高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偶氮苯高分子光控可逆黏合剂的制备及性能

陈佳慧 袁晨瑞 吴泽宏 陈韬 吴思

陈佳慧, 袁晨瑞, 吴泽宏, 陈 韬, 吴 思. 偶氮苯高分子光控可逆黏合剂的制备及性能[J]. 功能高分子学报,2023,36(3):293-301 doi: 10.14133/j.cnki.1008-9357.20221107002
引用本文: 陈佳慧, 袁晨瑞, 吴泽宏, 陈 韬, 吴 思. 偶氮苯高分子光控可逆黏合剂的制备及性能[J]. 功能高分子学报,2023,36(3):293-301 doi: 10.14133/j.cnki.1008-9357.20221107002
CHEN Jiahui, YUAN Chenrui, WU Zehong, CHEN Tao, WU Si. Preparation and Properties of Light-Controlled Reversible Adhesives of Azopolymers[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20221107002
Citation: CHEN Jiahui, YUAN Chenrui, WU Zehong, CHEN Tao, WU Si. Preparation and Properties of Light-Controlled Reversible Adhesives of Azopolymers[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20221107002

偶氮苯高分子光控可逆黏合剂的制备及性能

doi: 10.14133/j.cnki.1008-9357.20221107002
基金项目: 合肥市自然科学基金(2021013);国家自然科学基金重点国际(地区)合作研究项目(52120105004);国家自然科学基金面上项目(52073268);中央高校基本科研业务费专项资金资助项目(WK3450000006,WK2060190102)
详细信息
    作者简介:

    陈佳慧(1999—),女,安徽安庆人,硕士生,主要研究方向为光控可逆黏合剂。E-mail:cjh1999@mail.ustc.edu.cn

    吴思,博士,中国科学技术大学教授,博士生导师,从事光响应高分子材料的开发,并探索这些光响应高分子在可修复材料、可重构材料、生物医学、能源、信息、功能涂层、和微纳米结构制备等方面的应用。迄今共发表研究论文篇一百余篇,其中以通讯作者在Nat Chem, Nat Commun, Adv Mater, Angew Chem Int EdJ Am Chem Soc等杂志上发表了多篇论文

    通讯作者:

    吴 思, E-mail:siwu@ustc.edu.cn

  • 中图分类号: O63

Preparation and Properties of Light-Controlled Reversible Adhesives of Azopolymers

  • 摘要: 通过原子转移自由基聚合(ATRP)制备了一种能在紫外光和可见光下发生固液转变的可逆黏合剂,其主链结构为甲基丙烯酸甲酯,侧链为以6个亚甲基为间隔基和短链聚乙二醇(PEG)为尾基的偶氮苯聚合物(PAzo-PEG)。偶氮苯基团在紫外光和可见光的辐照下发生可逆的顺反异构。采用紫外-可见吸收光谱研究了PAzo-PEG的可逆光致异构过程,用差示扫描量热仪(DSC)研究其固液转变。结果表明:反式异构体的Tg高于室温,顺式异构体的Tg低于室温,PAzo-PEG 在光照下宏观表现出可逆固液转变的现象。固态和液态的 PAzo-PEG 不同的黏附能力赋予了 PAzo-PEG 光控可逆黏合的性能。实验测得其反式状态下最大黏附强度能达到 0.97 MPa,而顺式状态下PAzo-PEG的黏附强度降低到 0.03 MPa。在3个黏附循环后其黏附强度仍能保持初始黏附强度的80%。

     

  • 图  1  PAzo-PEG 的(a)合成路线;(b) 1H-NMR 谱图和(c) GPC曲线

    Figure  1.  (a) Synthetic route, (b) 1H-NMR spectrum and (c) GPC curve of PAzo-PEG

    图  2  (a)PAzo-PEG 旋涂薄膜在辐照前和紫外光(365 nm, 8.8 mW/cm2)辐照不同时间后的紫外-可见吸收光谱; (b)PAzo-PEG 薄膜在可见光(530 nm, 11.9 mW/cm2)辐照不同时间后的紫外-可见吸收光谱; (c)PAzo-PEG 薄膜在辐照前和经过4次交替紫外(365 nm, 8.8 mW/cm2, 5 min)、可见光(530 nm, 11.9 mW/cm2, 15 min)辐照后的紫外-可见吸收光谱; (d)紫外光和可见光交替辐照下338 nm处的吸收变化

    Figure  2.  (a) UV-Vis spectra of the PAzo-PEG spin-coated films before irradiation and after irradiation of UV light (365 nm, 8.8 mW/cm2) for different time; (b) UV-Vis spectra of the PAzo-PEG film after irradiation of visible light (530 nm, 11.9 mW/cm2) for different time; (c) UV-Vis spectra of the PAzo-PEG films before irradiation, after irradiation of alternating UV light (365 nm, 8.8 mW/cm2, 5 min) and visible light (530 nm, 11.9 mW/cm2, 15 min) for 4 cycles; (d) Absorption changes at 338 nm under the irradiation of alternating UV and visible light

    图  3  (a)PAzo-PEG 粉末经紫外光(365 nm,26.6 mW/cm2)辐照由固态变为液态的光学显微镜照片;(b)反式 PAzo-PEG 的DSC曲线; (c)顺式 PAzo-PEG 的DSC曲线

    Figure  3.  (a) Optical microscopy images of PAzo-PEG powders after UV light (365 nm, 26.6 mW/cm2) irradiation changing from solid to liquid; (b) DSC curves of trans PAzo-PEG; (c) DSC curves of cis PAzo-PEG

    图  4  (a)用反式(蓝)顺式(红) PAzo-PEG 黏合的2个石英基板进行搭接剪切强度测试(插图: 万能试验机上的 PAzo-PEG 黏合石英基板); (b)黏合剂的可逆循环使用; (c)光控解黏附过程的视频截图(PAzo-PEG 黏合的2个石英基板吊起一个500 g 的砝码, 并在紫外光(365 nm, 271.3 mW/cm2, 14 s)的照射下发生脱黏附)

    Figure  4.  (a) Lap joint shear strength tests with two quartz substrates glued with trans (blue) and cis (red) PAzo-PEG (The inset is the photo showing the quartz substrates bonded by PAzo-PEG on the universal testing machine); (b) Reuse of the adhesive; (c)Video screenshots of the photoswitchable adhesion process (Two quartz substrates bonded by PAzo-PEG lifted a 500 g weight. Then the quartz substrates are unbounded under the irradiation of UV light (365 nm, 271.3 mW/cm2, 14 s))

  • [1] ZHU Y, DI B, CHEN H, WANG X, TIAN Y. In situ synthesis of novel biomass lignin/silica based epoxy resin adhesive from renewable resources at different pHs [J]. Journal of Adhesion Science and Technology,2019,33(16):1806-1820. doi: 10.1080/01694243.2019.1617511
    [2] LI X, DENG Y, LAI J, ZHAO G, DONG S. Tough, long-term, water-resistant, and underwater adhesion of low-molecular-weight supramolecular adhesives [J]. Journal of the American Chemical Society,2020,142(11):5371-5379. doi: 10.1021/jacs.0c00520
    [3] RODRIGUEZ-EMMENEGGER C, PREUSS C M, YAMEEN B, POP-GEORGIEVSKI O, BACHMANN M, MUELLER J O, BRUNS M, GOLDMANN A S, BASTMEYER M, BARNER-KOWOLLIK C. Controlled cell adhesion on poly(dopamine) interfaces photopatterned with non-fouling brushes [J]. Advanced Materials,2013,25(42):6123-6127. doi: 10.1002/adma.201302492
    [4] LIU X, SHI L, WAN X, DAI B, YANG M, GU Z, SHI X, JIANG L, WANG S. A spider-silk-inspired wet adhesive with supercold tolerance [J]. Advanced Materials,2021,33(14):2007301. doi: 10.1002/adma.202007301
    [5] XU Z, CHEN L, LU L, DU R, MA W, CAI Y, AN X, WU H, LUO Q, XU Q, ZHANG Q, JIA X. A highly-adhesive and self-healing elastomer for bio-interfacial electrode [J]. Advanced Functional Materials,2021,31(1):2006432. doi: 10.1002/adfm.202006432
    [6] LI J, CELIZ A D, YANG J, YANG Q, WAMALA I, WHYTE W, SEO B R, VASILYEV N V, VLASSAK J J, SUO Z, MOONEY D J. Tough adhesives for diverse wet surfaces [J]. Science,2017,357(6349):378-381. doi: 10.1126/science.aah6362
    [7] FREEDMAN B R, UZUN O, LUNA N M M, ROCK A, CLIFFORD C, STOLER E, ÖSTLUND-SHOLARS G, JOHNSON C, MOONEY D J. Degradable and removable tough adhesive hydrogels [J]. Advanced Materials,2021,33(17):2008553. doi: 10.1002/adma.202008553
    [8] ZENG Q, HAN K, ZHENG C, BAI Q, WU W, ZHU C, ZHANG Y, CUI N, LU T. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing [J]. Journal of Colloid and Interface Science,2022,607:1239-1252. doi: 10.1016/j.jcis.2021.09.092
    [9] YANG Y, SHI K, YU K, XING F, LAI H, ZHOU Y, XIAO P. Degradable hydrogel adhesives with enhanced tissue adhesion, superior self-healing, cytocompatibility, and antibacterial property [J]. Advanced Healthcare Materials,2022,11(4):2101504. doi: 10.1002/adhm.202101504
    [10] 张一帆, 柏广行, 李小杰, 刘晓亚. 基于超支化聚硫醚构建非水相生物黏合剂 [J]. 功能高分子学报,2021,34(4):387-393.

    ZHANG Y F, BAI G H, LI X J, LIU X Y. Non-aqueous bioadhesive based on hyperbranched polythioether [J]. Journal of Functional Polymers,2021,34(4):387-393.
    [11] 朱祺, 雷昆, 郑震, 王新灵, 肖海军. 可降解聚氨酯骨胶黏剂的研究 [J]. 功能高分子学报,2020,33(2):194-199.

    ZHU Q, LEI K, ZHENG Z, WANG X L, XIAO H J. Research on degradable polyurethane bone adhesive [J]. Journal of Functional Polymers,2020,33(2):194-199.
    [12] LIU Z, YAN F. Switchable adhesion: On-demand bonding and debonding [J]. Advanced Science,2022,9(12):2200264. doi: 10.1002/advs.202200264
    [13] LI K, ZAN X, TANG C, LIU Z, FAN J, QIN G, YANG J, CUI W, ZHU L, CHEN Q. Tough, instant, and repeatable adhesion of self-healable elastomers to diverse soft and hard surfaces [J]. Advanced Science,2022,9(12):2105742. doi: 10.1002/advs.202105742
    [14] HOHL D K, WEDER C. (De)bonding on demand with optically switchable adhesives [J]. Advanced Optical Materials,2019,7(16):1900230. doi: 10.1002/adom.201900230
    [15] SRIDHAR L M, OSTER M O, HERR D E, GREGG J B D, WILSON J A, SLARK A T. Re-usable thermally reversible crosslinked adhesives from robust polyester and poly(ester urethane) Diels-Alder networks [J]. Green Chemistry,2020,22(24):8669-8679. doi: 10.1039/D0GC02938F
    [16] KATO R, MIRMIRA P, SOOKEZIAN A, GROCKE G L, PATEL S N, ROWAN S J. Ion-conducting dynamic solid polymer electrolyte adhesives [J]. ACS Macro Letters,2020,9(4):500-506. doi: 10.1021/acsmacrolett.0c00142
    [17] WANG Z, HUANG K, WAN X, LIU M, CHEN Y, SHI X, WANG S. High-strength plus reversible supramolecular adhesives achieved by regulating intermolecular PtII···PtII interactions [J]. Angewandte Chemie International Edition,2022,61(40):e202211495.
    [18] WU Z, JI C, ZHAO X, HAN Y, MÜLLEN K, PAN K, YIN M. Green-light-triggered phase transition of azobenzene derivatives toward reversible adhesives [J]. Journal of the American Chemical Society,2019,141(18):7385-7390. doi: 10.1021/jacs.9b01056
    [19] GEIM A K, DUBONOS S V, GRIGORIEVA I V, NOVOSELOV K S, ZHUKOV A A, SHAPOVAL S Y. Microfabricated adhesive mimicking gecko foot-hair [J]. Nature Materials,2003,2(7):461-463. doi: 10.1038/nmat917
    [20] ITO S, YAMASHITA A, AKIYAMA H, KIHARA H, YOSHIDA M. Azobenzene-based (meth)acrylates: Controlled radical polymerization, photoresponsive solid-liquid phase transition behavior, and application to reworkable adhesives [J]. Macromolecules,2018,51(9):3243-3253. doi: 10.1021/acs.macromol.8b00156
    [21] YE Z, LUM G Z, SONG S, RICH S, SITTI M. Phase change of gallium enables highly reversible and switchable adhesion [J]. Advanced Materials,2016,28(25):5088-5092. doi: 10.1002/adma.201505754
    [22] GOULET-HANSSENS A, EISENREICH F, HECHT S. Enlightening materials with photoswitches [J]. Advanced Materials,2020,32(20):1905966. doi: 10.1002/adma.201905966
    [23] XU W C, LIU C, LIANG S, ZHANG D, LIU Y, WU S. Designing rewritable dual-mode patterns using a stretchable photoresponsive polymer via orthogonal photopatterning [J]. Advanced Materials,2022,34(31):2202150. doi: 10.1002/adma.202202150
    [24] QING X, LIU Y, WEI J, ZHENG R, ZHU C, YU Y. Phototunable morpho butterfly microstructures modified by liquid crystal polymers [J]. Advanced Optical Materials,2019,7(3):1801494. doi: 10.1002/adom.201801494
    [25] LV J A, LIU Y, WEI J, CHEN E, QIN L, YU Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators [J]. Nature,2016,537(7619):179-184. doi: 10.1038/nature19344
    [26] ZHANG Z Y, HE Y, WANG Z, XU J, XIE M, TAO P, JI D, MOTH-POULSEN K, LI T. Photochemical phase transitions enable coharvesting of photon energy and ambient heat for energetic molecular solar thermal batteries that upgrade thermal energy [J]. Journal of the American Chemical Society,2020,142(28):12256-12264. doi: 10.1021/jacs.0c03748
    [27] HUANG X, SHANGGUAN Z, ZHANG Z Y, YU C, HE Y, FANG D, SUN W, LI Y C, YUAN C, WU S, LI T. Visible-light-induced reversible photochemical crystal-liquid transitions of azo-switches for smart and robust adhesives [J]. Chemistry of Materials,2022,34(6):2636-2644. doi: 10.1021/acs.chemmater.1c03881
    [28] AKIYAMA H, KANAZAWA S, OKUYAMA Y, YOSHIDA M, KIHARA H, NAGAI H, NORIKANE Y, AZUMI R. Photochemically reversible liquefaction and solidification of multiazobenzene sugar-alcohol derivatives and application to reworkable adhesives [J]. ACS Applied Materials & Interfaces,2014,6(10):7933-7941.
    [29] AKIYAMA H, YOSHIDA M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms [J]. Advanced Materials,2012,24(17):2353-2356. doi: 10.1002/adma.201104880
    [30] XU G, LI S, LIU C, WU S. Photoswitchable adhesives using azobenzene-containing materials [J]. Chemistry: An Asian Journal,2020,15(5):547-554. doi: 10.1002/asia.201901655
    [31] YANG B, CAI F, HUANG S, YU H. Athermal and soft multi-nanopatterning of azopolymers: Phototunable mechanical properties [J]. Angewandte Chemie International Edition,2020,59(10):4035-4042. doi: 10.1002/anie.201914201
    [32] ZHOU H, XUE C, WEIS P, SUZUKI Y, HUANG S, KOYNOV K, AUERNHAMMER G K, BERGER R, BUTT H J, WU S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions [J]. Nature Chemistry,2017,9(2):145-151. doi: 10.1038/nchem.2625
    [33] IKEDA T, TSUTSUMI O. Optical switching and image storage by means of azobenzene liquid-crystal films [J]. Science,1995,268(5219):1873-1875. doi: 10.1126/science.268.5219.1873
    [34] WEIS P, HESS A, KIRCHER G, HUANG S, AUERNHAMMER G K, KOYNOV K, BUTT H J, WU S. Effects of spacers on photoinduced reversible solid-to-liquid transitions of azobenzene-containing polymers [J]. Chemistry: A European Journal,2019,25(46):10946-10953. doi: 10.1002/chem.201902273
    [35] ZHANG Z, CHEN M, SCHNEIDER I, LIU Y, LIANG S, SUN S, KOYNOV K, BUTT H J, WU S. Long alkyl side chains simultaneously improve mechanical robustness and healing ability of a photoswitchable polymer [J]. Macromolecules,2020,53(19):8562-8569. doi: 10.1021/acs.macromol.0c01784
    [36] VICTOR J G, TORKELSON J M. On measuring the distribution of local free volume in glassy polymers by photochromic and fluorescence techniques [J]. Macromolecules,1987,20(9):2241-2250. doi: 10.1021/ma00175a032
    [37] ZHAO Y. IKEDA T. Smart Light-Responsive Materials: Azobenzene-Comtaining Polymers and Liquid Crystals[M]. John Wiley & Sons, USA, 2009: 177-213.
    [38] ZHOU Y, CHEN M, BAN Q, ZHANG Z, SHUANG S, KOYNOV K, BUTT H J, KONG J, WU S. Light-switchable polymer adhesive based on photoinduced reversible solid-to-liquid transitions [J]. ACS Macro Letters,2019,8(8):968-972. doi: 10.1021/acsmacrolett.9b00459
  • 加载中
图(4)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  56
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 录用日期:  2023-01-04
  • 网络出版日期:  2023-01-05

目录

    /

    返回文章
    返回