Progress of Antibacterial Polycation
-
摘要: 两亲性阳离子聚合物在抗细菌感染,尤其是抵抗细菌耐药、突破细菌生物膜障碍中发挥着重要作用。为了进一步增加阳离子聚合物与细菌等病原体的相互作用,在提高杀菌效率的同时提高生物相容性,研究者们设计与制备了一系列具有优良性能的阳离子聚合物。本文综述了近年来新型阳离子聚合物的设计、制备及其在抗病原体方面的应用,讨论了不同阳离子聚合物的作用机理与特点,并对该领域所面临的挑战进行了展望。Abstract: Polycation exhibit great potential application in the fields of anti-infection, especially in combating drug-resistant bacteria and breaking through the barrier of biofilm. To enhance the interaction between the prepared polymers and bacteria and the bacterial killing efficacy, a series of biocompatible polycations with excellent performance have been designed and constructed. In this review, the recent progresses in design, preparation, and the application of functional cationic antimicrobial polymers are summarized, and the antimalarial mechanism and the unique properties are discussed. Finally, the current challenges and future perspectives in cationic antimicrobial polymers are put forward.
-
Key words:
- polycation /
- drug-resistance /
- biofilm /
- anti-bacterial material /
- antibacterial mechanism
-
图 2 (a) 酸响应嵌段共聚物选择性杀菌[45];(b) 多肽聚合物用于水产抗感染治疗[46];(c) 聚赖氨酸衍生物用于真菌感染治疗[51];(d) 基于噁唑啉的仿肽聚合物用于抵抗细菌耐药[52]
Figure 2. (a) Selective bacterial killing with acid-responsive block copolymer[45]; (b) Peptide polymer for anti-infection treatment of aquatic products[46]; (c) Polylysine derivatives for treatment of fungal infections[51]; (d) Poly(2-oxazoline) based functional mimics of peptides to combat the drug-resistant[52]
图 3 (a) 生物可降解聚碳酸酯用于细菌膜选择性溶解[53];(b) 通过取代基调节高分子链疏水性实现高选择性杀菌[54];(c) 环状阳离子聚合物的构建及高效抗菌[58]
Figure 3. (a) Biodegradable polycarbonate for selective dissolution of bacterial membrane[53]; (b) High selectivity bacterial with different hydrophobic substitutes group[54]; (c) Construction of cyclic cationic polymers and application in bacterial killing[58]
图 4 (a) 胍基盐修饰的柱芳烃用于高效抑制细菌生物膜[69];(b) 含有胍基侧基的聚碳酸酯实现无耐药杀菌[70];(c) 含有胍基侧基的噁唑啉用于抗真菌感染治疗[71]
Figure 4. (a) Guanidine modified column pillararene for efficient inhibition of bacterial biofilm[69]; (b) Polycarbonate with guanidine side group kills the bacterial without drug resistant[70]; (c) Guanidinium-functionalized poly (2-oxazoline) s combat the fungal infections[71]
图 5 (a) 类肽鋶鎓聚合物的构建及在抗细菌感染治疗中的应用[75] ;(b) 环氧开环反应制备鋶鎓聚合物用于选择性杀菌[77];(c) 利用巯基-烯点击反应制备鋶鎓聚合物用于抗生物膜[78]
Figure 5. (a) The construction of polysulfoniums-based functional mimics of peptides in bacterial killing[75]; (b) Polysulfoniums through the reaction of epoxy ring opening for selective bacterial killing[77]; (c) Polysulfoniums through thiol-ene click reaction for anti-biofilm[78]
图 6 (a) 阳离子聚合物联合光热效应用于抗细菌感染治疗[83];(b) 含有季膦盐的蛋白质水凝胶在伤口修复上的应用[84];(c) 季膦盐改性的超渗透抗菌聚酰胺复合膜[86]
Figure 6. (a) Cationic polymer combined with photothermal therapy for treatment of bacterial infection[83]; (b) Phosphonium-containing protein hydrogel for wound dressing[84]; (c) Phosphonium modification improves the antibacterial and permeation activity of polyamide composite membranes[86]
图 7 (a) 二茂钴阳离子聚合物降低β-内酰胺药物耐药性[103];(b) 可回收的金属-抗生素偶联用于抗细菌感染治疗[104];(c) 基于钴离子配位抗菌表面的构建及抗菌应用[106]
Figure 7. (a) Metallopolymers decrease the drug-resistant of β-Lactam[103]; (b) recyclable magnetic nanoparticles grafted with antimicrobial metallopolymer-antibiotic bioconjugates for antibacterial therapy[104]; (c) The construction of antibacterial surface based on cobalt ion[106]
-
[1] LARSSON D, FLACH C F. Antibiotic resistance in the environment [J]. Nature Reviews Microbiology,2022,20(5):257-269. doi: 10.1038/s41579-021-00649-x [2] PATERSON D L, HARRIS P N. Colistin resistance: A major breach in our last line of defence [J]. The Lancet Infectious Diseases,2016,16(2):132-133. doi: 10.1016/S1473-3099(15)00463-6 [3] LI W, SEPAROVIC F, O'BRIEN-SIMPSON N M, WADE J D. Chemically modified and conjugated antimicrobial peptides against superbugs [J]. Chemical Society Reviews,2021,50(8):4932-4973. doi: 10.1039/D0CS01026J [4] BUSH K, COURVALIN P, DANTAS G, DAVIES J, EISENSTEIN B, HUOVINEN P, JACOBY G A, KISHONY R, KREISWIRTH B N, KUTTER E. Tackling antibiotic resistance [J]. Nature Reviews Microbiology,2011,9(12):894-896. doi: 10.1038/nrmicro2693 [5] HOFER U. The cost of antimicrobial resistance [J]. Nature Reviews Microbiology,2019,17(1):3. doi: 10.1038/s41579-018-0125-x [6] GROUP W P P L W. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis [J]. The Lancet Infectious Diseases,2018,18(3):318-327. doi: 10.1016/S1473-3099(17)30753-3 [7] BILLINGS N, BIRJINIUK A, SAMAD T S, DOYLE P S, RIBBECK K. Material properties of biofilms: A review of methods for understanding permeability and mechanics [J]. Reports on Progress in Physics,2015,78(3):036601. doi: 10.1088/0034-4885/78/3/036601 [8] COSTERTON J W, STEWART P S, GREENBERG E P. Bacterial biofilms: A common cause of persistent infections [J]. Science,1999,284(5418):1318-1322. doi: 10.1126/science.284.5418.1318 [9] MAKABENTA J M V, NABAWY A, LI C H, SCHMIDT-MALAN S, PATEL R, ROTELLO V M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections [J]. Nature Reviews Microbiology,2021,19(1):23-36. doi: 10.1038/s41579-020-0420-1 [10] CIOFU O, MOSER C, JENSEN P Ø, HØIBY N. Tolerance and resistance of microbial biofilms [J]. Nature Reviews Microbiology,2022,20:621-635. doi: 10.1038/s41579-022-00682-4 [11] 王龙海, 张泽, 曾天佑, 夏磊, 聂旋, 陈光, 尤业字. 响应性阳离子聚合物及聚合物纳米胶束基因载体 [J]. 高分子学报,2017,12(12):1883-1904. doi: 10.11777/j.issn1000-3304.2017.17240WANG L H, ZHANG Z, ZENG T Y, XIA L, NIE X, CHEN G, YOU Y Z. Responsive cationic polymer and cationic nanomicelle vectors for gene delivery [J]. Acta Polymerica Sinica,2017,12(12):1883-1904. doi: 10.11777/j.issn1000-3304.2017.17240 [12] KIM K, CHEN W C, HEO Y, WANG Y. Polycations and their biomedical applications [J]. Progress in Polymer Science,2016,60:18-50. doi: 10.1016/j.progpolymsci.2016.05.004 [13] 梁敬时, 曾佳铭, 李俊杰, 佘珏芹, 谭瑞轩, 刘博. 阳离子抗菌聚合物[J]. 化学进展, 2019, 31(9): 1263-1282.LIANG J S, ZENG J M, LI J J, SHE J Q, TAN R X, LIU B. Cationic antimicrobial polymers[J]. Progress in Chemistry, 2019, 31(9): 1263-1282. [14] JUDZEWITSCH P R, NGUYEN T K, SHANMUGAM S, WONG E H, BOYER C. Towards sequence-controlled antimicrobial polymers: Effect of polymer block order on antimicrobial activity [J]. Angewandte Chemie,2018,130(17):4649-4654. doi: 10.1002/ange.201713036 [15] LING L L, SCHNEIDER T, PEOPLES A J, SPOERING A L, ENGELS I, CONLON B P, MUELLER A, SCHÄBERLE T F, HUGHES D E, EPSTEIN S. A new antibiotic kills pathogens without detectable resistance [J]. Nature,2015,517(7535):455-459. doi: 10.1038/nature14098 [16] HURDLE J G, O'NEILL A J, CHOPRA I, LEE R E. Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections [J]. Nature Reviews Microbiology,2011,9(1):62-75. doi: 10.1038/nrmicro2474 [17] MUZZARELLI R A, BOUDRANT J, MEYER D, MANNO N, DEMARCHIS M, PAOLETTI M G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial [J]. Carbohydrate Polymers,2012,87(2):995-1012. doi: 10.1016/j.carbpol.2011.09.063 [18] DODANE V, VILIVALAM V D. Pharmaceutical applications of chitosan [J]. Pharmaceutical Science & Technology Today,1998,1(6):246-253. [19] RINAUDO M. Chitin and chitosan: Properties and applications [J]. Progress in Polymer Science,2006,31(7):603-632. doi: 10.1016/j.progpolymsci.2006.06.001 [20] KEAN T, THANOU M. Biodegradation, biodistribution and toxicity of chitosan [J]. Advanced Drug Delivery Reviews,2010,62(1):3-11. doi: 10.1016/j.addr.2009.09.004 [21] YANG T C, CHOU C C, LI C F. Antibacterial activity of N-alkylated disaccharide chitosan derivatives [J]. International Journal of Food Microbiology,2005,97(3):237-245. doi: 10.1016/S0168-1605(03)00083-7 [22] WANG W, MENG Q, LI Q, LIU J, ZHOU M, JIN Z, ZHAO K. Chitosan derivatives and their application in biomedicine [J]. International Journal of Molecular Sciences,2020,21(2):487. doi: 10.3390/ijms21020487 [23] CHUNG Y C, CHEN C Y. Antibacterial characteristics and activity of acid-soluble chitosan [J]. Bioresource Technology,2008,99(8):2806-2814. doi: 10.1016/j.biortech.2007.06.044 [24] COSTA E, SILVA S, PINA C, TAVARIA F, PINTADO M. Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens [J]. Anaerobe,2012,18(3):305-309. doi: 10.1016/j.anaerobe.2012.04.009 [25] MANSILLA A Y, ALBERTENGO L, RODRíGUEZ M S, DEBBAUDT A, ZÚÑIGA A, CASALONGUÉ C. Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000 [J]. Applied Microbiology and Biotechnology,2013,97(15):6957-6966. doi: 10.1007/s00253-013-4993-8 [26] KONG M, CHEN X G, LIU C S, LIU C G, MENG X H. Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli [J]. Colloids and Surfaces B:Biointerfaces,2008,65(2):197-202. doi: 10.1016/j.colsurfb.2008.04.003 [27] KIM K W, MIN B, KIM Y T, KIMMEL R M, COOKSEY K, PARK S. Antimicrobial activity against foodborne pathogens of chitosan biopolymer films of different molecular weights [J]. LWT-Food Science and Technology,2011,44(2):565-569. doi: 10.1016/j.lwt.2010.08.001 [28] HELANDER I, NURMIAHO-LASSILA E L, AHVENAINEN R, RHOADES J, ROLLER S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria [J]. International Journal of Food Microbiology,2001,71(2-3):235-244. doi: 10.1016/S0168-1605(01)00609-2 [29] RAZMI F A, NGADI N, WONG S, INUWA I M, OPOTU L A. Kinetics, thermodynamics, isotherm and regeneration analysis of chitosan modified pandan adsorbent [J]. Journal of Cleaner Production,2019,231:98-109. doi: 10.1016/j.jclepro.2019.05.228 [30] REN L, XU J, ZHANG Y, ZHOU J, CHEN D, CHANG Z. Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium [J]. International Journal of Biological Macromolecules,2019,135:898-906. doi: 10.1016/j.ijbiomac.2019.06.007 [31] KUMAR M R, MUZZARELLI R A, MUZZARELLI C, SASHIWA H, DOMB A. Chitosan chemistry and pharmaceutical perspectives [J]. Chemical Reviews,2004,104(12):6017-6084. doi: 10.1021/cr030441b [32] CHRISTOU C, PHILIPPOU K, KRASIA-CHRISTOFOROU T, PASHALIDIS I. Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers [J]. Carbohydrate Polymers,2019,219:298-305. doi: 10.1016/j.carbpol.2019.05.041 [33] IFTIME M M, AILIESEI G L, UNGUREANU E, MARIN L. Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention [J]. Carbohydrate Polymers,2019,223:115040. doi: 10.1016/j.carbpol.2019.115040 [34] LIN Y H, KANG P L, XIN W, YEN C S, HWANG L C, CHEN C J, LIU J T, CHANG S J. Preparation and evaluation of chitosan biocompatible electronic skin [J]. Computers in Industry,2018,100:1-6. doi: 10.1016/j.compind.2018.03.040 [35] UPADHYAYA L, SINGH J, AGARWAL V, TEWARI R P. Biomedical applications of carboxymethyl chitosans [J]. Carbohydrate Polymers,2013,91(1):452-466. doi: 10.1016/j.carbpol.2012.07.076 [36] BROGDEN K A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? [J]. Nature Reviews Microbiology,2005,3(3):238-250. doi: 10.1038/nrmicro1098 [37] ZASLOFF M. Antimicrobial peptides of multicellular organisms [J]. Nature,2002,415(6870):389-395. doi: 10.1038/415389a [38] POLYANSKY A A, RAMASWAMY R, VOLYNSKY P E, SBALZARINI I F, MARRINK S J, EFREMOV R G. Antimicrobial peptides induce growth of phosphatidylglycerol domains in a model bacterial membrane [J]. The Journal of Physical Chemistry Letters,2010,1(20):3108-3111. doi: 10.1021/jz101163e [39] MATSUZAKI K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes [J]. Biochimica et Biophysica Acta (BBA): Biomembranes,1999,1462(1-2):1-10. doi: 10.1016/S0005-2736(99)00197-2 [40] YANG L, WEISS T M, LEHRER R I, HUANG H W. Crystallization of antimicrobial pores in membranes: Magainin and protegrin [J]. Biophysical Journal,2000,79(4):2002-2009. doi: 10.1016/S0006-3495(00)76448-4 [41] NGUYEN L T, HANEY E F, VOGEL H J. The expanding scope of antimicrobial peptide structures and their modes of action [J]. Trends in Biotechnology,2011,29(9):464-472. doi: 10.1016/j.tibtech.2011.05.001 [42] ZHANG L J, GALLO R L. Antimicrobial peptides [J]. Current Biology,2016,26(1):R14-R19. doi: 10.1016/j.cub.2015.11.017 [43] LI S, WANG Y, XUE Z, JIA Y, LI R, HE C, CHEN H. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review [J]. Trends in Food Science & Technology,2021,109:103-115. [44] WANG D Y, YANG G, van DER MEI H C, REN Y, BUSSCHER H J, SHI L. Liposomes with water as a pH-responsive functionality for targeting of acidic tumor and infection sites [J]. Angewandte Chemie,2021,133(32):17855-17860. doi: 10.1002/ange.202106329 [45] JIANG Y, YANG X, ZHU R, HU K, LAN W W, WU F, YANG L. Acid-activated antimicrobial random copolymers: A mechanism-guided design of antimicrobial peptide mimics [J]. Macromolecules,2013,46(10):3959-3964. doi: 10.1021/ma400484b [46] MA P, WU Y, JIANG W, SHAO N, ZHOU M, CHEN Y, XIE J, QIAO Z, LIU R. Biodegradable peptide polymers as alternatives to antibiotics used in aquaculture [J]. Biomaterials Science,2022,10(15):4193-4207. doi: 10.1039/D2BM00672C [47] ZHAO S, ADAMIAK J W, BONIFAY V, MEHLA J, ZGURSKAYA H I, TAN D S. Defining new chemical space for drug penetration into Gram-negative bacteria [J]. Nature Chemical Biology,2020,16(12):1293-1302. doi: 10.1038/s41589-020-00674-6 [48] SEWELL E W C, BROWN E D. Taking aim at wall teichoic acid synthesis: New biology and new leads for antibiotics [J]. The Journal of Antibiotics,2014,67(1):43-51. doi: 10.1038/ja.2013.100 [49] ODDS F C, BROWN A J P, GOW N A R. Antifungal agents: Mechanisms of action [J]. Trends in Microbiology,2003,11(6):272-279. doi: 10.1016/S0966-842X(03)00117-3 [50] BROWN L, WOLF J M, PRADOS-ROSALES R, CASADEVALL A. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi [J]. Nature Reviews Microbiology,2015,13(10):620-630. doi: 10.1038/nrmicro3480 [51] ZHANG D, SHI C, CONG Z, CHEN Q, BI Y, ZHANG J, MA K, LIU S, GU J, CHEN M. Microbial metabolite inspired β-peptide polymers displaying potent and selective sntifungal activity [J]. Advanced Science,2022,9(14):2104871. [52] ZHOU M, QIAN Y, XIE J, ZHANG W, JIANG W, XIAO X, CHEN S, DAI C, CONG Z, JI Z. Poly (2-oxazoline)-based functional peptide mimics: Eradicating MRSA infections and persisters while alleviating antimicrobial resistance [J]. Angewandte Chemie International Edition,2020,59(16):6412-6419. doi: 10.1002/anie.202000505 [53] JIAO Y, NIU L N, MA S, LI J, TAY F R, CHEN J H. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance [J]. Progress in Polymer Science,2017,71:53-90. doi: 10.1016/j.progpolymsci.2017.03.001 [54] NEDERBERG F, ZHANG Y, TAN J P, XU K, WANG H, YANG C, GAO S, GUO X D, FUKUSHIMA K, LI L. Biodegradable nanostructures with selective lysis of microbial membranes [J]. Nature Chemistry,2011,3(5):409-414. doi: 10.1038/nchem.1012 [55] CHIN W, YANG C, NG V W L, HUANG Y, CHENG J, TONG Y W, COADY D J, FAN W, HEDRICK J L, YANG Y Y. Biodegradable broad-spectrum antimicrobial polycarbonates: Investigating the role of chemical structure on activity and selectivity [J]. Macromolecules,2013,46(22):8797-8807. doi: 10.1021/ma4019685 [56] YAN S, CHEN S, GOU X, YANG J, AN J, JIN X, YANG Y W, CHEN L, GAO H. Biodegradable supramolecular materials based on cationic polyaspartamides and pillar [5] arene for targeting Gram-positive bacteria and mitigating antimicrobial resistance [J]. Advanced Functional Materials,2019,29(38):1904683. doi: 10.1002/adfm.201904683 [57] ZHANG Z, NIE X, WANG F, CHEN G, HUANG W Q, XIA L, ZHANG W J, HAO Z Y, HONG C Y, WANG L H, YOU Y Z. Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers [J]. Nature Communications,2020,11(1):3654. doi: 10.1038/s41467-020-17474-0 [58] WU B, YOU W, WANG H L, ZHANG Z, NIE X, WANG F, YOU Y Z. Cyclic topology enhances the killing activity of polycations against planktonic and biofilm bacteria [J]. Journal of Materials Chemistry B,2022,10(25):4823-4831. doi: 10.1039/D2TB00194B [59] RAHMAN M A, BAM M, LUAT E, JUI M S, GANEWATTA M S, SHOKFAI T, NAGARKATTI M, DECHO A W, TANG C. Macromolecular-clustered facial amphiphilic antimicrobials [J]. Nature Communications,2018,9:5231. doi: 10.1038/s41467-018-07651-7 [60] KIM S H, SEMENYA D, CASTAGNOLO D. Antimicrobial drugs bearing guanidine moieties: A review [J]. European Journal of Medicinal Chemistry,2021,216:113293. doi: 10.1016/j.ejmech.2021.113293 [61] MUTTATHUKATTIL A N, SRINIVASAN S, HALDER A, REDDY G. Role of guanidinium-carboxylate ion interaction in enzyme inhibition with implications for drug design [J]. The Journal of Physical Chemistry B,2019,123(44):9302-9311. doi: 10.1021/acs.jpcb.9b06130 [62] YAMADA T, LIU X, ENGLERT U, YAMANE H, DRONSKOWSKI R. Solid-state structure of free base guanidine achieved at last [J]. Chemistry: A European Journal,2009,15(23):5651-5655. doi: 10.1002/chem.200900508 [63] ECKERT-MAKSIĆ M, GLASOVAC Z, TROŠELJ P, KÜTT A, RODIMA T, KOPPEL I, KOPPEL I A. Basicity of guanidines with heteroalkyl side chains in acetonitrile[J]. Wiley Online Library, 2008, 30: 5176-5184. [64] ROTHBARD J B, JESSOP T C, LEWIS R S, MURRAY B A, WENDER P A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells [J]. Journal of the American Chemical Society,2004,126(31):9506-9507. doi: 10.1021/ja0482536 [65] LOCOCK K E, MICHL T D, VALENTIN J D, VASILEV K, HAYBALL J D, QU Y, TRAVEN A, GRIESSER H J, MEAGHER L, HAEUSSLER M. Guanylated polymethacrylates: A class of potent antimicrobial polymers with low hemolytic activity [J]. Biomacromolecules,2013,14(11):4021-4031. doi: 10.1021/bm401128r [66] MATTHEIS C, WANG H, MEISTER C, AGARWAL S. Effect of guanidinylation on the properties of poly (2-aminoethylmethacrylate)-based antibacterial materials [J]. Macromolecular Bioscience,2013,13(2):242-255. doi: 10.1002/mabi.201200217 [67] CHINDERA K, MAHATO M, KUMAR SHARMA A, HORSLEY H, KLOC-MUNIAK K, KAMARUZZAMAN N F, KUMAR S, MCFARLANE A, STACH J, BENTIN T, GOOD L. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes [J]. Scientific Reports,2016,6:23121. doi: 10.1038/srep23121 [68] SU Y, ZHI Z, GAO Q, XIE M, YU M, LEI B, LI P, MA P X. Autoclaving-derived surface coating with in vitro and in vivo antimicrobial and antibiofilm efficacies [J]. Advanced Healthcare Materials,2017,6(6):1601173. doi: 10.1002/adhm.201601173 [69] GUO S, HUANG Q, CHEN Y, WEI J, ZHENG J, WANG L, WANG Y, WANG R. Synthesis and bioactivity of guanidinium-functionalized pillar [5] arene as a biofilm disruptor [J]. Angewandte Chemie International Edition,2021,60(2):618-623. doi: 10.1002/anie.202013975 [70] CHIN W, ZHONG G, PU Q, YANG C, LOU W, de SESSIONS P F, PERIASWAMY B, LEE A, LIANG Z C, DING X. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset [J]. Nature Communications,2018,9(1):917. doi: 10.1038/s41467-018-03325-6 [71] JIANG W, ZHOU M, CONG Z, XIE J, ZHANG W, CHEN S, ZOU J, JI Z, SHAO N, CHEN X. Short guanidinium-functionalized poly(2-oxazoline)s displaying potent therapeutic efficacy on drug-resistant fungal infections [J]. Angewandte Chemie International Edition,2022,134(17):e202200778. [72] HAMZA A, BROCH H, VASILESCU D. Quantum molecular study of S-methylated forms of sulfur mustard [J]. Chemical Physics,1996,204(2-3):373-389. doi: 10.1016/0301-0104(95)00338-X [73] WANG S W, LIU W, COLBY R H. Counterion dynamics in polyurethane-carboxylate ionomers with ionic liquid counterions [J]. Chemistry of Materials,2011,23(7):1862-1873. doi: 10.1021/cm103548t [74] KANAZAWA A, IKEDA T, ENDO T. Antibacterial activity of polymeric sulfonium salts [J]. Journal of Polymer Science Part A:Polymer Chemistry,1993,31(11):2873-2876. doi: 10.1002/pola.1993.080311126 [75] SUN J, LI M, LIN M, ZHANG B, CHEN X. High antibacterial activity and selectivity of the versatile polysulfoniums that combat drug resistance [J]. Advanced Materials,2021,33(41):2104402. doi: 10.1002/adma.202104402 [76] ZHANG B, LI M, LIN M, YANG X, SUN J. A convenient approach for antibacterial polypeptoids featuring sulfonium and oligo (ethylene glycol) subunits [J]. Biomaterials Science,2020,8(24):6969-6977. doi: 10.1039/D0BM01384F [77] HU Y, ZHAO J, ZHANG J, ZHU Z, RAO J. Broad-spectrum bactericidal activity and remarkable selectivity of main-chain sulfonium-containing polymers with alternating sequences [J]. ACS Macro Letters,2021,10(8):990-995. doi: 10.1021/acsmacrolett.1c00340 [78] WANG X, WANG G, ZHAO J, ZHU Z, RAO J. Main-chain sulfonium-containing homopolymers with negligible hemolytic toxicity for eradication of bacterial and fungal biofilms [J]. ACS Macro Letters,2021,10(12):1643-1649. doi: 10.1021/acsmacrolett.1c00698 [79] HEMP S T, ALLEN JR M H, GREEN M D, LONG T E. Phosphonium-containing polyelectrolytes for nonviral gene delivery [J]. Biomacromolecules,2012,13(1):231-238. doi: 10.1021/bm201503a [80] ROSE V L, MASTROTTO F, MANTOVANI G. Phosphonium polymers for gene delivery [J]. Polymer Chemistry,2017,8(2):353-360. doi: 10.1039/C6PY01855F [81] XUE Y, XIAO H, ZHANG Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts [J]. International Journal of Molecular Sciences,2015,16(2):3626-3655. doi: 10.3390/ijms16023626 [82] ANTHIERENS T, BILLIET L, DEVLIEGHERE F, DU PREZ F. Poly(butylene adipate) functionalized with quaternary phosphonium groups as potential antimicrobial packaging material [J]. Innovative Food Science & Emerging Technologies,2012,15:81-85. [83] ZHOU H, TANG D, KANG X, YUAN H, YU Y, XIONG X, WU N, CHEN F, WANG X, XIAO H. Degradable pseudo conjugated polymer nanoparticles with NIR-II photothermal effect and cationic quaternary phosphonium structural bacteriostasis for anti-infection therapy [J]. Advanced Science,2022:2200732. [84] OUYANG J, BU Q, TAO N, CHEN M, LIU H, ZHOU J, LIU J, DENG B, KONG N, ZHANG X. A facile and general method for synthesis of antibiotic-free protein-based hydrogel: Wound dressing for the eradication of drug-resistant bacteria and biofilms [J]. Bioactive Materials,2022,18:446-458. doi: 10.1016/j.bioactmat.2022.03.033 [85] SAMANTARAY P K, MADRAS G, BOSE S. PVDF/PBSA membranes with strongly coupled phosphonium derivatives and graphene oxide on the surface towards antibacterial and antifouling activities [J]. Journal of Membrane Science,2018,548:203-214. doi: 10.1016/j.memsci.2017.11.018 [86] PENG H, ZHANG W H, HUNG W S, WANG N, SUN J, LEE K R, AN Q F, LIU C M, ZHAO Q. Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness [J]. Advanced Materials,2020,32(23):2001383. doi: 10.1002/adma.202001383 [87] CUTHBERT T J, HARRISON T D, RAGOGNA P J, GILLIES E R. Synthesis, properties, and antibacterial activity of polyphosphonium semi-interpenetrating networks [J]. Journal of Materials Chemistry B,2016,4(28):4872-4883. doi: 10.1039/C6TB00641H [88] CUTHBERT T J, HISEY B, HARRISON T D, TRANT J F, GILLIES E R, RAGOGNA P J. Surprising antibacterial activity and selectivity of hydrophilic polyphosphoniums featuring sugar and hydroxy substituents [J]. Angewandte Chemie International Edition,2018,57(39):12707-12710. doi: 10.1002/anie.201806412 [89] PALERMO E F, LIENKAMP K, GILLIES E R, RAGOGNA P J. Antibacterial activity of polymers: Discussions on the nature of amphiphilic balance [J]. Angewandte Chemie International Edition,2019,131(12):3728-3731. [90] GODOY-GALLARDO M, ECKHARD U, DELGADO L M, de ROO PUENTE Y J, HOYOS-NOGUÉS M, GIL F J, PEREZ R A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications [J]. Bioactive Materials,2021,6(12):4470-4490. doi: 10.1016/j.bioactmat.2021.04.033 [91] de Bruijn. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria [M]. USA: John Wiley & Sons, 2016. [92] LEMIRE J A, HARRISON J J, TURNER R J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications [J]. Nature Reviews Microbiology,2013,11(6):371-384. doi: 10.1038/nrmicro3028 [93] FRENCH S, PUDDEPHATT D, HABASH M, GLASAUER S. The dynamic nature of bacterial surfaces: Implications for metal-membrane interaction [J]. Critical Reviews in Microbiology,2013,39(2):196-217. doi: 10.3109/1040841X.2012.702098 [94] CHEN P, HUANG Z, LIANG J, CUI T, ZHANG X, MIAO B, YAN L T. Diffusion and directionality of charged nanoparticles on lipid bilayer membrane [J]. ACS Nano,2016,10(12):11541-11547. doi: 10.1021/acsnano.6b07563 [95] FENG Q L, WU J, CHEN G Q, CUI F, KIM T, KIM J. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus [J]. Journal of Biomedical Materials Research,2000,52(4):662-668. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 [96] JUNG W K, KOO H C, KIM K W, SHIN S, KIM S H, PARK Y H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli [J]. Applied and Environmental Microbiology,2008,74(7):2171-2178. doi: 10.1128/AEM.02001-07 [97] MUSTILA H, ALLAHVERDIYEVA Y, ISOJÄRVI J, ARO E, EISENHUT M. The bacterial-type [4Fe-4S] ferredoxin 7 has a regulatory function under photooxidative stress conditions in the cyanobacterium Synechocystis sp. PCC 6803 [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2014,1837(8):1293-1304. doi: 10.1016/j.bbabio.2014.04.006 [98] LONG Y M, HU L G, YAN X T, ZHAO X C, ZHOU Q F, CAI Y, JIANG G B. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli [J]. International Journal of Nanomedicine,2017,12:3193. doi: 10.2147/IJN.S132327 [99] YAN Y, ZHANG J, REN L, TANG C. Metal-containing and related polymers for biomedical applications [J]. Chemical Society Reviews,2016,45(19):5232-5263. doi: 10.1039/C6CS00026F [100] RONER M R, SHAHI K R, BAROT G, BATTIN A, CARRAHER C E. Preliminary results for the inhibition of pancreatic cancer cells by organotin polymers [J]. Journal of Inorganic and Organometallic Polymers and Materials,2009,19(3):410-414. doi: 10.1007/s10904-009-9275-7 [101] SELVI C, NARTOP D. Novel polymer anchored Cr(III) Schiff base complexes: Synthesis, characterization and antimicrobial properties [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,95:165-171. doi: 10.1016/j.saa.2012.04.079 [102] SINGH T, KHAN N U, SHREAZ S, HASHMI A A. Anticandidal activity of cobalt containing sunflower oil-based polymer [J]. Polymer Engineering & Science,2013,53(12):2650-2658. [103] ZHANG J, CHEN Y P, MILLER K P, GANEWATTA M S, BAM M, YAN Y, NAGARKATTI M, DECHO A W, TANG C. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria [J]. Journal of the American Chemical Society,2014,136(13):4873-4876. doi: 10.1021/ja5011338 [104] PAGENI P, YANG P, BAM M, ZHU T, CHEN Y P, DECHO A W, NAGARKATTI M, TANG C. Recyclable magnetic nanoparticles grafted with antimicrobial metallopolymer-antibiotic bioconjugates [J]. Biomaterials,2018,178:363-372. doi: 10.1016/j.biomaterials.2018.05.007 [105] ZHANG J, YAN J, PAGENI P, YAN Y, WIRTH A, CHEN Y P, QIAO Y, WANG Q, DECHO A W, TANG C. Anion-responsive metallopolymer hydrogels for healthcare applications [J]. Scientific Reports,2015,5(1):11914. doi: 10.1038/srep11914 [106] GAO L, HOU Y, WANG H, LI M, MA L, CHU Z, DONSKYI I S, HAAG R. A metal-ion-incorporated mussel-inspired poly(vinyl alcohol)-based polymer coating offers improved antibacterial activity and cellular mechanoresponse manipulation [J]. Angewandte Chemie International Edition,2022,61(21):e202201563. [107] NIE X, GAO F, YOU W, CHEN G, SHAO Q, WANG L H, HUANG W Q, XIA L, ZHANG Z, HONG C Y. Caging pyrophosphate structure blocks the cell wall synthesis to kill bacteria without detectable resistance [J]. Chemical Engineering Journal,2022,450:138373. doi: 10.1016/j.cej.2022.138373 [108] DUAN S, WU R, XIONG Y H, REN H M, LEI C, ZHAO Y Q, ZHANG X Y, XU F J. Multifunctional antimicrobial materials: From rational design to biomedical applications [J]. Progress in Materials Science,2022,125:100887. doi: 10.1016/j.pmatsci.2021.100887 [109] ZHENG L, LI J, YU M, JIA W, DUAN S, CAO D, DING X, YU B, ZHANG X, XU F J. Molecular sizes and antibacterial performance relationships of flexible ionic liquid derivatives [J]. Journal of the American Chemical Society,2020,142(47):20257-20269. doi: 10.1021/jacs.0c10771 [110] VALLIERES C, HOOK A L, HE Y, CRUCITTI V C, FIGUEREDO G, DAVIES C R, BURROUGHS L, WINKLER D A, WILDMAN R D, IRVINE D J, ALEXANDER M R, AVERY S V. Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration [J]. Science Advances,2020,6(23):e6574. doi: 10.1126/sciadv.aba6574 [111] TAKAGI J, AOKI K, TURNER B S, LAMONT S, LEHOUX S, KAVANAUGH N, GULATI M, VALLE AREVALO A, LAWRENCE T J, KIM C Y, BAKSHI B, ISHIHARA M, NOBILE C J, CUMMINGS R D, WOZNIAK D J, TIEMEYER M, HEVEY R, RIBBECK K. Mucin O-glycans are natural inhibitors of Candida albicans pathogenicity [J]. Nature Chemical Biology,2022,18(7):762-773. doi: 10.1038/s41589-022-01035-1 -