Regulation of Gene Expression via Toehold Switch in E. coli
-
摘要: 设计了一种核糖体调节器—“立足点开关”(toehold switch)。与传统核糖体调节器设计不同的是,该核糖体调节器的起始密码子(AUG)和核糖体结合位点位于核糖体调节器中发夹结构RNA的环(loop)上,而“茎”(stem)结构是完全互补配对的RNA双链。通过RNA链替换反应,引发链(trigger)RNA能够打开发夹结构RNA,从而激活下游绿色荧光蛋白的表达,导致荧光信号的增长,最终实现对大肠杆菌基因表达的调控。系统研究了“茎”的长度对绿色荧光蛋白表达的调控作用。实验结果表明,当“茎”的长度大于8个碱基时,发夹结构RNA就能有效地抑制绿色荧光蛋白的表达。进一步的共表达实验结果表明,引发链RNA能够打开发夹RNA,从而调控大肠杆菌基因表达。Toehold开关调控的大肠杆菌基因表达系统具有可拓展性,可应用于多基因表达调控,对基因疾病诊疗具有潜在应用价值。Abstract: A riboregulator called toehold switch has been designed. In this riboregulator, the start codon AUG and ribosome binding site (RBS) are located on the loop of the hairpin structure, resulting in the stem structure with a completely complementary double-stranded RNA. Trigger RNA can open the hairpin through strand displacement reaction, and activate the downstream expression of green fluorescence protein (GFP), leading to a certain increasing of fluorescence signal, eventually realizing the regulation of E. coli gene expression. The effects of stem length on the expression of GFP were investigated. Results showed that the hairpin structure of toehold switch could effectively inhibit the expression of green fluorescent protein when the length of stem was more than 8 bp. Further co-expression experiments showed that trigger RNA could open the structure of hairpin RNA, resulting in a certain increasing of expression of GFP, and regulate the gene expression of E. coli. The E. coli gene expression system regulated by toehold switch is scalable and can be applied to the regulation of multi-gene expression, which has potential application value in the diagnosis and treatment of gene diseases.
-
Key words:
- riboregulator /
- toehold switch /
- hairpin RNA /
- stem /
- RNA strand displacement reaction
-
图 2 switch RNA和trigger RNA的结构示意图:(a)核糖体结合位点RBS和AUG均在switch RNA中发夹结构的环上;(b)不同长度stem结构的toehold switch结构示意图
Figure 2. Schematic diagram of the structure of switch RNA and trigger RNA: (a) Both the ribosome binding site RBS and the start codon AUG are integrated on the loop of switch RNA; (b) Structures of toehold switch with stem of different lengths
-
[1] FRIEDLAND A E, LU T K, WANG X, SHI D, CHURCH G, COLLINS J J. Synthetic gene networks that count [J]. Science,2009,324(5931):1199-1202. doi: 10.1126/science.1172005 [2] ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators [J]. Nature,2000,403(6767):335-338. doi: 10.1038/35002125 [3] MOON T S, LOU C, TAMSIR A, STANTON B C, VOIGT C A. Genetic programs constructed from layered logic gates in single cells [J]. Nature,2012,491(7423):249-253. doi: 10.1038/nature11516 [4] AUSLÄNDER S, AUSLÄNDER D, MÜLLER M, WIELAND M, FUSSENEGGER M. Programmable single-cell mammalian biocomputers [J]. Nature,2012,487(7405):123-127. doi: 10.1038/nature11149 [5] 席龙昌, 葛治伸. 非病毒基因编辑CRISPR/Cas9递送载体的研究进展 [J]. 功能高分子学报,2019,32(5):582-592. doi: 10.14133/j.cnki.1008-9357.20190426001XI L C, GE Z S. Nonviral CRISPR/Cas9 delivery systems for gene editing [J]. Journal of Functional Polymers,2019,32(5):582-592. doi: 10.14133/j.cnki.1008-9357.20190426001 [6] DANIEL R, RUBENS J R, SARPESHKAR R, LU T K. Synthetic analog computation in living cells [J]. Nature,2013,497(7451):619-623. doi: 10.1038/nature12148 [7] PURNICK P E, WEISS R. The second wave of synthetic biology: From modules to systems [J]. Nature Reviews: Molecular Cell Biology,2009,10(6):410-422. doi: 10.1038/nrm2698 [8] BRANTL S, WAGNER E G. Antisense RNA-mediated transcriptional attenuation: An in vitro study of plasmid pT181 [J]. Molecular Microbiology,2000,35(6):1469-1482. doi: 10.1046/j.1365-2958.2000.01813.x [9] GULTYAEV A P, FRANCH T, GERDES K. Programmed cell death by hok/sok of plasmid R1: Coupled nucleotide covariations reveal a phylogenetically conserved folding pathway in the hok family of mRNAs [J]. Journal of Molecular Biology,1997,273(1):26-37. doi: 10.1006/jmbi.1997.1295 [10] WINKLER W, NAHVI A, BREAKER R R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression [J]. Nature,2002,419(6910):952-956. doi: 10.1038/nature01145 [11] ISAACS F J, DWYER D J, DING C, PERVOUCHINE D D, CANTOR C R, COLLINS J J. Engineered riboregulators enable post-transcriptional control of gene expression [J]. Nature Biotechnology,2004,22(7):841-847. doi: 10.1038/nbt986 [12] LUCKS J B, QI L, MUTALIK V K, WANG D, ARKIN A P. Versatile RNA-sensing transcriptional regulators for engineering genetic networks [J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(21):8617-8622. doi: 10.1073/pnas.1015741108 [13] CALLURA J M, DWYER D J, ISAACS F J, CANTOR C R, COLLINS J J. Tracking, tuning, and terminating microbial physiology using synthetic riboregulators [J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(36):15898-15903. doi: 10.1073/pnas.1009747107 [14] BAYER T S, SMOLKE C D. Programmable ligand-controlled riboregulators of eukaryotic gene expression [J]. Nature Biotechnology,2005,23(3):337-343. doi: 10.1038/nbt1069 [15] TAKAHASHI M K, LUCKS J B. A modular strategy for engineering orthogonal chimeric RNA transcription regulators [J]. Nucleic Acids Research,2013,41(15):7577-7588. doi: 10.1093/nar/gkt452 [16] LIU C C, QI L, LUCKS J B, SEGALL-SHAPIRO T H, WANG D, MUTALIK V K, ARKIN A P. An adaptor from translational to transcriptional control enables predictable assembly of complex regulation [J]. Nature Methods,2012,9(11):1088-1094. doi: 10.1038/nmeth.2184 [17] MUTALIK V K, QI L, GUIMARAES J C, LUCKS J B, ARKIN A P. Rationally designed families of orthogonal RNA regulators of translation [J]. Nature Chemical Biology,2012,8(5):447-454. doi: 10.1038/nchembio.919 [18] CALLURA J M, CANTOR C R, COLLINS J J. Genetic switchboard for synthetic biology applications [J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(15):5850-5855. doi: 10.1073/pnas.1203808109 [19] RHODIUS V A, SEGALL-SHAPIRO T H, SHARON B D, GHODASARA A, ORLOVA E, TABAKH H, BURKHARDT D H, CLANCY K, PETERSON T C, GROSS C A, VOIGT C A. Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters [J]. Molecular Systems Biology,2013,9:702. doi: 10.1038/msb.2013.58 [20] GUTELL R R, CANNONE J J, KONINGS D, GAUTHERET D. Predicting U-turns in ribosomal RNA with comparative sequence analysis [J]. Journal of Molecular Biology,2000,300(4):791-803. doi: 10.1006/jmbi.2000.3900 [21] GREEN A A, SILVER P A, COLLINS J J, YIN P. Toehold switches: De-novo-designed regulators of gene expression [J]. Cell,2014,159(4):925-939. doi: 10.1016/j.cell.2014.10.002 [22] PARDEE K, GREEN A A, FERRANTE T, CAMERON D E, DALEYKEYSER A, YIN P, COLLINS J J. Paper-based synthetic gene networks [J]. Cell,2014,159(4):940-954. doi: 10.1016/j.cell.2014.10.004 -