高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缩短shRNA的3′尾与靶标mRNA的配对降低脱靶效应

尹雪 姚东宝 梁好均

尹 雪, 姚东宝, 梁好均. 缩短shRNA的3′尾与靶标mRNA的配对降低脱靶效应[J]. 功能高分子学报,2023,36(3):310-320 doi: 10.14133/j.cnki.1008-9357.20221128002
引用本文: 尹 雪, 姚东宝, 梁好均. 缩短shRNA的3′尾与靶标mRNA的配对降低脱靶效应[J]. 功能高分子学报,2023,36(3):310-320 doi: 10.14133/j.cnki.1008-9357.20221128002
YIN Xue, YAO Dongbao, LIANG Haojun. Shortening Pairing of the 3′ Tail of shRNA with Target mRNA Reduces the Off-Target Effect[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20221128002
Citation: YIN Xue, YAO Dongbao, LIANG Haojun. Shortening Pairing of the 3′ Tail of shRNA with Target mRNA Reduces the Off-Target Effect[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20221128002

缩短shRNA的3′尾与靶标mRNA的配对降低脱靶效应

doi: 10.14133/j.cnki.1008-9357.20221128002
基金项目: 国家自然科学基金(21991132, 52003264, 52021002);国家重点研发计划(2020YFA0710703)
详细信息
    作者简介:

    尹雪:尹 雪(1993—),女,安徽淮南人,博士生,主要研究方向为合成生物学。E-mail:yinxue@mail.ustc.edu.cn

    姚东宝,中国科学技术大学高分子科学与工程系特任副研究员。2012年本科毕业于济南大学高分子材料与工程专业,2017年博士毕业于中国科学技术大学高分子科学与工程系,师从梁好均教授。研究方向聚焦于动态DNA纳米技术和DNA功能化纳米粒子组装领域,围绕DNA链替换反应调控纳米粒子组装动力学路径及其相关应用、纳米粒子有序超晶格构建及固相转变、pH响应性DNA链替换调控方法方面开展了系列研究工作。迄今,已发表SCI论文30余篇,代表性工作以第一(共同)/通讯作者身份发表于Nat Rev Methods PrimersP Natl Acad Sci USAJ Am Chem SocACS NanoSci China ChemACS Appl Mater InterfacesChem Commun等期刊上。主持国家自然科学基金青年项目、博士后创新人才支持计划、中国科学技术大学青年创新重点基金等科研项目。曾获得2017年度中科院院长优秀奖以及2020年度博士后创新支持计划优秀创新成果奖

    梁好均,合肥微尺度物质科学国家研究中心研究员,中国科学技术大学高分子科学与工程系教授、博士生导师、国家杰出青年基金获得者。梁好均教授早期主要从事高分子材料设计制备、高分子凝聚态物理和生物物理中的理论与计算等方面的研究,2005年获得国家杰出青年科学基金后曾涉足超交联树脂和高分子表界面研究,此过程中研究领域转向适配体和DNA组装领域,在DNA链替换组装器件设计、DNA生物检测以及DNA功能化纳米粒子超晶格组装等方面做出了代表性工作。近年来研究兴趣扩展到基因编辑CRISPR/Cas9技术,并成功应用于哺乳动物细胞内的核酸检测和基因编辑细胞的宏观组织化。先后承担国家自然科学基金、国家973计划等研究课题。 已在Nat Rev Methods PrimersP Natl Acad Sci USAJ Am Chem SocAngew Chem Int EditAdv MaterACS NanoNucleic Acids Res 等高影响力学术期刊上发表论文200余篇。他长期在教学一线工作,主讲《高分子链构象统计学》、《高分子凝聚态物理》课程。为国家培养了一大批优秀专业的人才,学风朴实严谨、为人正直、谦逊诚恳,深受广大师生的尊敬和爱戴。2022年2月11日,梁好均教授因突发心梗于安徽合肥不幸逝世,享年59岁。谨以此文缅怀梁好均教授

    通讯作者:

    姚东宝, E-mail:dbyao@ustc.edu.cn

    梁好均,E-mail:hjliang@ustc.edu.cn

  • 中图分类号: Q78

Shortening Pairing of the 3′ Tail of shRNA with Target mRNA Reduces the Off-Target Effect

  • 摘要: 基于对microRNA和短发夹RNA(shRNA)的3′尾功能的理解,提出了一种仅通过缩短shRNA的3′尾与靶标序列的互补长度来降低脱靶效应的方法。此方法可以在不损伤shRNA基因沉默效率的前提下达到降低shRNA脱靶效应的目的,从而有效提高shRNA的基因沉默特异性。此策略不受反义链3′区域序列的限制,可以显著改进RNA干扰设计的规则,一定程度上简化shRNA药物设计中的序列限制,拓宽其作为治疗和诊断工具在医疗中的用途和前景。

     

  • 图  1  shRNA 在 HEK293T 细胞中的靶标沉默能力:(a)含有 shRNA 靶标的 EGFP mRNA 的荧光图像(其中Control为元靶标shRNA);(b)shRNA 对照组对 EGFP 表达水平的影响;(c)shS1~shS6 对靶标的沉默能力(误差条表示3次生物重复数 据的标准差(s.d.))

    Figure  1.  Silencing ability of shRNAs in HEK293T cells: (a) Fluorescent images of the EGFP expression levels treated with shRNAs or non-targeting shRNA plasmid. EGFP/mCherry ratio of the EGFP mRNA treated with (b) non-targeting shRNA control or (c) corresponding shRNA plasmid (The error bars indicate the standard deviation (s.d.) of the data from three biological replicates)

    图  2  shS3(左)和 shS5(右)的脱靶效应:(a,b)不同位置单核苷酸突变的靶序列(红色标记);(c,d)为 shRNA 对照样品处理的对应单核苷酸突变靶序列的 EGFP 表达水平;(e,f)对应 shRNA 处理的含单碱基突变靶序列 EGFP 表达水平( C为不含突变靶标)

    Figure  2.  The off-target effect of shS3 (Left panel) and (Right panel): (a, b) Target sequences with single nucleotide mutation at different locations (marked in red); (c, d) Expression level of EGFP mRNAs with corresponding target sequence with single nucleotide mutation, treated with the shRNA control sample; (e, f) shRNAs silencing ability of the EGFP mRNAs with corresponding target sequence with single nucleotide mutation(C means target without mismatch)

    图  3  从 3'端缩短 shRNA 的反义链对其靶沉默能力的影响:(a,b)shRNA 的序列(与靶标匹配的反义序列用蓝色标记,不匹配的核苷酸用红色标记);(c,d)HEK293T 细胞中 shRNA 沉默的结果( C1 为对照 shRNA 处理样品;误差条表示3次生物重复数据的标准差(s.d.))

    Figure  3.  Influence of shorted antisense strand of shRNA in silencing ability: (a, b) The sequence of shRNAs (The antisense sequence matching with targets is blue, and the mismatched nucleotides are marked in red); (c, d) shRNAs silencing results in HEK293T cells (C1 means non-targeting shRNA-treated control. The error bars indicate the standard deviation (s.d.) of the data from three biological replicates)

    图  4  shS3系列shRNA对含不同位置单碱基突变的靶标的沉默能力((C为不含突变靶标))

    Figure  4.  Silencing ability of shS3-derived shRNAs to targets with single nucleotide mismatch at different locations (C means target without mismatch)

    图  5  shS5系列shRNA对含不同位置单碱基突变的靶标的沉默能力(C为不含突变靶标)

    Figure  5.  Silencing ability of shS5-derived shRNAs to targets with single nucleotide mismatch at different locations (C means target without mismatch)

    表  1  靶向生存素mRNA的shRNA

    Table  1.   shRNAs targeting survivin mRNA

    NameTarget sequence (DNA)GC/%Antisense sequence (DNA)
    shS1GCATCTCTACATTCAAGAACT38.10AGTTCTTGAATGTAGAGATGC
    shS2GCCCAGTGTTTCTTCTGCTTC52.39GAAGCAGAAGAAACACTGGGC
    shS3GCGCTTTCCTTTCTGTCAAGA47.62TCTTGACAGAAAGGAAAGCGC
    shS4GGACAGAGAAAGAGCCAAGAA47.62TTCTTGGCTCTTTCTCTGTCC
    shS5GCAAAGGAAACCAACAATAAG38.10CTTATTGTTGGTTTCCTTTGC
    shS6GAAGAAAGAATTTGAGGAAAC33.34GTTTCCTCAAATTCTTTCTTC
    下载: 导出CSV

    表  2  用于shRNA载体构建的DNA序列

    Table  2.   DNA sequence for shRNA vector construction

    StrandSequence (5′ to 3′)
    shS1-TcaccGCATCTCTACATTCAAGAACTTTCAAGAGAAGTTCTTGAATGTAGAGATGC
    shS1-BAAAAGCATCTCTACATTCAAGAACTTCTCTTGAAAGTTCTTGAATGTAGAGATGC
    shS2-TcaccGCCCAGTGTTTCTTCTGCTTCTTCAAGAGAGAAGCAGAAGAAACACTGGGC
    shS2-BAAAAGCCCAGTGTTTCTTCTGCTTCTCTCTTGAAGAAGCAGAAGAAACACTGGGC
    shS3-TcaccGCGCTTTCCTTTCTGTCAAGATTCAAGAGATCTTGACAGAAAGGAAAGCGC
    shS3-BAAAAGCGCTTTCCTTTCTGTCAAGATCTCTTGAATCTTGACAGAAAGGAAAGCGC
    shS4-TcaccGGACAGAGAAAGAGCCAAGAATTCAAGAGATTCTTGGCTCTTTCTCTGTCC
    shS4-BAAAAGGACAGAGAAAGAGCCAAGAATCTCTTGAATTCTTGGCTCTTTCTCTGTCC
    shS5-TcaccGCAAAGGAAACCAACAATAAGTTCAAGAGACTTATTGTTGGTTTCCTTTGC
    shS5-BAAAAGCAAAGGAAACCAACAATAAGTCTCTTGAACTTATTGTTGGTTTCCTTTGC
    shS6-TcaccGAAGAAAGAATTTGAGGAAACTTCAAGAGAGTTTCCTCAAATTCTTTCTTC
    shS6-BAAAAGAAGAAAGAATTTGAGGAAACTCTCTTGAAGTTTCCTCAAATTCTTTCTTC
    shS3-20-TcaccGCGCTTTCCTTTCTGTCAAGATTCAAGAGATCTTGACAGAAAGGAAAGCG
    shS3-20-BAAAACGCTTTCCTTTCTGTCAAGATCTCTTGAATCTTGACAGAAAGGAAAGCGC
    shS3-19-TcaccGGGCTTTCCTTTCTGTCAAGATTCAAGAGATCTTGACAGAAAGGAAAGCC
    shS3-19-BAAAAGGCTTTCCTTTCTGTCAAGATCTCTTGAATCTTGACAGAAAGGAAAGCCC
    shS3-18-TcaccGGCCTTTCCTTTCTGTCAAGATTCAAGAGATCTTGACAGAAAGGAAAGGC
    shS3-18-BAAAAGCCTTTCCTTTCTGTCAAGATCTCTTGAATCTTGACAGAAAGGAAAGGCC
    shS3-17-TcaccGGCGTTTCCTTTCTGTCAAGATTCAAGAGATCTTGACAGAAAGGAAACGC
    shS3-17-BAAAAGCGTTTCCTTTCTGTCAAGATCTCTTGAATCTTGACAGAAAGGAAACGCC
    shS3-16-TcaccGGCGATTCCTTTCTGTCAAGATTCAAGAGATCTTGACAGAAAGGAATCGC
    shS3-16-BAAAAGCGATTCCTTTCTGTCAAGATCTCTTGAATCTTGACAGAAAGGAATCGCC
    shS3-15-TcaccGGCGAATCCTTTCTGTCAAGATTCAAGAGATCTTGACAGAAAGGATTCGC
    shS3-15-BAAAAGCGAATCCTTTCTGTCAAGATCTCTTGAATCTTGACAGAAAGGATTCGCC
    shS5-20-TcaccGCAAAGGAAACCAACAATAAGTTCAAGAGACTTATTGTTGGTTTCCTTTG
    shS5-20-BAAAACAAAGGAAACCAACAATAAGTCTCTTGAACTTATTGTTGGTTTCCTTTGC
    shS5-19-TcaccGGAAAGGAAACCAACAATAAGTTCAAGAGACTTATTGTTGGTTTCCTTTC
    shS5-19-BAAAAGAAAGGAAACCAACAATAAGTCTCTTGAACTTATTGTTGGTTTCCTTTCC
    shS5-18-TcaccGGTAAGGAAACCAACAATAAGTTCAAGAGACTTATTGTTGGTTTCCTTAC
    shS5-18-BAAAAGTAAGGAAACCAACAATAAGTCTCTTGAACTTATTGTTGGTTTCCTTACC
    shS5-17-TcaccGGTTAGGAAACCAACAATAAGTTCAAGAGACTTATTGTTGGTTTCCTAAC
    shS5-17-BAAAAGTTAGGAAACCAACAATAAGTCTCTTGAACTTATTGTTGGTTTCCTAACC
    shS5-16-TcaccGGTTTGGAAACCAACAATAAGTTCAAGAGACTTATTGTTGGTTTCCAAAC
    shS5-16-BAAAAGTTTGGAAACCAACAATAAGTCTCTTGAACTTATTGTTGGTTTCCAAACC
    shS5-15-TcaccGGTTTCGAAACCAACAATAAGTTCAAGAGACTTATTGTTGGTTTCGAAAC
    shS5-15-BAAAAGTTTCGAAACCAACAATAAGTCTCTTGAACTTATTGTTGGTTTCGAAACC
    下载: 导出CSV

    表  3  用于EGFP表达载体构建的DNA序列

    Table  3.   DNA sequence for construction of EGTP expression vector

    StrandSequence (5′ to 3′)
    E-shS1-TctagGCATCTCTACATTCAAGAACT
    E-shS1-BgatcAGTTCTTGAATGTAGAGATGC
    E-shS2-TctagGCCCAGTGTTTCTTCTGCTTC
    E-shS2-BgatcGAAGCAGAAGAAACACTGGGC
    E-shS3-TctagGCGCTTTCCTTTCTGTCAAGA
    E-shS3-BgatcTCTTGACAGAAAGGAAAGCGC
    E-shS4-TctagGGACAGAGAAAGAGCCAAGAA
    E-shS4-BgatcTTCTTGGCTCTTTCTCTGTCC
    E-shS5-TctagGCAAAGGAAACCAACAATAAG
    E-shS5-BgatcCTTATTGTTGGTTTCCTTTGC
    E-shS6-TctagGAAGAAAGAATTTGAGGAAAC
    E-shS6-BgatcGTTTCCTCAAATTCTTTCTTC
    E-shS3-M5-TctagGCGCTTTCCTTTCTGTGAAGA
    E-shS3-M5-BgatcTCTTCACAGAAAGGAAAGCGC
    E-shS3-M10-TctagGCGCTTTCCTTACTGTCAAGA
    E-shS3-M10-BgatcTCTTGACAGTAAGGAAAGCGC
    E-shS3-M13-TctagGCGCTTTCCATTCTGTCAAGA
    E-shS3-M13-BgatcTCTTGACAGAATGGAAAGCGC
    E-shS3-M15-TctagGCGCTTTGCTTTCTGTCAAGA
    E-shS3-M15-BgatcTCTTGACAGAAAGCAAAGCGC
    E-shS3-M17-TctagGCGCTATCCTTTCTGTCAAGA
    E-shS3-M17-BgatcTCTTGACAGAAAGGATAGCGC
    E-shS3-M18-TctagGCGGTTTCCTTTCTGTCAAGA
    E-shS3-M18-BgatcTCTTGACAGAAAGGAAACCGC
    E-shS5-M5-TctagGCAAAGGAAACCAACATTAAG
    E-shS5-M5-BgatcCTTAATGTTGGTTTCCTTTGC
    E-shS5-M10-TctagGCAAAGGAAACGAACAATAAG
    E-shS5-M10-BgatcCTTATTGTTCGTTTCCTTTGC
    E-shS5-M13-TctagGCAAAGGAATCCAACAATAAG
    E-shS5-M13-BgatcCTTATTGTTGGATTCCTTTGC
    E-shS5-M15-TctagGCAAAGGTAACCAACAATAAG
    E-shS5-M15-BgatcCTTATTGTTGGTTACCTTTGC
    E-shS5-M17-TctagGCAAACGAAACCAACAATAAG
    E-shS5-M17-BgatcCTTATTGTTGGTTTCGTTTGC
    E-shS5-M18-TctagGCATAGGAAACCAACAATAAG
    E-shS5-M18-BgatcCTTATTGTTGGTTTCCTATGC
    下载: 导出CSV
  • [1] FIRE A, XU S, MONTGOMERY M K, KOSTAS S A, DRIVER S E, MELLO C C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391(6669):806-811. doi: 10.1038/35888
    [2] KIM V N, HAN J, SIOMI M C. Biogenesis of small RNAs in animals [J]. Nat Rev Mol Cell Biol,2009,10(2):126-139.
    [3] MEISTER G, TUSCHL T. Mechanisms of gene silencing by double-stranded RNA [J]. Nature,2004,431(7006):343-349. doi: 10.1038/nature02873
    [4] XIE X, LU J, KULBOKAS E J, GOLUB T R, MOOTHA V, LINDBLAD-TOH K, LANDER E S, KELLIS M. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals [J]. Nature,2005,434(7031):338-345. doi: 10.1038/nature03441
    [5] JACKSON A L, BARTZ S R, SCHELTER J, KOBAYASHI S V, BURCHARD J, MAO M, LI B, CAVET G, LINSLEY P S. Expression profiling reveals off-target gene regulation by RNAi [J]. Nat Biotechnol,2003,21(6):635-637. doi: 10.1038/nbt831
    [6] JACKSON A L, BURCHARD J, SCHELTER J, CHAU B N, CLEARY M, LIM L, LINSLEY P S. Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity [J]. RNA,2006,12(7):1179-1187. doi: 10.1261/rna.25706
    [7] CHEN J, PENG Y, ZHANG H, WANG K, ZHAO C, ZHU G, REDDY PALLI S, HAN Z. Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA [J]. RNA Biology,2021,18(11):1747-1759. doi: 10.1080/15476286.2020.1868680
    [8] BARTOSZEWSKI R, SIKORSKI A F. Editorial focus: Understanding off-target effects as the key to successful RNAi therapy [J]. Cellular and Molecular Biology Letters,2019,24:69.
    [9] MENG Z, LU M. RNA interference-induced innate immunity, off-target effect, or immune adjuvant? [J]. Frontiers in Immunology,2017,8:331.
    [10] JACKSON A L, BURCHARD J, LEAKE D, REYNOLDS A, SCHELTER J, GUO J, JOHNSON J M, LIM L, KARPILOW J, NICHOLS K, MARSHALL W, KHVOROVA A, LINSLEY P S. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing [J]. RNA,2006,12(7):1197-1205. doi: 10.1261/rna.30706
    [11] CAFFREY D R, ZHAO J, SONG Z, SCHAFFER M E, HANEY S A, SUBRAMANIAN R R, SEYMOUR A B, HUGHES J D. siRNA off-target effects can be reduced at concentrations that match their individual potency [J]. PLOS One,2011,6(7):e21503. doi: 10.1371/journal.pone.0021503
    [12] PETRI S, MEISTER G. siRNA Design Principles and Off-Target Effects [M] Totowa, NJ: Humana Press, 2013: 59-71.
    [13] GIBSON D G, YOUNG L, CHUANG R Y, VENTER J C, HUTCHISON C A, SMITH H O. Enzymatic assembly of DNA molecules up to several hundred kilobases [J]. Nat Methods,2009,6(5):343-345. doi: 10.1038/nmeth.1318
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  21
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-28
  • 录用日期:  2023-01-12
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回