chemie: Rapid Communications,1984,5(5):263-267. doi: 10.1002/marc.1984.030050504 [14] CHO I, SONG S S. Ring-opening polymerization of 1-(p-substituted phenyl)-2-vinylcyclopropanes by Ziegler-Natta catalysts [J]. Journal of Polymer Science Part A: Polymer Chemistry,1989,27(9):3151-3159. doi: 10.1002/pola.1989.080270919 [15] SANDA F, TAKATA T, ENDO T. Vinylcyclopropanone cyclic acetal: A hybrid monomer undergoing radical double ring-opening polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry,1993,31(10):2659-2662. doi: 10.1002/pola.1993.080311028 [16] OKAZAKI T, SANDA F, ENDO T. Synthesis and radical ring-opening polymerization behavior of vinylcyclopropane bearing six-membered cyclic acetal moiety [J]. Journal of Polymer Science Part A: Polymer Chemistry,1996,34(10):2029-2035. doi: 10.1002/(SICI)1099-0518(19960730)34:10<2029::AID-POLA20>3.0.CO;2-I [17] HIRANO T, TABUCHI A, SENO M, SATO T. Kinetic and ESR studies of ring-opening radical polymerization of 1, 1-bis(ethoxycarbonyl)-2-vinylcyclopropane [J]. Macromolecules,2001,34(14):4737-4741. doi: 10.1021/ma001962t [18] MOSZNER N, ZEUNER F, VÖLKEL T, RHEINBERGER V. Synthesis and polymerization of vinylcyclopropanes [J]. Macromolecular Chemistry and Physics,1999,200(10):2173-2187. [19] SUGIYAMA J, OHASHI K, UEDA M. Free radical polymerization of volume expandable vinylcyclopropane [J]. Macromolecules,1994,27(20):5543-5546. doi: 10.1021/ma00098a005 [20] SUGIYAMA J, KAYAMORI N, SHIMADA S. Free radical ring-opening polymerization of 1, 1-bis[(1-adamantyloxy)carbonyl]-2-vinylcyclopropane [J]. Macromolecules,1996,29(6):1943-1950. doi: 10.1021/ma9513675 [21] CHEN D F, BOYLE B M, MCCARTHY B G, LIM C H, MIYAKE G M. Controlling polymer composition in organocatalyzed photoredox radical ring-opening polymerization of vinylcyclopropanes [J]. Journal of the American Chemical Society,2019,141(33):13268-13277. doi: 10.1021/jacs.9b07230 [22] MIZUKAMI S, KIHARA N, ENDO T. Novel poly(silyl enol ether)s via radical ring-opening polymerization and their conversion to polyketones [J]. Journal of the American Chemical Society, 1994, 116(14): 6453-6454. [23] SANDA F, MURATA J, ENDO T. Synthesis and reactions of a polymer bearing allylsilane structure by radical ring-opening polymerization of a vinylcyclopropane [J]. Macromolecules,1997,30(1):160-162. doi: 10.1021/ma961338+ [24] CASPER P, RITTER H. A novel liquid-crystalline vinylcyclopropane-derivative bearing cholesterol: Synthesis and polymerization [J]. Journal of Macromolecular Science Part A: Pure and Applied Chemistry,2003,40(2):107-113. doi: 10.1081/MA-120017254 [25] SEUYEP N D H, LUINSTRA G A, THEATO P. Post-polymerization modification of reactive polymers derived from vinylcyclopropane: 1. Synthesis and thermo-responsive behaviour [J]. Polymer Chemistry,2013,4(9):2724-2730. doi: 10.1039/c3py00109a [26] GALLI G, BALDINI A, CHIELLINI E, GALLOT B. New chiral liquid-crystalline poly(vinylcyclopropane)s with cyclic and linear repeat units [J]. Molecular Crystals and Liquid Crystals,2005,441(1):227-235. doi: 10.1080/154214091009824 [27] GALLI G, GASPERETTI S, BERTOLUCCI M, GALLOT B, CHIELLINI F. New architecture of liquid-crystalline polymers from fluorinated vinylcyclopropanes [J]. Macromolecular Rapid Communications, 2002, 23(14): 814-818. [28] ZEUNER F, ANGERMANN J, MOSZNER N. Synthesis of novel 2-vinylcyclopropane phosphonic acids: Synthetic[J]. Communications, 2006, 36 (24): 3679-3691. [29] HO H T, MONTEMBAULT V, ROLLET M, ABOUDOU S, MABROUK K, PASCUAL S, FONTAINE L, GIGMES D, PHAN T N T. Radical ring-opening polymerization of novel azlactone-functionalized vinyl cyclopropanes [J]. Polymer Chemistry,2020,11(24):4013-4021. doi: 10.1039/D0PY00493F [30] CONTRERAS P P, KUTTNER C, FERY A, STAHLSCHMIDT U, JÉRÔME V, FREITAG R, AGARWAL S. Renaissance for low shrinking resins: All-in-one solution by bi-functional vinylcyclopropane-amides [J]. Chemical Communications,2015,51(59):11899-11902. doi: 10.1039/C5CC03901K [31] SCHUMACHER S, PANTAWANE S, GEKLE S, AGARWAL S. Theoretical and experimental study of monofunctional vinyl cyclopropanes bearing hydrogen bond enabling side chains [J]. Macromolecules,2021,54(1):11-21. doi: 10.1021/acs.macromol.0c02490 [32] SCHUMACHER S, PANTAWANE S, GEKLE S, AGARWAL S. The effect of hydrogen bonding on polymerization behavior of monofunctional vinyl cyclopropane-amides with different side chains [J]. Macromolecular Chemistry and Physics,2022,223(22):2200155. [33] TAKAHASHI N, SUDO A, ENDO T. Isolation of epimers in the synthesis of vinylcyclopropane bearing two alanine moieties and their radical ring-opening polymerization [J]. Macromolecules,2017,50(15):5679-5686. doi: 10.1021/acs.macromol.6b02778 [34] BLASCO E, SIMS M B, GOLDMANN A S, SUMERLIN B S, BARNER-KOWOLLIK C. 50th Anniversary perspective: Polymer functionalization [J]. Macromolecules,2017,50(14):5215-5252. doi: 10.1021/acs.macromol.7b00465 [35] SEUYEP N D H, SZOPINSKI D, LUINSTRA G A, THEATO P. Post-polymerization modification of reactive polymers derived from vinylcyclopropane: A poly(vinylcyclopropane) derivative with physical gelation and UCST behaviour in ethanol-water mixtures [J]. Polymer Chemistry,2014,5(19):5823-5828. doi: 10.1039/C4PY00740A [36] NTOUKAMA D H S, JIWORRAWATHANAKUL S, HOVEN V P, LUINSTRA G A, THEATO P. 1, 1-Disubstituted-2-vinylcyclopropanes for the synthesis of amphiphilic polymers [J]. European Polymer Journal,2015,66:319-327. doi: 10.1016/j.eurpolymj.2015.02.023 [37] NTOUKAMA D H S, LUINSTRA G A, THEATO P. Postpolymerization modification of reactive polymers derived from vinylcyclopropane: Ⅲ. Polymer sequential functionalization using a combination of amines with alkoxyamines, hydrazides, isocyanates, or acyl halides [J]. Journal of Polymer Science Part A: Polymer Chemistry,2014,52(19):2841-2849. doi: 10.1002/pola.27311 [38] NTOUKAMA D H S, MUTLU H, THEATO P. Post-polymerization modification of poly(vinylcyclopropanes): A potential route to periodic copolymers [J]. European Polymer Journal, 2020, 122: 109319. [39] CHO Z, CHANG K. Characteristics of liquid-crystalline cholesteryl and cyanobiphenyl side chains pendent to trans-polypentenamer [J]. Macromolecular Rapid Communications,1997,18(1):45-51. doi: 10.1002/marc.1997.030180107 [40] LUO G F, CHEN W H, ZHANG X Z. 100th Anniversary of macromolecular science viewpoint: Poly(N-isopropylacrylamide)-based thermally responsive micelles [J]. ACS Macro Letters,2020,9(6):872-881. doi: 10.1021/acsmacrolett.0c00342 [41] RITTER H, CHENG J, TABATABAI M. Influence of cyclodextrin on the solubility of a classically prepared 2-vinylcyclopropane macromonomer in aqueous solution [J]. Beilstein Journal of Organic Chemistry,2012,8:1528-1535. doi: 10.3762/bjoc.8.173 [42] STANOJKOVIC J, OH J, KHAN A, STUPARU M C. Synthesis of thermoresponsiveoligo(ethylene glycol) polymers through radical ring-opening polymerization of vinylcyclopropane monomers [J]. RSC Advances,2020,10(4):2359-2363. doi: 10.1039/C9RA10721E [43] MOSZNER N, SALZ U. Recent developments of new components for dental adhesives and composites [J]. Macromolecular Materials and Engineering,2007,292(3):245-271. doi: 10.1002/mame.200600414 [44] MOSZNER N, VOELKEL T, ZEUNER F, STEIN, S, RHEINBERGER V. Hydrolyzable and polymerizable vinylcyclopropanesilanes: United States, US006034151A [P]. 2000-03-07. [45] MOSZNER N, RHEINBERGER V, VOELKEL T, FISCHER U K. Vinylcyclopropane-(meth)acrylates and their use: United States, US006136887A [P]. 2000-10-24. [46] MOSZNER N, de MEIJERE A, ZEUNER F, FISCHER U K. Polymerizable bicyclic cyclopropane derivatives and their use for the preparation of dental materials: United States, US007585901B2 [P]. 2009-09-08. [47] MOSZNER N, RITTER H, FISCHER U K, TABATABAI M, SCHAUB M, UTTERODT A. Process for preparing dental materials having low polymerization shrinkage: United States, US008466212B2 [P]. 2013-06-18. [48] MOSZNER N, CATEL Y, FISCHER U K, TAUSCHER S. Dental material based on monofunctional vinylcyclopropane derivatives: United States, US010512593B2 [P]. 2019-12-24. [49] MOSZNER N, CATEL Y, FISCHER U K, TAUSCHER S. Dental material based on urethane-group-containing vinylcyclopropane derivatives: United States, US011135136B2 [P]. 2021-10-05. [50] SINGHA N K, KAVITHA A, SARKER P, RIMMER S. Copper-mediated controlled radical ring-opening polymerization (RROP) of a vinylcycloalkane [J]. Chemical Communications,2008(26):3049-3051. doi: 10.1039/b801149d [51] MITTAL A, SIVARAM S, BASKARAN D. Unfavorable coordination of copper with methyl vinyl ketone in atom transfer radical polymerization [J]. Macromolecules, 2006, 39(16): 5555-5558. [52] ATA S, MAL D, SINGHA N K. Copper catalyzed ring opening copolymerization of a vinyl cyclopropane and methyl methacrylate [J]. RSC Advances, 2013, 3(34): 14486-14494. [53] CHEN M, ZHONG, M, JOHNSON J A. Light-controlled radical polymerization: Mechanisms, methods, and applications [J]. Chemical Reviews,2016,116(17):10167-10211. doi: 10.1021/acs.chemrev.5b00671 [54] CHEN D F, BERNSTEN S, MIYAKE G M. Organocatalyzed photoredox radical ring-opening polymerization of functionalized vinylcyclopropanes [J]. Macromolecules,2020,53(19):8352-8359. doi: 10.1021/acs.macromol.0c01367 [55] WANG K, KANG X, YUAN C, HAN X, LIU Y, CUI Y. Porous 2D and 3D covalent organic frameworks with dimensionality-dependent photocatalytic activity in promoting radical ring-opening polymerization [J]. Angewandte Chemie International Edition, 2021, 60(35): 19466-19476. [56] ZHANG D Y, HAN D, LI Y, CHEN D F. Expanding monomer scope and enabling post-modification in photocontrolled radical ring-opening polymerization of vinylcyclopropanes by an iodine transfer strategy [J]. Polymer Chemistry,2022,13(40):5691-5699. doi: 10.1039/D2PY00874B -