高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Toehold开关调控的大肠杆菌基因表达体系

李成勖 肖石燕 梁好均

李成勖, 肖石燕, 梁好均. Toehold开关调控的大肠杆菌基因表达体系[J]. 功能高分子学报,2023,36(3):1-8 doi: 10.14133/j.cnki.1008-9357.20221130001
引用本文: 李成勖, 肖石燕, 梁好均. Toehold开关调控的大肠杆菌基因表达体系[J]. 功能高分子学报,2023,36(3):1-8 doi: 10.14133/j.cnki.1008-9357.20221130001
LI Chengxu, XIAO Shiyan, LIANG Haojun. Regulation of Gene Expression via Toehold Switch in E. coli[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20221130001
Citation: LI Chengxu, XIAO Shiyan, LIANG Haojun. Regulation of Gene Expression via Toehold Switch in E. coli[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20221130001

Toehold开关调控的大肠杆菌基因表达体系

doi: 10.14133/j.cnki.1008-9357.20221130001
基金项目: 国家自然科学基金(22073090, 21991132, 52021002, 52033010);国家重点研发计划(2020YFA0710700)
详细信息
    作者简介:

    李成勖(1991—),男,博士研究生,主要研究方向为DNA和RNA器件。E-mail:lcx043@mail.ustc.edu.cn

    肖石燕,中国科学技术大学高分子科学与工程系副教授。2007年本科毕业于东北师范大学,2012年于中国科学技术大学获博士学位,导师为梁好均教授。主要研究方向为多尺度分子模拟方法的发展与应用、DNA反应线路等。已发表学术论文近50篇,其中以一作/通讯作者在Nat NanotechnolPNASJ Am Chem SocAngew Chem Int EditAdv Mater等高水平期刊发表论文30余篇

    梁好均,中国科学技术大学高分子科学与工程系教授、合肥微尺度物质科学国家研究中心研究员,博士生导师,2005年国家杰出青年基金获得者。1984年本科毕业于东北师范大学,1990年于长春应用化学研究所获博士学位。主要研究方向为高分子凝聚态物理理论计算与模拟,DNA分子机器,基因编辑等。先后承担国家自然科学基金重点项目、国家重点研发计划、国家自然科学基金创新研究群体项目、国家973计划等研究课题。曾担任《ACS Macro Letters》顾问编委。以一作/通讯作者在Nat Rev Methods Primers, P Natl Acad Sci USA, J Am Chem Soc, Angew Chem Int Edit, Adv Mater等高影响力学术期刊上发表论文两百余篇

    通讯作者:

    肖石燕,E-mail:xiaosy@ustc.edu.cn

    梁好均,E-mail:hjliang@ustc.edu.cn

  • 中图分类号: Q71

Regulation of Gene Expression via Toehold Switch in E. coli

  • 摘要: 设计了一种核糖体调节器—“立足点开关”(toehold switch)。与传统核糖体调节器设计不同的是,该核糖体调节器的起始密码子(AUG)和核糖体结合位点位于核糖体调节器中发夹结构RNA的环(loop)上,而“茎”(stem)结构是完全互补配对的RNA双链。通过RNA链替换反应,引发链(trigger)RNA能够打开发夹结构RNA,从而激活下游绿色荧光蛋白的表达,导致荧光信号的增长,最终实现对大肠杆菌基因表达的调控。系统研究了“茎”的长度对绿色荧光蛋白表达的调控作用。实验结果表明,当“茎”的长度大于8个碱基时,发夹结构RNA就能有效地抑制绿色荧光蛋白的表达。进一步的共表达实验结果表明,引发链RNA能够打开发夹RNA,从而调控大肠杆菌基因表达。Toehold开关调控的大肠杆菌基因表达系统具有可拓展性,可应用于多基因表达调控,对基因疾病诊疗具有潜在应用价值。

     

  • 图  1  (a)经典toehold switch结构及原理示意图;(b)流式细胞仪测量的荧光强度对比图

    Figure  1.  (a) Schematic diagram of classical toehold switch riboregulator; (b) Comparison of fluorescence intensity for different experimental samples measured by flow cytometry

    图  2  switch RNA和trigger RNA的结构示意图:(a)核糖体结合位点RBS和AUG均在switch RNA中发夹结构的环上;(b)不同长度stem结构的toehold switch结构示意图

    Figure  2.  Schematic diagram of the structure of switch RNA and trigger RNA: (a) Both the ribosome binding site RBS and the start codon AUG are integrated on the loop of switch RNA; (b) Structures of toehold switch with stem of different lengths

    图  3  流式细胞仪测量的switch RNA抑制基因表达荧光强度

    Figure  3.  Fluorescence intensity for switch RNA inhibitory gene expression measured by flow cytometry

    图  4  (a)流式细胞仪测量的核糖体调节器switch1抑制和激活基因表达的荧光强度;(b)图4(a)中数据所对应的开关比

    Figure  4.  (a) Fluorescence intensity for riboregulator switch1 with and without trigger1 measured by flow cytometry; (b) On/Off ratio corresponding to the data in Fig.4(a)

    图  5  (a)核糖体调节器switch2抑制和激活基因表达的流式细胞仪测量得到的荧光强度;(b)图5(a)中数据所对应的开关比

    Figure  5.  (a) Fluorescence intensity for riboregulator switch2 with and without trigger1 measured by flow cytometry; (b) On/Off ratio corresponding to the data in Fig.5(a)

  • [1] FRIEDLAND A E, LU T K, WANG X, SHI D, CHURCH G, COLLINS J J. Synthetic gene networks that count [J]. Science,2009,324(5931):1199-1202. doi: 10.1126/science.1172005
    [2] ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators [J]. Nature,2000,403(6767):335-338. doi: 10.1038/35002125
    [3] MOON T S, LOU C, TAMSIR A, STANTON B C, VOIGT C A. Genetic programs constructed from layered logic gates in single cells [J]. Nature,2012,491(7423):249-253. doi: 10.1038/nature11516
    [4] AUSLÄNDER S, AUSLÄNDER D, MÜLLER M, WIELAND M, FUSSENEGGER M. Programmable single-cell mammalian biocomputers [J]. Nature,2012,487(7405):123-127. doi: 10.1038/nature11149
    [5] 席龙昌, 葛治伸. 非病毒基因编辑CRISPR/Cas9递送载体的研究进展 [J]. 功能高分子学报,2019,32(5):582-592. doi: 10.14133/j.cnki.1008-9357.20190426001

    XI L C, GE Z S. Nonviral CRISPR/Cas9 delivery systems for gene editing [J]. Journal of Functional Polymers,2019,32(5):582-592. doi: 10.14133/j.cnki.1008-9357.20190426001
    [6] DANIEL R, RUBENS J R, SARPESHKAR R, LU T K. Synthetic analog computation in living cells [J]. Nature,2013,497(7451):619-623. doi: 10.1038/nature12148
    [7] PURNICK P E, WEISS R. The second wave of synthetic biology: From modules to systems [J]. Nature Reviews: Molecular Cell Biology,2009,10(6):410-422. doi: 10.1038/nrm2698
    [8] BRANTL S, WAGNER E G. Antisense RNA-mediated transcriptional attenuation: An in vitro study of plasmid pT181 [J]. Molecular Microbiology,2000,35(6):1469-1482. doi: 10.1046/j.1365-2958.2000.01813.x
    [9] GULTYAEV A P, FRANCH T, GERDES K. Programmed cell death by hok/sok of plasmid R1: Coupled nucleotide covariations reveal a phylogenetically conserved folding pathway in the hok family of mRNAs [J]. Journal of Molecular Biology,1997,273(1):26-37. doi: 10.1006/jmbi.1997.1295
    [10] WINKLER W, NAHVI A, BREAKER R R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression [J]. Nature,2002,419(6910):952-956. doi: 10.1038/nature01145
    [11] ISAACS F J, DWYER D J, DING C, PERVOUCHINE D D, CANTOR C R, COLLINS J J. Engineered riboregulators enable post-transcriptional control of gene expression [J]. Nature Biotechnology,2004,22(7):841-847. doi: 10.1038/nbt986
    [12] LUCKS J B, QI L, MUTALIK V K, WANG D, ARKIN A P. Versatile RNA-sensing transcriptional regulators for engineering genetic networks [J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(21):8617-8622. doi: 10.1073/pnas.1015741108
    [13] CALLURA J M, DWYER D J, ISAACS F J, CANTOR C R, COLLINS J J. Tracking, tuning, and terminating microbial physiology using synthetic riboregulators [J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(36):15898-15903. doi: 10.1073/pnas.1009747107
    [14] BAYER T S, SMOLKE C D. Programmable ligand-controlled riboregulators of eukaryotic gene expression [J]. Nature Biotechnology,2005,23(3):337-343. doi: 10.1038/nbt1069
    [15] TAKAHASHI M K, LUCKS J B. A modular strategy for engineering orthogonal chimeric RNA transcription regulators [J]. Nucleic Acids Research,2013,41(15):7577-7588. doi: 10.1093/nar/gkt452
    [16] LIU C C, QI L, LUCKS J B, SEGALL-SHAPIRO T H, WANG D, MUTALIK V K, ARKIN A P. An adaptor from translational to transcriptional control enables predictable assembly of complex regulation [J]. Nature Methods,2012,9(11):1088-1094. doi: 10.1038/nmeth.2184
    [17] MUTALIK V K, QI L, GUIMARAES J C, LUCKS J B, ARKIN A P. Rationally designed families of orthogonal RNA regulators of translation [J]. Nature Chemical Biology,2012,8(5):447-454. doi: 10.1038/nchembio.919
    [18] CALLURA J M, CANTOR C R, COLLINS J J. Genetic switchboard for synthetic biology applications [J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(15):5850-5855. doi: 10.1073/pnas.1203808109
    [19] RHODIUS V A, SEGALL-SHAPIRO T H, SHARON B D, GHODASARA A, ORLOVA E, TABAKH H, BURKHARDT D H, CLANCY K, PETERSON T C, GROSS C A, VOIGT C A. Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters [J]. Molecular Systems Biology,2013,9:702. doi: 10.1038/msb.2013.58
    [20] GUTELL R R, CANNONE J J, KONINGS D, GAUTHERET D. Predicting U-turns in ribosomal RNA with comparative sequence analysis [J]. Journal of Molecular Biology,2000,300(4):791-803. doi: 10.1006/jmbi.2000.3900
    [21] GREEN A A, SILVER P A, COLLINS J J, YIN P. Toehold switches: De-novo-designed regulators of gene expression [J]. Cell,2014,159(4):925-939. doi: 10.1016/j.cell.2014.10.002
    [22] PARDEE K, GREEN A A, FERRANTE T, CAMERON D E, DALEYKEYSER A, YIN P, COLLINS J J. Paper-based synthetic gene networks [J]. Cell,2014,159(4):940-954. doi: 10.1016/j.cell.2014.10.004
  • 加载中
图(5)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  138
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 录用日期:  2022-12-25
  • 网络出版日期:  2022-12-26

目录

    /

    返回文章
    返回