Preparation and Adhesion Properties of Bio-Hydrogels with Hydrophilic-Hydrophobic Double Networks
-
摘要: 选用N-丙烯酰基甘氨酸(ACG)与N-丙烯酰基-L-苯丙氨酸(ACP)为单体,通过自由基共聚,制备由氢键和化学交联双网络构筑的P(ACGx-ACPy)水凝胶。通过调节ACG和ACP的组分比,对聚合物分子间作用力与凝胶的综合性能进行调控。分别利用搭接剪切和拉伸测试方法对水凝胶的黏合性能进行测试。结果显示:当水凝胶中n(ACG)∶n(ACP)=1∶1时,其黏合性能最好,对猪皮的最大湿黏合强度可达到80.2 kPa;同时,水凝胶的最高压缩强度最高可达2.2 MPa;细胞毒性试验显示水凝胶的生物相容性良好。
-
关键词:
- N-丙烯酰基甘氨酸 /
- N-丙烯酰基-L-苯丙氨酸 /
- 湿黏合 /
- 分子间作用力 /
- 生物相容性
Abstract: Wet (underwater) adhesive materials have wide applications in biomedical and engineering fields. However, a hydration layer on the substrate surface severely prevents the interface interaction between adhesives and substrates, resulting in sharp reduce or even disappearance of the wet adhesion property. Therefore, it is of great significance to prepare adhesive materials with wet adhesion property by removal of the hydration layer via hydrophobic interaction. In this paper, amino acid based monomers, N-acrylylglycine (ACG) and N-acrylyl-L-phenylalanine (ACP) were synthesized, and then poly(N-acrylylglycine-N-acrylyl-L-phenylalanine) hydrogels (P(ACGx-ACPy)) were further prepared via hydrogen cross-linking and chemical cross-linking. The intermolecular interactions and properties of the P(ACGx-ACPy) hydrogels were regulated by adjusting the composition ratio of ACG to ACP. Their adhesive properties were then detected by lap-shear and tensile tests, respectively. The results showed that the hydrogels had well adhesive properties. The maximum wet lap-shear adhesive strength to pig skin could reach 80.2 kPa, when the molar ratio of ACG to ACP of hydrogel was 1∶1. Moreover, the highest compression strength of the hydrogels was 2.2 MPa. Cytotoxicity tests showed that hydrogels had good biocompatibility. The prepared P(ACGx-ACPy) adhesives has the potential applications to bio-tissue and other wet materials repairing. -
图 7 P(ACGx-ACPy)水凝胶与猪皮的湿搭接 (a) 剪切黏合强度,(b) 湿拉伸黏合强度,(c) 潮湿环境下与猪皮黏合机理示意图和(d) 湿搭接剪切黏合强度与文献值对比
Figure 7. (a) Wet lap-shear adhesion strength, (b) wet tensile adhesion strength, (c) schematic illustration of adhesion mechanism and (d) comparison of wet lap-shear adhesion strength of P(ACGx-ACPy) hydrogels adhered to pig skins with the literature values
表 1 P(ACGx-ACPy)水凝胶的投料比
Table 1. Feed ratios of P(ACGx-ACPy) hydrogels
Sample n(ACG)/mmol n(ACP)/mmol n(ACG)∶n(ACP) n(NaOH)/mmol P(ACG0-ACP1) 0 1.52 0∶1.52 1.52 P(ACG1-ACP2) 0.59 1.18 1∶2 1.77 P(ACG1-ACP1) 0.96 0.96 1∶1 1.92 P(ACG2-ACP1) 1.40 0.70 2∶1 2.10 P(ACG10-ACP1) 2.22 0.22 10∶1 2.44 V(H2O) =1 mL, the monomer mass fraction of each sample is 25% -
[1] ROCHE E T, WOHLFARTH R, OVERVELDE J T B, VASILYEV N V, PIGULA F A, MOONEY D J, BERTOLDI K, WALSH C J. A bioinspired soft actuated material [J]. Advanced Materials,2014,26(8):1200-1206. doi: 10.1002/adma.201304018 [2] GHOBRIL C, CHAROEN K, RODRIGUEZ E K, NAZARIAN A, GRINSTAFF M W. A dendritic thioester hydrogel based on thiol-thioester exchange as a dissolvable sealant system for wound closure [J]. Angewandte Chemie: International Edition,2013,52(52):14070-14074. doi: 10.1002/anie.201308007 [3] FEINER R, ENGEL L, FLEISCHER S, MALKI M, GAL I, SHAPIRA A, SHACHAM-DIAMAND Y, DVIR T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function [J]. Nature Materials,2016,15(6):679-685. doi: 10.1038/nmat4590 [4] BAE K H, KURISAWA M. Emerging hydrogel designs for controlled protein delivery [J]. Biomaterials Science,2016,4(8):1184-1192. doi: 10.1039/C6BM00330C [5] 林柏仲, 赵丽, 王宏伟, 朱浩鹏, 盖广清, 王立艳, 丁建勋. 生物黏合水凝胶研究进展 [J]. 功能高分子学报,2020,33(2):125-140. doi: 10.14133/j.cnki.1008-9357.20190711001LIN B Z, ZHAO L, WANG H W, ZHU H P, GAI G Q, WANG L Y, DING J X. Progress in bioadhesive hydrogels [J]. Journal of Functional Polymers,2020,33(2):125-140. doi: 10.14133/j.cnki.1008-9357.20190711001 [6] CUI C Y, FAN C C, WU Y H, XIAO M, WU T L, ZHANG D F, CHEN X Y, LIU B, XU Z Y, QU B, LIU W G. Water-triggered hyperbranched polymer universal adhesives: From strong underwater adhesion to rapid sealing hemostasis [J]. Advanced Materials,2019,31(49):1905761. doi: 10.1002/adma.201905761 [7] LI J, CELIZ A D, YANG J, YANG Q, WAMALA I, WHYTE W, SEO B R, VASILYEV N V, VLASSAK J J, SUO Z, MOONEY D J. Tough adhesives for diverse wet surfaces [J]. Science,2017,357(6349):378-381. doi: 10.1126/science.aah6362 [8] LI X D, DU Z L, SONG Z Y, LI B, WU L X, LIU Q P, ZHANG H Y, LI W. Bringing hetero-polyacid-based underwater adhesive as printable cathode coating for self-powered electrochromic aqueous batteries [J]. Advanced Functional Materials,2018,28(23):1800599. doi: 10.1002/adfm.201800599 [9] WANG Y, ZHANG L W, GUO Y R, GAN Y, LIU G, ZHANG D Y, CHEN H W. Air bubble bridge-based bioinspired underwater adhesion [J]. Small,2021,17(42):2103423. doi: 10.1002/smll.202103423 [10] FAN H L, WANG J H, TAO Z, HUANG J C, RAO P, KUROKAWA T, GONG J P. Adjacent cationic-aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater [J]. Nature Communications,2019,10:5127. doi: 10.1038/s41467-019-13171-9 [11] XIE C M, WANG X, HE H, DING Y H, LU X. Mussel-inspired hydrogels for self-adhesive bioelectronics [J]. Advanced Functional Materials,2020,30(25):1909954. doi: 10.1002/adfm.201909954 [12] 吴可可, 赵益涛, 吴敏, 李越, 胡志奇, 卢智慧, 郭金山. 聚合物基仿生医用胶黏剂的开发与应用 [J]. 功能高分子学报,2021,34(2):93-113.WU K K, ZHAO Y T, WU M, LI Y, HU Z Q, LU Z H, GUO J S. Development and applications of polymeric biomimetic tissue adhesives [J]. Journal of Functional Polymers,2021,34(2):93-113. [13] NORTH M, CHELSEY A, GROSSO D, WILKER J J. High strength underwater bonding with polymer mimics of mussel adhesive proteins [J]. ACS Applied Materials & Interfaces,2017,9(8):7866-7872. [14] FAN H L, WANG J H, GONG J P. Barnacle cement proteins-inspired tough hydrogels with robust, long-lasting, and repeatable underwater adhesion [J]. Advanced Functional Materials,2021,31(11):2009334. doi: 10.1002/adfm.202009334 [15] MEREDITH H J, JENKINS C L, WILKER J J. Enhancing the adhesion of a biomimetic polymer yields performance rivaling commercial glues [J]. Advanced Functional Materials,2014,24(21):3259-3267. doi: 10.1002/adfm.201303536 [16] YU X, DONG C, ZHUANG W, SHI D J, DONG W F, CHEN M Q, KANEKO D. Bio-based hotmelt adhesives with well-adhesion in water [J]. Polymers,2021,13(4):666. doi: 10.3390/polym13040666 [17] SU X, XIE W Y, WANG P D, TIAN Z L, WANG H, YUAN Z Y, LIU X Z, HUANG J Y. Strong underwater adhesion of injectable hydrogels triggered by diffusion of small molecules [J]. Materials Horizons,2021(8):2199-2207. doi: 10.1039/D1MH00533B [18] SU X, LUO Y, TIAN Z L, YUAN Z Y, HAN Y M, DONG R F, XU L, FENG Y T, LIU X Z, HUANG J Y. Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces [J]. Materials Horizons,2020,7(10):2651-2661. doi: 10.1039/D0MH01344G [19] WANG H, SU X, CHAI Z H, TIAN Z L, XIE W Y, WANG Y X, WAN Z, DENG M G, YUAN Z Y, HUANG J Y. A hydra tentacle-inspired hydrogel with underwater ultra-stretchability for adhering adipose surfaces [J]. Chemical Engineering Journal,2022,428:131049. doi: 10.1016/j.cej.2021.131049 [20] CHEN Y J, GUO X, MENSAH A, WANG Q Q, WEI Q F. Nature-inspired hydrogel network for efficient tissue-specific underwater adhesive [J]. ACS Applied Materials & Interfaces,2021,13(50):59761-59771. [21] PAN M F, NGUYEN K C T, YANG W S, LIU X, CHEN X Z, MAJOR P W, LE L H, ZENG H B. Soft armour-like layer-protected hydrogels for wet tissue adhesion and biological imaging [J]. Chemical Engineering Journal,2022,434:134418. doi: 10.1016/j.cej.2021.134418 [22] BAI S M, ZHANG X L, CAI P Q, HUANG X W, HUANG Y Q, LIU R, ZHANG M Y, SONG J B, CHEN X D, YANG H H. A silk-based sealant with tough adhesion for instant hemostasis of bleeding tissues [J]. Nanoscale Horizons,2019,4(6):1333-1341. doi: 10.1039/C9NH00317G [23] MENG H, LI Y T, FAUST M, KONST S, LEE B P. Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety [J]. Acta Biomaterialia,2015,17:160-169. doi: 10.1016/j.actbio.2015.02.002 [24] MENG H, LIU Y, LEE B P. Model polymer system for investigating the generation of hydrogen peroxide and its biological responses during the crosslinking of mussel adhesive moiety [J]. Acta Biomaterialia,2017,48:144-156. doi: 10.1016/j.actbio.2016.10.016 [25] 崔春燕, 陈薪羽, 刘博, 武腾玲, 范川川, 刘文广. 一种高强度速黏纳米杂化水凝胶“创可贴” [J]. 高分子学报,2019,50(6):613-622. doi: 10.11777/j.issn1000-3304.2019.18270CUI C Y, CHEN X Y, LIU B, WU T L, FAN C C, LIU W G. A high strength instant adhesive nano-hybrid hydrogel as first-aid bandage [J]. Acta Polymerica Sinica,2019,50(6):613-622. doi: 10.11777/j.issn1000-3304.2019.18270 [26] LIU J Y, WANG S X, SHEN Q Q, KONG L M, HUANG G S, WU J R. Tough underwater super-tape composed of semi-interpenetrating polymer networks with a water-repelling liquid surface [J]. ACS Applied Materials & Interfaces,2021,13(1):1535-1544. [27] FAN X M, FANG Y, ZHOU W K, YAN L Y, XU Y H, ZHU H, LIU H Q. Mussel foot protein inspired tough tissue-selective underwater adhesive hydrogel [J]. Materials Horizons,2021,8(3):997-1007. doi: 10.1039/D0MH01231A [28] GAO F, ZHANG Y Y, LI Y M, XU B, CAO Z Q, LIU W G. Sea cucumber-inspired autolytic hydrogels exhibiting tunable high mechanical performances, repairability, and reusability [J]. ACS Applied Materials & Interfaces,2016,8(14):8956-8966. [29] FILIPPOV S, HRUBY M, KONAK C, MACKOVA H, SPIRKOVA M, STEPANEK P. Novel pH-responsive nanoparticles [J]. Langmuir,2008,24(17):9295-9301. doi: 10.1021/la801472x [30] HAN L, WANG M H, PRIETO-LOPEZ L O, DENG X, CUI J X. Self-hydrophobization in a dynamic hydrogel for creating nonspecific repeatable underwater adhesion [J]. Advanced Functional Materials,2020,30(7):1907064. doi: 10.1002/adfm.201907064 [31] XIAO L L, WANG Z L, SUN Y, LI B, WU B H, MA C, PETROVSKII V S, GU X Q, CHEN D, POTEMKIN, II, HERRMANN A, ZHANG H J, LIU K. An artificial phase-transitional underwater bioglue with robust and switchable adhesion performance [J]. Angewandte Chemie: International Edition,2021,60(21):12082-12089. doi: 10.1002/anie.202102158 -