高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亲水-疏水双网络水凝胶的制备及其黏合性能

张克娜 周家华 杜德焰 倪忠斌 陈明清 施冬健

张克娜, 周家华, 杜德焰, 倪忠斌, 陈明清, 施冬健. 亲水-疏水双网络水凝胶的制备及其黏合性能[J]. 功能高分子学报,2023,36(2):126-135 doi: 10.14133/j.cnki.1008-9357.20221225001
引用本文: 张克娜, 周家华, 杜德焰, 倪忠斌, 陈明清, 施冬健. 亲水-疏水双网络水凝胶的制备及其黏合性能[J]. 功能高分子学报,2023,36(2):126-135 doi: 10.14133/j.cnki.1008-9357.20221225001
ZHANG Kena, ZHOU Jiahua, DU Deyan, NI Zhongbin, CHEN Mingqing, SHI Dongjian. Preparation and Adhesion Properties of Bio-Hydrogels with Hydrophilic-Hydrophobic Double Networks[J]. Journal of Functional Polymers, 2023, 36(2): 126-135. doi: 10.14133/j.cnki.1008-9357.20221225001
Citation: ZHANG Kena, ZHOU Jiahua, DU Deyan, NI Zhongbin, CHEN Mingqing, SHI Dongjian. Preparation and Adhesion Properties of Bio-Hydrogels with Hydrophilic-Hydrophobic Double Networks[J]. Journal of Functional Polymers, 2023, 36(2): 126-135. doi: 10.14133/j.cnki.1008-9357.20221225001

亲水-疏水双网络水凝胶的制备及其黏合性能

doi: 10.14133/j.cnki.1008-9357.20221225001
基金项目: 国家自然科学基金(52103165);江苏省自然科学基金(BK20181349)
详细信息
    作者简介:

    张克娜(1998—),女,硕士,主要研究方向为生物医用高分子材料。E-mail:6200612025@stu.jiangnan.edu.cn

    通讯作者:

    施冬健,E-mail:djshi@jiangnan.edu.cn

  • 中图分类号: R318.08

Preparation and Adhesion Properties of Bio-Hydrogels with Hydrophilic-Hydrophobic Double Networks

  • 摘要: 选用N-丙烯酰基甘氨酸(ACG)与N-丙烯酰基-L-苯丙氨酸(ACP)为单体,通过自由基共聚,制备由氢键和化学交联双网络构筑的P(ACGx-ACPy)水凝胶。通过调节ACG和ACP的组分比,对聚合物分子间作用力与凝胶的综合性能进行调控。分别利用搭接剪切和拉伸测试方法对水凝胶的黏合性能进行测试。结果显示:当水凝胶中n(ACG)∶n(ACP)=1∶1时,其黏合性能最好,对猪皮的最大湿黏合强度可达到80.2 kPa;同时,水凝胶的最高压缩强度最高可达2.2 MPa;细胞毒性试验显示水凝胶的生物相容性良好。

     

  • 图  1  (a) P(ACGx-ACPy)水凝胶的制备过程;P(ACGx-ACPy)水凝胶中(b)氢键相互作用和(c)化学交联示意图

    Figure  1.  (a) Fabrication procedure of P(ACGx-ACPy) hydrogels; (b) Hydrogen interaction and (c) chemical crosslink of P(ACGx-ACPy) hydrogels

    图  2  ACP、ACG及P(ACG1-ACP1)的FT-IR光谱

    Figure  2.  FT-IR spectra of ACP, ACG and P(ACG1-ACP1)

    图  3  P(ACGx-ACPy)水凝胶的SEM截面形貌

    Figure  3.  SEM cross-section images of P(ACGx-ACPy) hydrogels

    图  4  P(ACGx-ACPy)水凝胶的(a)溶胀曲线和(b)平衡溶胀率

    Figure  4.  (a) Swelling curves and (b) equilibrium swelling ratios of P(ACGx-ACPy) hydrogels

    图  5  P(ACGx-ACPy)水凝胶降解45 d后的(a)体外降解曲线和(b)降解率

    Figure  5.  (a) In vitro degradation curves and (b) degradation ratio of P(ACGx-ACPy) hydrogels after degradation 45 d

    图  6  P(ACGx-ACPy)水凝胶的(a)储能模量和损耗模量随频率变化的动态扫描曲线,(b) 压缩应力-应变曲线和(c)在80%应变下的压缩模量

    Figure  6.  (a) Frequency-sweep tests, (b) compression stress-strain curves and (c) compression modulus under 80% strain of P(ACGx-ACPy) hydrogels

    图  7  P(ACGx-ACPy)水凝胶与猪皮的湿搭接 (a) 剪切黏合强度,(b) 湿拉伸黏合强度,(c) 潮湿环境下与猪皮黏合机理示意图和(d) 湿搭接剪切黏合强度与文献值对比

    Figure  7.  (a) Wet lap-shear adhesion strength, (b) wet tensile adhesion strength, (c) schematic illustration of adhesion mechanism and (d) comparison of wet lap-shear adhesion strength of P(ACGx-ACPy) hydrogels adhered to pig skins with the literature values

    图  8  (ACGx-ACPy)水凝胶(a)在不同基质上的黏附和在(b)湿猪皮、(c)猪心和(d)猪肾上的黏附

    Figure  8.  Adhesion images of P(ACGx-ACPy) hydrogels on (a) different substrates, and on (b) wet pig skin, (c) pig heart, and (d) pig kidney

    图  9  (a) L929细胞在P(ACGx-ACPy)水凝胶浸提液中培养后的细胞活性和(b)培养1 d后的荧光图像

    Figure  9.  (a) L929 cell viabilities of P(ACGx-ACPy) hydrogels after cultured and (b) fluorescence images after cultured of 1 d

    表  1  P(ACGx-ACPy)水凝胶的投料比

    Table  1.   Feed ratios of P(ACGx-ACPy) hydrogels

    Samplen(ACG)/mmoln(ACP)/mmoln(ACG)∶n(ACP)n(NaOH)/mmol
    P(ACG0-ACP1)01.520∶1.521.52
    P(ACG1-ACP2)0.591.181∶21.77
    P(ACG1-ACP1)0.960.961∶11.92
    P(ACG2-ACP1)1.400.702∶12.10
    P(ACG10-ACP1)2.220.2210∶12.44
    V(H2O) =1 mL, the monomer mass fraction of each sample is 25%
    下载: 导出CSV
  • [1] ROCHE E T, WOHLFARTH R, OVERVELDE J T B, VASILYEV N V, PIGULA F A, MOONEY D J, BERTOLDI K, WALSH C J. A bioinspired soft actuated material [J]. Advanced Materials,2014,26(8):1200-1206. doi: 10.1002/adma.201304018
    [2] GHOBRIL C, CHAROEN K, RODRIGUEZ E K, NAZARIAN A, GRINSTAFF M W. A dendritic thioester hydrogel based on thiol-thioester exchange as a dissolvable sealant system for wound closure [J]. Angewandte Chemie: International Edition,2013,52(52):14070-14074. doi: 10.1002/anie.201308007
    [3] FEINER R, ENGEL L, FLEISCHER S, MALKI M, GAL I, SHAPIRA A, SHACHAM-DIAMAND Y, DVIR T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function [J]. Nature Materials,2016,15(6):679-685. doi: 10.1038/nmat4590
    [4] BAE K H, KURISAWA M. Emerging hydrogel designs for controlled protein delivery [J]. Biomaterials Science,2016,4(8):1184-1192. doi: 10.1039/C6BM00330C
    [5] 林柏仲, 赵丽, 王宏伟, 朱浩鹏, 盖广清, 王立艳, 丁建勋. 生物黏合水凝胶研究进展 [J]. 功能高分子学报,2020,33(2):125-140. doi: 10.14133/j.cnki.1008-9357.20190711001

    LIN B Z, ZHAO L, WANG H W, ZHU H P, GAI G Q, WANG L Y, DING J X. Progress in bioadhesive hydrogels [J]. Journal of Functional Polymers,2020,33(2):125-140. doi: 10.14133/j.cnki.1008-9357.20190711001
    [6] CUI C Y, FAN C C, WU Y H, XIAO M, WU T L, ZHANG D F, CHEN X Y, LIU B, XU Z Y, QU B, LIU W G. Water-triggered hyperbranched polymer universal adhesives: From strong underwater adhesion to rapid sealing hemostasis [J]. Advanced Materials,2019,31(49):1905761. doi: 10.1002/adma.201905761
    [7] LI J, CELIZ A D, YANG J, YANG Q, WAMALA I, WHYTE W, SEO B R, VASILYEV N V, VLASSAK J J, SUO Z, MOONEY D J. Tough adhesives for diverse wet surfaces [J]. Science,2017,357(6349):378-381. doi: 10.1126/science.aah6362
    [8] LI X D, DU Z L, SONG Z Y, LI B, WU L X, LIU Q P, ZHANG H Y, LI W. Bringing hetero-polyacid-based underwater adhesive as printable cathode coating for self-powered electrochromic aqueous batteries [J]. Advanced Functional Materials,2018,28(23):1800599. doi: 10.1002/adfm.201800599
    [9] WANG Y, ZHANG L W, GUO Y R, GAN Y, LIU G, ZHANG D Y, CHEN H W. Air bubble bridge-based bioinspired underwater adhesion [J]. Small,2021,17(42):2103423. doi: 10.1002/smll.202103423
    [10] FAN H L, WANG J H, TAO Z, HUANG J C, RAO P, KUROKAWA T, GONG J P. Adjacent cationic-aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater [J]. Nature Communications,2019,10:5127. doi: 10.1038/s41467-019-13171-9
    [11] XIE C M, WANG X, HE H, DING Y H, LU X. Mussel-inspired hydrogels for self-adhesive bioelectronics [J]. Advanced Functional Materials,2020,30(25):1909954. doi: 10.1002/adfm.201909954
    [12] 吴可可, 赵益涛, 吴敏, 李越, 胡志奇, 卢智慧, 郭金山. 聚合物基仿生医用胶黏剂的开发与应用 [J]. 功能高分子学报,2021,34(2):93-113.

    WU K K, ZHAO Y T, WU M, LI Y, HU Z Q, LU Z H, GUO J S. Development and applications of polymeric biomimetic tissue adhesives [J]. Journal of Functional Polymers,2021,34(2):93-113.
    [13] NORTH M, CHELSEY A, GROSSO D, WILKER J J. High strength underwater bonding with polymer mimics of mussel adhesive proteins [J]. ACS Applied Materials & Interfaces,2017,9(8):7866-7872.
    [14] FAN H L, WANG J H, GONG J P. Barnacle cement proteins-inspired tough hydrogels with robust, long-lasting, and repeatable underwater adhesion [J]. Advanced Functional Materials,2021,31(11):2009334. doi: 10.1002/adfm.202009334
    [15] MEREDITH H J, JENKINS C L, WILKER J J. Enhancing the adhesion of a biomimetic polymer yields performance rivaling commercial glues [J]. Advanced Functional Materials,2014,24(21):3259-3267. doi: 10.1002/adfm.201303536
    [16] YU X, DONG C, ZHUANG W, SHI D J, DONG W F, CHEN M Q, KANEKO D. Bio-based hotmelt adhesives with well-adhesion in water [J]. Polymers,2021,13(4):666. doi: 10.3390/polym13040666
    [17] SU X, XIE W Y, WANG P D, TIAN Z L, WANG H, YUAN Z Y, LIU X Z, HUANG J Y. Strong underwater adhesion of injectable hydrogels triggered by diffusion of small molecules [J]. Materials Horizons,2021(8):2199-2207. doi: 10.1039/D1MH00533B
    [18] SU X, LUO Y, TIAN Z L, YUAN Z Y, HAN Y M, DONG R F, XU L, FENG Y T, LIU X Z, HUANG J Y. Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces [J]. Materials Horizons,2020,7(10):2651-2661. doi: 10.1039/D0MH01344G
    [19] WANG H, SU X, CHAI Z H, TIAN Z L, XIE W Y, WANG Y X, WAN Z, DENG M G, YUAN Z Y, HUANG J Y. A hydra tentacle-inspired hydrogel with underwater ultra-stretchability for adhering adipose surfaces [J]. Chemical Engineering Journal,2022,428:131049. doi: 10.1016/j.cej.2021.131049
    [20] CHEN Y J, GUO X, MENSAH A, WANG Q Q, WEI Q F. Nature-inspired hydrogel network for efficient tissue-specific underwater adhesive [J]. ACS Applied Materials & Interfaces,2021,13(50):59761-59771.
    [21] PAN M F, NGUYEN K C T, YANG W S, LIU X, CHEN X Z, MAJOR P W, LE L H, ZENG H B. Soft armour-like layer-protected hydrogels for wet tissue adhesion and biological imaging [J]. Chemical Engineering Journal,2022,434:134418. doi: 10.1016/j.cej.2021.134418
    [22] BAI S M, ZHANG X L, CAI P Q, HUANG X W, HUANG Y Q, LIU R, ZHANG M Y, SONG J B, CHEN X D, YANG H H. A silk-based sealant with tough adhesion for instant hemostasis of bleeding tissues [J]. Nanoscale Horizons,2019,4(6):1333-1341. doi: 10.1039/C9NH00317G
    [23] MENG H, LI Y T, FAUST M, KONST S, LEE B P. Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety [J]. Acta Biomaterialia,2015,17:160-169. doi: 10.1016/j.actbio.2015.02.002
    [24] MENG H, LIU Y, LEE B P. Model polymer system for investigating the generation of hydrogen peroxide and its biological responses during the crosslinking of mussel adhesive moiety [J]. Acta Biomaterialia,2017,48:144-156. doi: 10.1016/j.actbio.2016.10.016
    [25] 崔春燕, 陈薪羽, 刘博, 武腾玲, 范川川, 刘文广. 一种高强度速黏纳米杂化水凝胶“创可贴” [J]. 高分子学报,2019,50(6):613-622. doi: 10.11777/j.issn1000-3304.2019.18270

    CUI C Y, CHEN X Y, LIU B, WU T L, FAN C C, LIU W G. A high strength instant adhesive nano-hybrid hydrogel as first-aid bandage [J]. Acta Polymerica Sinica,2019,50(6):613-622. doi: 10.11777/j.issn1000-3304.2019.18270
    [26] LIU J Y, WANG S X, SHEN Q Q, KONG L M, HUANG G S, WU J R. Tough underwater super-tape composed of semi-interpenetrating polymer networks with a water-repelling liquid surface [J]. ACS Applied Materials & Interfaces,2021,13(1):1535-1544.
    [27] FAN X M, FANG Y, ZHOU W K, YAN L Y, XU Y H, ZHU H, LIU H Q. Mussel foot protein inspired tough tissue-selective underwater adhesive hydrogel [J]. Materials Horizons,2021,8(3):997-1007. doi: 10.1039/D0MH01231A
    [28] GAO F, ZHANG Y Y, LI Y M, XU B, CAO Z Q, LIU W G. Sea cucumber-inspired autolytic hydrogels exhibiting tunable high mechanical performances, repairability, and reusability [J]. ACS Applied Materials & Interfaces,2016,8(14):8956-8966.
    [29] FILIPPOV S, HRUBY M, KONAK C, MACKOVA H, SPIRKOVA M, STEPANEK P. Novel pH-responsive nanoparticles [J]. Langmuir,2008,24(17):9295-9301. doi: 10.1021/la801472x
    [30] HAN L, WANG M H, PRIETO-LOPEZ L O, DENG X, CUI J X. Self-hydrophobization in a dynamic hydrogel for creating nonspecific repeatable underwater adhesion [J]. Advanced Functional Materials,2020,30(7):1907064. doi: 10.1002/adfm.201907064
    [31] XIAO L L, WANG Z L, SUN Y, LI B, WU B H, MA C, PETROVSKII V S, GU X Q, CHEN D, POTEMKIN, II, HERRMANN A, ZHANG H J, LIU K. An artificial phase-transitional underwater bioglue with robust and switchable adhesion performance [J]. Angewandte Chemie: International Edition,2021,60(21):12082-12089. doi: 10.1002/anie.202102158
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  43
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-25
  • 网络出版日期:  2023-03-04
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回