高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗菌阳离子聚合物的研究进展

朱欣怡 丁圣刚 聂旋 尤业字

朱欣怡, 丁圣刚, 聂 旋, 尤业字. 抗菌阳离子聚合物的研究进展[J]. 功能高分子学报,2023,36(3):1-19 doi: 10.14133/j.cnki.1008-9357.20221128001
引用本文: 朱欣怡, 丁圣刚, 聂 旋, 尤业字. 抗菌阳离子聚合物的研究进展[J]. 功能高分子学报,2023,36(3):1-19 doi: 10.14133/j.cnki.1008-9357.20221128001
ZHU Xinyi, DING Shenggang, NIE Xuan, YOU Yezi. Progress of Antibacterial Polycation[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20221128001
Citation: ZHU Xinyi, DING Shenggang, NIE Xuan, YOU Yezi. Progress of Antibacterial Polycation[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20221128001

抗菌阳离子聚合物的研究进展

doi: 10.14133/j.cnki.1008-9357.20221128001
基金项目: 国家自然科学基金(U22A20154, 52273113)
详细信息
    作者简介:

    朱欣怡(2000—),女,硕士生,主要研究方向为生物材料。E-mail:zxy00 zxy@mail.ustc.edu.cn

    聂旋,中国科学技术大学化学与材料科学学院博士后。2016年本科毕业于浙江工业大学,2021年获得中国科学技术大学博士学位(导师为尤业字教授)并从事博士后研究工作。目前主要研究方向为功能性生物材料及纳米药物的构建及应用,尤其是生物可降解的核酸递送材料、肿瘤微环境响应的智能材料、新型抗菌聚合物设计等领域,在Chemical Engineering JournalACS Applied Materials & Interfaces等期刊发表学术论文10余篇

    尤业字,中国科学技术大学化学与材料科学学院、中科院软物质化学重点实验室教授,博士生导师。2008年加入中国科学技术大学,2011年获得教育部新世纪优秀人才,2016年获得国家自然科学基金委杰出青年科学基金资助。多年来一直从事可控聚合与功能性生物材料设计与构筑研究工作,主持或参与多个科技部重点研发、基金委重点项目、基金委创新团队、联合创新基金与面上项目等基金。目前主要研究方向为高分子的精准合成、高分子智能药物与核酸蛋白质输送,在Nature MetabolismNature CommunicationsAdvanced MaterialsAngewandte ChemieJournal of the American Chemical Society等期刊发表学术论文150多篇

    通讯作者:

    聂 旋, E-mail:niexuan@ustc.edu.cn

    尤业字,E-mail:yzyou@ustc.edu.cn

  • 中图分类号: O63

Progress of Antibacterial Polycation

  • 摘要: 两亲性阳离子聚合物在抗细菌感染,尤其是抵抗细菌耐药、突破细菌生物膜障碍中发挥着重要作用。为了进一步增加阳离子聚合物与细菌等病原体的相互作用,在提高杀菌效率的同时提高生物相容性,研究者们设计与制备了一系列具有优良性能的阳离子聚合物。本文综述了近年来新型阳离子聚合物的设计、制备及其在抗病原体方面的应用,讨论了不同阳离子聚合物的作用机理与特点,并对该领域所面临的挑战进行了展望。

     

  • 图  1  常见阳离子抗菌聚合物的结构

    Figure  1.  Structures of common cationic antibacterial polymers

    图  2  (a) 酸响应嵌段共聚物选择性杀菌[45];(b) 多肽聚合物用于水产抗感染治疗[46];(c) 聚赖氨酸衍生物用于真菌感染治疗[51];(d) 基于噁唑啉的仿肽聚合物用于抵抗细菌耐药[52]

    Figure  2.  (a) Selective bacterial killing with acid-responsive block copolymer[45]; (b) Peptide polymer for anti-infection treatment of aquatic products[46]; (c) Polylysine derivatives for treatment of fungal infections[51]; (d) Poly(2-oxazoline) based functional mimics of peptides to combat the drug-resistant[52]

    图  3  (a) 生物可降解聚碳酸酯用于细菌膜选择性溶解[53];(b) 通过取代基调节高分子链疏水性实现高选择性杀菌[54];(c) 环状阳离子聚合物的构建及高效抗菌[58]

    Figure  3.  (a) Biodegradable polycarbonate for selective dissolution of bacterial membrane[53]; (b) High selectivity bacterial with different hydrophobic substitutes group[54]; (c) Construction of cyclic cationic polymers and application in bacterial killing[58]

    图  4  (a) 胍基盐修饰的柱芳烃用于高效抑制细菌生物膜[69];(b) 含有胍基侧基的聚碳酸酯实现无耐药杀菌[70];(c) 含有胍基侧基的噁唑啉用于抗真菌感染治疗[71]

    Figure  4.  (a) Guanidine modified column pillararene for efficient inhibition of bacterial biofilm[69]; (b) Polycarbonate with guanidine side group kills the bacterial without drug resistant[70]; (c) Guanidinium-functionalized poly (2-oxazoline) s combat the fungal infections[71]

    图  5  (a) 类肽鋶鎓聚合物的构建及在抗细菌感染治疗中的应用[75] ;(b) 环氧开环反应制备鋶鎓聚合物用于选择性杀菌[77];(c) 利用巯基-烯点击反应制备鋶鎓聚合物用于抗生物膜[78]

    Figure  5.  (a) The construction of polysulfoniums-based functional mimics of peptides in bacterial killing[75]; (b) Polysulfoniums through the reaction of epoxy ring opening for selective bacterial killing[77]; (c) Polysulfoniums through thiol-ene click reaction for anti-biofilm[78]

    图  6  (a) 阳离子聚合物联合光热效应用于抗细菌感染治疗[83];(b) 含有季膦盐的蛋白质水凝胶在伤口修复上的应用[84];(c) 季膦盐改性的超渗透抗菌聚酰胺复合膜[86]

    Figure  6.  (a) Cationic polymer combined with photothermal therapy for treatment of bacterial infection[83]; (b) Phosphonium-containing protein hydrogel for wound dressing[84]; (c) Phosphonium modification improves the antibacterial and permeation activity of polyamide composite membranes[86]

    图  7  (a) 二茂钴阳离子聚合物降低β-内酰胺药物耐药性[103];(b) 可回收的金属-抗生素偶联用于抗细菌感染治疗[104];(c) 基于钴离子配位抗菌表面的构建及抗菌应用[106]

    Figure  7.  (a) Metallopolymers decrease the drug-resistant of β-Lactam[103]; (b) recyclable magnetic nanoparticles grafted with antimicrobial metallopolymer-antibiotic bioconjugates for antibacterial therapy[104]; (c) The construction of antibacterial surface based on cobalt ion[106]

    图  8  含锌阳离子聚合物的(a)合成及(b)细胞壁合成抑制[107]

    Figure  8.  (a) Synthesis of zinc containing cationic polymers and (b) inhibition of cell wall synthesis[107]

  • [1] LARSSON D, FLACH C F. Antibiotic resistance in the environment [J]. Nature Reviews Microbiology,2022,20(5):257-269. doi: 10.1038/s41579-021-00649-x
    [2] PATERSON D L, HARRIS P N. Colistin resistance: A major breach in our last line of defence [J]. The Lancet Infectious Diseases,2016,16(2):132-133. doi: 10.1016/S1473-3099(15)00463-6
    [3] LI W, SEPAROVIC F, O'BRIEN-SIMPSON N M, WADE J D. Chemically modified and conjugated antimicrobial peptides against superbugs [J]. Chemical Society Reviews,2021,50(8):4932-4973. doi: 10.1039/D0CS01026J
    [4] BUSH K, COURVALIN P, DANTAS G, DAVIES J, EISENSTEIN B, HUOVINEN P, JACOBY G A, KISHONY R, KREISWIRTH B N, KUTTER E. Tackling antibiotic resistance [J]. Nature Reviews Microbiology,2011,9(12):894-896. doi: 10.1038/nrmicro2693
    [5] HOFER U. The cost of antimicrobial resistance [J]. Nature Reviews Microbiology,2019,17(1):3. doi: 10.1038/s41579-018-0125-x
    [6] GROUP W P P L W. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis [J]. The Lancet Infectious Diseases,2018,18(3):318-327. doi: 10.1016/S1473-3099(17)30753-3
    [7] BILLINGS N, BIRJINIUK A, SAMAD T S, DOYLE P S, RIBBECK K. Material properties of biofilms: A review of methods for understanding permeability and mechanics [J]. Reports on Progress in Physics,2015,78(3):036601. doi: 10.1088/0034-4885/78/3/036601
    [8] COSTERTON J W, STEWART P S, GREENBERG E P. Bacterial biofilms: A common cause of persistent infections [J]. Science,1999,284(5418):1318-1322. doi: 10.1126/science.284.5418.1318
    [9] MAKABENTA J M V, NABAWY A, LI C H, SCHMIDT-MALAN S, PATEL R, ROTELLO V M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections [J]. Nature Reviews Microbiology,2021,19(1):23-36. doi: 10.1038/s41579-020-0420-1
    [10] CIOFU O, MOSER C, JENSEN P Ø, HØIBY N. Tolerance and resistance of microbial biofilms [J]. Nature Reviews Microbiology,2022,20:621-635. doi: 10.1038/s41579-022-00682-4
    [11] 王龙海, 张泽, 曾天佑, 夏磊, 聂旋, 陈光, 尤业字. 响应性阳离子聚合物及聚合物纳米胶束基因载体 [J]. 高分子学报,2017,12(12):1883-1904. doi: 10.11777/j.issn1000-3304.2017.17240

    WANG L H, ZHANG Z, ZENG T Y, XIA L, NIE X, CHEN G, YOU Y Z. Responsive cationic polymer and cationic nanomicelle vectors for gene delivery [J]. Acta Polymerica Sinica,2017,12(12):1883-1904. doi: 10.11777/j.issn1000-3304.2017.17240
    [12] KIM K, CHEN W C, HEO Y, WANG Y. Polycations and their biomedical applications [J]. Progress in Polymer Science,2016,60:18-50. doi: 10.1016/j.progpolymsci.2016.05.004
    [13] 梁敬时, 曾佳铭, 李俊杰, 佘珏芹, 谭瑞轩, 刘博. 阳离子抗菌聚合物[J]. 化学进展, 2019, 31(9): 1263-1282.

    LIANG J S, ZENG J M, LI J J, SHE J Q, TAN R X, LIU B. Cationic antimicrobial polymers[J]. Progress in Chemistry, 2019, 31(9): 1263-1282.
    [14] JUDZEWITSCH P R, NGUYEN T K, SHANMUGAM S, WONG E H, BOYER C. Towards sequence-controlled antimicrobial polymers: Effect of polymer block order on antimicrobial activity [J]. Angewandte Chemie,2018,130(17):4649-4654. doi: 10.1002/ange.201713036
    [15] LING L L, SCHNEIDER T, PEOPLES A J, SPOERING A L, ENGELS I, CONLON B P, MUELLER A, SCHÄBERLE T F, HUGHES D E, EPSTEIN S. A new antibiotic kills pathogens without detectable resistance [J]. Nature,2015,517(7535):455-459. doi: 10.1038/nature14098
    [16] HURDLE J G, O'NEILL A J, CHOPRA I, LEE R E. Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections [J]. Nature Reviews Microbiology,2011,9(1):62-75. doi: 10.1038/nrmicro2474
    [17] MUZZARELLI R A, BOUDRANT J, MEYER D, MANNO N, DEMARCHIS M, PAOLETTI M G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial [J]. Carbohydrate Polymers,2012,87(2):995-1012. doi: 10.1016/j.carbpol.2011.09.063
    [18] DODANE V, VILIVALAM V D. Pharmaceutical applications of chitosan [J]. Pharmaceutical Science & Technology Today,1998,1(6):246-253.
    [19] RINAUDO M. Chitin and chitosan: Properties and applications [J]. Progress in Polymer Science,2006,31(7):603-632. doi: 10.1016/j.progpolymsci.2006.06.001
    [20] KEAN T, THANOU M. Biodegradation, biodistribution and toxicity of chitosan [J]. Advanced Drug Delivery Reviews,2010,62(1):3-11. doi: 10.1016/j.addr.2009.09.004
    [21] YANG T C, CHOU C C, LI C F. Antibacterial activity of N-alkylated disaccharide chitosan derivatives [J]. International Journal of Food Microbiology,2005,97(3):237-245. doi: 10.1016/S0168-1605(03)00083-7
    [22] WANG W, MENG Q, LI Q, LIU J, ZHOU M, JIN Z, ZHAO K. Chitosan derivatives and their application in biomedicine [J]. International Journal of Molecular Sciences,2020,21(2):487. doi: 10.3390/ijms21020487
    [23] CHUNG Y C, CHEN C Y. Antibacterial characteristics and activity of acid-soluble chitosan [J]. Bioresource Technology,2008,99(8):2806-2814. doi: 10.1016/j.biortech.2007.06.044
    [24] COSTA E, SILVA S, PINA C, TAVARIA F, PINTADO M. Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens [J]. Anaerobe,2012,18(3):305-309. doi: 10.1016/j.anaerobe.2012.04.009
    [25] MANSILLA A Y, ALBERTENGO L, RODRíGUEZ M S, DEBBAUDT A, ZÚÑIGA A, CASALONGUÉ C. Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000 [J]. Applied Microbiology and Biotechnology,2013,97(15):6957-6966. doi: 10.1007/s00253-013-4993-8
    [26] KONG M, CHEN X G, LIU C S, LIU C G, MENG X H. Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli [J]. Colloids and Surfaces B:Biointerfaces,2008,65(2):197-202. doi: 10.1016/j.colsurfb.2008.04.003
    [27] KIM K W, MIN B, KIM Y T, KIMMEL R M, COOKSEY K, PARK S. Antimicrobial activity against foodborne pathogens of chitosan biopolymer films of different molecular weights [J]. LWT-Food Science and Technology,2011,44(2):565-569. doi: 10.1016/j.lwt.2010.08.001
    [28] HELANDER I, NURMIAHO-LASSILA E L, AHVENAINEN R, RHOADES J, ROLLER S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria [J]. International Journal of Food Microbiology,2001,71(2-3):235-244. doi: 10.1016/S0168-1605(01)00609-2
    [29] RAZMI F A, NGADI N, WONG S, INUWA I M, OPOTU L A. Kinetics, thermodynamics, isotherm and regeneration analysis of chitosan modified pandan adsorbent [J]. Journal of Cleaner Production,2019,231:98-109. doi: 10.1016/j.jclepro.2019.05.228
    [30] REN L, XU J, ZHANG Y, ZHOU J, CHEN D, CHANG Z. Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium [J]. International Journal of Biological Macromolecules,2019,135:898-906. doi: 10.1016/j.ijbiomac.2019.06.007
    [31] KUMAR M R, MUZZARELLI R A, MUZZARELLI C, SASHIWA H, DOMB A. Chitosan chemistry and pharmaceutical perspectives [J]. Chemical Reviews,2004,104(12):6017-6084. doi: 10.1021/cr030441b
    [32] CHRISTOU C, PHILIPPOU K, KRASIA-CHRISTOFOROU T, PASHALIDIS I. Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers [J]. Carbohydrate Polymers,2019,219:298-305. doi: 10.1016/j.carbpol.2019.05.041
    [33] IFTIME M M, AILIESEI G L, UNGUREANU E, MARIN L. Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention [J]. Carbohydrate Polymers,2019,223:115040. doi: 10.1016/j.carbpol.2019.115040
    [34] LIN Y H, KANG P L, XIN W, YEN C S, HWANG L C, CHEN C J, LIU J T, CHANG S J. Preparation and evaluation of chitosan biocompatible electronic skin [J]. Computers in Industry,2018,100:1-6. doi: 10.1016/j.compind.2018.03.040
    [35] UPADHYAYA L, SINGH J, AGARWAL V, TEWARI R P. Biomedical applications of carboxymethyl chitosans [J]. Carbohydrate Polymers,2013,91(1):452-466. doi: 10.1016/j.carbpol.2012.07.076
    [36] BROGDEN K A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? [J]. Nature Reviews Microbiology,2005,3(3):238-250. doi: 10.1038/nrmicro1098
    [37] ZASLOFF M. Antimicrobial peptides of multicellular organisms [J]. Nature,2002,415(6870):389-395. doi: 10.1038/415389a
    [38] POLYANSKY A A, RAMASWAMY R, VOLYNSKY P E, SBALZARINI I F, MARRINK S J, EFREMOV R G. Antimicrobial peptides induce growth of phosphatidylglycerol domains in a model bacterial membrane [J]. The Journal of Physical Chemistry Letters,2010,1(20):3108-3111. doi: 10.1021/jz101163e
    [39] MATSUZAKI K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes [J]. Biochimica et Biophysica Acta (BBA): Biomembranes,1999,1462(1-2):1-10. doi: 10.1016/S0005-2736(99)00197-2
    [40] YANG L, WEISS T M, LEHRER R I, HUANG H W. Crystallization of antimicrobial pores in membranes: Magainin and protegrin [J]. Biophysical Journal,2000,79(4):2002-2009. doi: 10.1016/S0006-3495(00)76448-4
    [41] NGUYEN L T, HANEY E F, VOGEL H J. The expanding scope of antimicrobial peptide structures and their modes of action [J]. Trends in Biotechnology,2011,29(9):464-472. doi: 10.1016/j.tibtech.2011.05.001
    [42] ZHANG L J, GALLO R L. Antimicrobial peptides [J]. Current Biology,2016,26(1):R14-R19. doi: 10.1016/j.cub.2015.11.017
    [43] LI S, WANG Y, XUE Z, JIA Y, LI R, HE C, CHEN H. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review [J]. Trends in Food Science & Technology,2021,109:103-115.
    [44] WANG D Y, YANG G, van DER MEI H C, REN Y, BUSSCHER H J, SHI L. Liposomes with water as a pH-responsive functionality for targeting of acidic tumor and infection sites [J]. Angewandte Chemie,2021,133(32):17855-17860. doi: 10.1002/ange.202106329
    [45] JIANG Y, YANG X, ZHU R, HU K, LAN W W, WU F, YANG L. Acid-activated antimicrobial random copolymers: A mechanism-guided design of antimicrobial peptide mimics [J]. Macromolecules,2013,46(10):3959-3964. doi: 10.1021/ma400484b
    [46] MA P, WU Y, JIANG W, SHAO N, ZHOU M, CHEN Y, XIE J, QIAO Z, LIU R. Biodegradable peptide polymers as alternatives to antibiotics used in aquaculture [J]. Biomaterials Science,2022,10(15):4193-4207. doi: 10.1039/D2BM00672C
    [47] ZHAO S, ADAMIAK J W, BONIFAY V, MEHLA J, ZGURSKAYA H I, TAN D S. Defining new chemical space for drug penetration into Gram-negative bacteria [J]. Nature Chemical Biology,2020,16(12):1293-1302. doi: 10.1038/s41589-020-00674-6
    [48] SEWELL E W C, BROWN E D. Taking aim at wall teichoic acid synthesis: New biology and new leads for antibiotics [J]. The Journal of Antibiotics,2014,67(1):43-51. doi: 10.1038/ja.2013.100
    [49] ODDS F C, BROWN A J P, GOW N A R. Antifungal agents: Mechanisms of action [J]. Trends in Microbiology,2003,11(6):272-279. doi: 10.1016/S0966-842X(03)00117-3
    [50] BROWN L, WOLF J M, PRADOS-ROSALES R, CASADEVALL A. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi [J]. Nature Reviews Microbiology,2015,13(10):620-630. doi: 10.1038/nrmicro3480
    [51] ZHANG D, SHI C, CONG Z, CHEN Q, BI Y, ZHANG J, MA K, LIU S, GU J, CHEN M. Microbial metabolite inspired β-peptide polymers displaying potent and selective sntifungal activity [J]. Advanced Science,2022,9(14):2104871.
    [52] ZHOU M, QIAN Y, XIE J, ZHANG W, JIANG W, XIAO X, CHEN S, DAI C, CONG Z, JI Z. Poly (2-oxazoline)-based functional peptide mimics: Eradicating MRSA infections and persisters while alleviating antimicrobial resistance [J]. Angewandte Chemie International Edition,2020,59(16):6412-6419. doi: 10.1002/anie.202000505
    [53] JIAO Y, NIU L N, MA S, LI J, TAY F R, CHEN J H. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance [J]. Progress in Polymer Science,2017,71:53-90. doi: 10.1016/j.progpolymsci.2017.03.001
    [54] NEDERBERG F, ZHANG Y, TAN J P, XU K, WANG H, YANG C, GAO S, GUO X D, FUKUSHIMA K, LI L. Biodegradable nanostructures with selective lysis of microbial membranes [J]. Nature Chemistry,2011,3(5):409-414. doi: 10.1038/nchem.1012
    [55] CHIN W, YANG C, NG V W L, HUANG Y, CHENG J, TONG Y W, COADY D J, FAN W, HEDRICK J L, YANG Y Y. Biodegradable broad-spectrum antimicrobial polycarbonates: Investigating the role of chemical structure on activity and selectivity [J]. Macromolecules,2013,46(22):8797-8807. doi: 10.1021/ma4019685
    [56] YAN S, CHEN S, GOU X, YANG J, AN J, JIN X, YANG Y W, CHEN L, GAO H. Biodegradable supramolecular materials based on cationic polyaspartamides and pillar [5] arene for targeting Gram-positive bacteria and mitigating antimicrobial resistance [J]. Advanced Functional Materials,2019,29(38):1904683. doi: 10.1002/adfm.201904683
    [57] ZHANG Z, NIE X, WANG F, CHEN G, HUANG W Q, XIA L, ZHANG W J, HAO Z Y, HONG C Y, WANG L H, YOU Y Z. Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers [J]. Nature Communications,2020,11(1):3654. doi: 10.1038/s41467-020-17474-0
    [58] WU B, YOU W, WANG H L, ZHANG Z, NIE X, WANG F, YOU Y Z. Cyclic topology enhances the killing activity of polycations against planktonic and biofilm bacteria [J]. Journal of Materials Chemistry B,2022,10(25):4823-4831. doi: 10.1039/D2TB00194B
    [59] RAHMAN M A, BAM M, LUAT E, JUI M S, GANEWATTA M S, SHOKFAI T, NAGARKATTI M, DECHO A W, TANG C. Macromolecular-clustered facial amphiphilic antimicrobials [J]. Nature Communications,2018,9:5231. doi: 10.1038/s41467-018-07651-7
    [60] KIM S H, SEMENYA D, CASTAGNOLO D. Antimicrobial drugs bearing guanidine moieties: A review [J]. European Journal of Medicinal Chemistry,2021,216:113293. doi: 10.1016/j.ejmech.2021.113293
    [61] MUTTATHUKATTIL A N, SRINIVASAN S, HALDER A, REDDY G. Role of guanidinium-carboxylate ion interaction in enzyme inhibition with implications for drug design [J]. The Journal of Physical Chemistry B,2019,123(44):9302-9311. doi: 10.1021/acs.jpcb.9b06130
    [62] YAMADA T, LIU X, ENGLERT U, YAMANE H, DRONSKOWSKI R. Solid-state structure of free base guanidine achieved at last [J]. Chemistry: A European Journal,2009,15(23):5651-5655. doi: 10.1002/chem.200900508
    [63] ECKERT-MAKSIĆ M, GLASOVAC Z, TROŠELJ P, KÜTT A, RODIMA T, KOPPEL I, KOPPEL I A. Basicity of guanidines with heteroalkyl side chains in acetonitrile[J]. Wiley Online Library, 2008, 30: 5176-5184.
    [64] ROTHBARD J B, JESSOP T C, LEWIS R S, MURRAY B A, WENDER P A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells [J]. Journal of the American Chemical Society,2004,126(31):9506-9507. doi: 10.1021/ja0482536
    [65] LOCOCK K E, MICHL T D, VALENTIN J D, VASILEV K, HAYBALL J D, QU Y, TRAVEN A, GRIESSER H J, MEAGHER L, HAEUSSLER M. Guanylated polymethacrylates: A class of potent antimicrobial polymers with low hemolytic activity [J]. Biomacromolecules,2013,14(11):4021-4031. doi: 10.1021/bm401128r
    [66] MATTHEIS C, WANG H, MEISTER C, AGARWAL S. Effect of guanidinylation on the properties of poly (2-aminoethylmethacrylate)-based antibacterial materials [J]. Macromolecular Bioscience,2013,13(2):242-255. doi: 10.1002/mabi.201200217
    [67] CHINDERA K, MAHATO M, KUMAR SHARMA A, HORSLEY H, KLOC-MUNIAK K, KAMARUZZAMAN N F, KUMAR S, MCFARLANE A, STACH J, BENTIN T, GOOD L. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes [J]. Scientific Reports,2016,6:23121. doi: 10.1038/srep23121
    [68] SU Y, ZHI Z, GAO Q, XIE M, YU M, LEI B, LI P, MA P X. Autoclaving-derived surface coating with in vitro and in vivo antimicrobial and antibiofilm efficacies [J]. Advanced Healthcare Materials,2017,6(6):1601173. doi: 10.1002/adhm.201601173
    [69] GUO S, HUANG Q, CHEN Y, WEI J, ZHENG J, WANG L, WANG Y, WANG R. Synthesis and bioactivity of guanidinium-functionalized pillar [5] arene as a biofilm disruptor [J]. Angewandte Chemie International Edition,2021,60(2):618-623. doi: 10.1002/anie.202013975
    [70] CHIN W, ZHONG G, PU Q, YANG C, LOU W, de SESSIONS P F, PERIASWAMY B, LEE A, LIANG Z C, DING X. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset [J]. Nature Communications,2018,9(1):917. doi: 10.1038/s41467-018-03325-6
    [71] JIANG W, ZHOU M, CONG Z, XIE J, ZHANG W, CHEN S, ZOU J, JI Z, SHAO N, CHEN X. Short guanidinium-functionalized poly(2-oxazoline)s displaying potent therapeutic efficacy on drug-resistant fungal infections [J]. Angewandte Chemie International Edition,2022,134(17):e202200778.
    [72] HAMZA A, BROCH H, VASILESCU D. Quantum molecular study of S-methylated forms of sulfur mustard [J]. Chemical Physics,1996,204(2-3):373-389. doi: 10.1016/0301-0104(95)00338-X
    [73] WANG S W, LIU W, COLBY R H. Counterion dynamics in polyurethane-carboxylate ionomers with ionic liquid counterions [J]. Chemistry of Materials,2011,23(7):1862-1873. doi: 10.1021/cm103548t
    [74] KANAZAWA A, IKEDA T, ENDO T. Antibacterial activity of polymeric sulfonium salts [J]. Journal of Polymer Science Part A:Polymer Chemistry,1993,31(11):2873-2876. doi: 10.1002/pola.1993.080311126
    [75] SUN J, LI M, LIN M, ZHANG B, CHEN X. High antibacterial activity and selectivity of the versatile polysulfoniums that combat drug resistance [J]. Advanced Materials,2021,33(41):2104402. doi: 10.1002/adma.202104402
    [76] ZHANG B, LI M, LIN M, YANG X, SUN J. A convenient approach for antibacterial polypeptoids featuring sulfonium and oligo (ethylene glycol) subunits [J]. Biomaterials Science,2020,8(24):6969-6977. doi: 10.1039/D0BM01384F
    [77] HU Y, ZHAO J, ZHANG J, ZHU Z, RAO J. Broad-spectrum bactericidal activity and remarkable selectivity of main-chain sulfonium-containing polymers with alternating sequences [J]. ACS Macro Letters,2021,10(8):990-995. doi: 10.1021/acsmacrolett.1c00340
    [78] WANG X, WANG G, ZHAO J, ZHU Z, RAO J. Main-chain sulfonium-containing homopolymers with negligible hemolytic toxicity for eradication of bacterial and fungal biofilms [J]. ACS Macro Letters,2021,10(12):1643-1649. doi: 10.1021/acsmacrolett.1c00698
    [79] HEMP S T, ALLEN JR M H, GREEN M D, LONG T E. Phosphonium-containing polyelectrolytes for nonviral gene delivery [J]. Biomacromolecules,2012,13(1):231-238. doi: 10.1021/bm201503a
    [80] ROSE V L, MASTROTTO F, MANTOVANI G. Phosphonium polymers for gene delivery [J]. Polymer Chemistry,2017,8(2):353-360. doi: 10.1039/C6PY01855F
    [81] XUE Y, XIAO H, ZHANG Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts [J]. International Journal of Molecular Sciences,2015,16(2):3626-3655. doi: 10.3390/ijms16023626
    [82] ANTHIERENS T, BILLIET L, DEVLIEGHERE F, DU PREZ F. Poly(butylene adipate) functionalized with quaternary phosphonium groups as potential antimicrobial packaging material [J]. Innovative Food Science & Emerging Technologies,2012,15:81-85.
    [83] ZHOU H, TANG D, KANG X, YUAN H, YU Y, XIONG X, WU N, CHEN F, WANG X, XIAO H. Degradable pseudo conjugated polymer nanoparticles with NIR-II photothermal effect and cationic quaternary phosphonium structural bacteriostasis for anti-infection therapy [J]. Advanced Science,2022:2200732.
    [84] OUYANG J, BU Q, TAO N, CHEN M, LIU H, ZHOU J, LIU J, DENG B, KONG N, ZHANG X. A facile and general method for synthesis of antibiotic-free protein-based hydrogel: Wound dressing for the eradication of drug-resistant bacteria and biofilms [J]. Bioactive Materials,2022,18:446-458. doi: 10.1016/j.bioactmat.2022.03.033
    [85] SAMANTARAY P K, MADRAS G, BOSE S. PVDF/PBSA membranes with strongly coupled phosphonium derivatives and graphene oxide on the surface towards antibacterial and antifouling activities [J]. Journal of Membrane Science,2018,548:203-214. doi: 10.1016/j.memsci.2017.11.018
    [86] PENG H, ZHANG W H, HUNG W S, WANG N, SUN J, LEE K R, AN Q F, LIU C M, ZHAO Q. Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness [J]. Advanced Materials,2020,32(23):2001383. doi: 10.1002/adma.202001383
    [87] CUTHBERT T J, HARRISON T D, RAGOGNA P J, GILLIES E R. Synthesis, properties, and antibacterial activity of polyphosphonium semi-interpenetrating networks [J]. Journal of Materials Chemistry B,2016,4(28):4872-4883. doi: 10.1039/C6TB00641H
    [88] CUTHBERT T J, HISEY B, HARRISON T D, TRANT J F, GILLIES E R, RAGOGNA P J. Surprising antibacterial activity and selectivity of hydrophilic polyphosphoniums featuring sugar and hydroxy substituents [J]. Angewandte Chemie International Edition,2018,57(39):12707-12710. doi: 10.1002/anie.201806412
    [89] PALERMO E F, LIENKAMP K, GILLIES E R, RAGOGNA P J. Antibacterial activity of polymers: Discussions on the nature of amphiphilic balance [J]. Angewandte Chemie International Edition,2019,131(12):3728-3731.
    [90] GODOY-GALLARDO M, ECKHARD U, DELGADO L M, de ROO PUENTE Y J, HOYOS-NOGUÉS M, GIL F J, PEREZ R A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications [J]. Bioactive Materials,2021,6(12):4470-4490. doi: 10.1016/j.bioactmat.2021.04.033
    [91] de Bruijn. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria [M]. USA: John Wiley & Sons, 2016.
    [92] LEMIRE J A, HARRISON J J, TURNER R J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications [J]. Nature Reviews Microbiology,2013,11(6):371-384. doi: 10.1038/nrmicro3028
    [93] FRENCH S, PUDDEPHATT D, HABASH M, GLASAUER S. The dynamic nature of bacterial surfaces: Implications for metal-membrane interaction [J]. Critical Reviews in Microbiology,2013,39(2):196-217. doi: 10.3109/1040841X.2012.702098
    [94] CHEN P, HUANG Z, LIANG J, CUI T, ZHANG X, MIAO B, YAN L T. Diffusion and directionality of charged nanoparticles on lipid bilayer membrane [J]. ACS Nano,2016,10(12):11541-11547. doi: 10.1021/acsnano.6b07563
    [95] FENG Q L, WU J, CHEN G Q, CUI F, KIM T, KIM J. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus [J]. Journal of Biomedical Materials Research,2000,52(4):662-668. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
    [96] JUNG W K, KOO H C, KIM K W, SHIN S, KIM S H, PARK Y H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli [J]. Applied and Environmental Microbiology,2008,74(7):2171-2178. doi: 10.1128/AEM.02001-07
    [97] MUSTILA H, ALLAHVERDIYEVA Y, ISOJÄRVI J, ARO E, EISENHUT M. The bacterial-type [4Fe-4S] ferredoxin 7 has a regulatory function under photooxidative stress conditions in the cyanobacterium Synechocystis sp. PCC 6803 [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2014,1837(8):1293-1304. doi: 10.1016/j.bbabio.2014.04.006
    [98] LONG Y M, HU L G, YAN X T, ZHAO X C, ZHOU Q F, CAI Y, JIANG G B. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli [J]. International Journal of Nanomedicine,2017,12:3193. doi: 10.2147/IJN.S132327
    [99] YAN Y, ZHANG J, REN L, TANG C. Metal-containing and related polymers for biomedical applications [J]. Chemical Society Reviews,2016,45(19):5232-5263. doi: 10.1039/C6CS00026F
    [100] RONER M R, SHAHI K R, BAROT G, BATTIN A, CARRAHER C E. Preliminary results for the inhibition of pancreatic cancer cells by organotin polymers [J]. Journal of Inorganic and Organometallic Polymers and Materials,2009,19(3):410-414. doi: 10.1007/s10904-009-9275-7
    [101] SELVI C, NARTOP D. Novel polymer anchored Cr(III) Schiff base complexes: Synthesis, characterization and antimicrobial properties [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,95:165-171. doi: 10.1016/j.saa.2012.04.079
    [102] SINGH T, KHAN N U, SHREAZ S, HASHMI A A. Anticandidal activity of cobalt containing sunflower oil-based polymer [J]. Polymer Engineering & Science,2013,53(12):2650-2658.
    [103] ZHANG J, CHEN Y P, MILLER K P, GANEWATTA M S, BAM M, YAN Y, NAGARKATTI M, DECHO A W, TANG C. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria [J]. Journal of the American Chemical Society,2014,136(13):4873-4876. doi: 10.1021/ja5011338
    [104] PAGENI P, YANG P, BAM M, ZHU T, CHEN Y P, DECHO A W, NAGARKATTI M, TANG C. Recyclable magnetic nanoparticles grafted with antimicrobial metallopolymer-antibiotic bioconjugates [J]. Biomaterials,2018,178:363-372. doi: 10.1016/j.biomaterials.2018.05.007
    [105] ZHANG J, YAN J, PAGENI P, YAN Y, WIRTH A, CHEN Y P, QIAO Y, WANG Q, DECHO A W, TANG C. Anion-responsive metallopolymer hydrogels for healthcare applications [J]. Scientific Reports,2015,5(1):11914. doi: 10.1038/srep11914
    [106] GAO L, HOU Y, WANG H, LI M, MA L, CHU Z, DONSKYI I S, HAAG R. A metal-ion-incorporated mussel-inspired poly(vinyl alcohol)-based polymer coating offers improved antibacterial activity and cellular mechanoresponse manipulation [J]. Angewandte Chemie International Edition,2022,61(21):e202201563.
    [107] NIE X, GAO F, YOU W, CHEN G, SHAO Q, WANG L H, HUANG W Q, XIA L, ZHANG Z, HONG C Y. Caging pyrophosphate structure blocks the cell wall synthesis to kill bacteria without detectable resistance [J]. Chemical Engineering Journal,2022,450:138373. doi: 10.1016/j.cej.2022.138373
    [108] DUAN S, WU R, XIONG Y H, REN H M, LEI C, ZHAO Y Q, ZHANG X Y, XU F J. Multifunctional antimicrobial materials: From rational design to biomedical applications [J]. Progress in Materials Science,2022,125:100887. doi: 10.1016/j.pmatsci.2021.100887
    [109] ZHENG L, LI J, YU M, JIA W, DUAN S, CAO D, DING X, YU B, ZHANG X, XU F J. Molecular sizes and antibacterial performance relationships of flexible ionic liquid derivatives [J]. Journal of the American Chemical Society,2020,142(47):20257-20269. doi: 10.1021/jacs.0c10771
    [110] VALLIERES C, HOOK A L, HE Y, CRUCITTI V C, FIGUEREDO G, DAVIES C R, BURROUGHS L, WINKLER D A, WILDMAN R D, IRVINE D J, ALEXANDER M R, AVERY S V. Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration [J]. Science Advances,2020,6(23):e6574. doi: 10.1126/sciadv.aba6574
    [111] TAKAGI J, AOKI K, TURNER B S, LAMONT S, LEHOUX S, KAVANAUGH N, GULATI M, VALLE AREVALO A, LAWRENCE T J, KIM C Y, BAKSHI B, ISHIHARA M, NOBILE C J, CUMMINGS R D, WOZNIAK D J, TIEMEYER M, HEVEY R, RIBBECK K. Mucin O-glycans are natural inhibitors of Candida albicans pathogenicity [J]. Nature Chemical Biology,2022,18(7):762-773. doi: 10.1038/s41589-022-01035-1
  • 加载中
图(8)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  136
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-28
  • 录用日期:  2023-01-13
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回