Preparation and Properties of Light-Controlled Reversible Adhesives of Azopolymers
-
摘要: 通过原子转移自由基聚合(ATRP)制备了一种能在紫外光和可见光下发生固液转变的可逆黏合剂,其主链结构为甲基丙烯酸甲酯,侧链为以6个亚甲基为间隔基和短链聚乙二醇(PEG)为尾基的偶氮苯聚合物(PAzo-PEG)。偶氮苯基团在紫外光和可见光的辐照下发生可逆的顺反异构。采用紫外-可见吸收光谱研究了PAzo-PEG的可逆光致异构过程,用差示扫描量热仪(DSC)研究其固液转变。结果表明:反式异构体的Tg高于室温,顺式异构体的Tg低于室温,PAzo-PEG 在光照下宏观表现出可逆固液转变的现象。固态和液态的 PAzo-PEG 不同的黏附能力赋予了 PAzo-PEG 光控可逆黏合的性能。实验测得其反式状态下最大黏附强度能达到 0.97 MPa,而顺式状态下PAzo-PEG的黏附强度降低到 0.03 MPa。在3个黏附循环后其黏附强度仍能保持初始黏附强度的80%。Abstract: A reversible adhesive PAzo-PEG, with a main chain structure of methyl methacrylate and a side chain of azobenzene(Azo) having six methylene spacer groups and a short polyethylene glycol(PEG) chain as a tail group, can undergo solid to liquid transformation under UV and visible light irradiation. It was prepared by atom transfer radical polymerization (ATRP) the azobenzene group undergoes reversible trans-to-cis isomerization under UV and visible light irradiation, and the process is reversible. The reversible photoisomerization process of solid materials was studied by UV-Vis absorption spectroscopy. The solid-to-liquid transition was studied by differential scanning calorimetry (DSC). Results showed that the solid-liquid transition is due to the different glass transition temperatures (Tg) of the cis and trans isomers, and Tg of trans is higher than room temperature while Tg of cis is lower than room temperature, so PAzo-PEG macroscopically exhibits reversible solid-to-liquid transition under light irradiation. The different adhesion capabilities of solid and liquid states of PAzo-PEG endow it with reversible adhesive properties. The solid state exhibits better adhesion properties, with an adhesion strength of 0.97 MPa measured experimentally, while the adhesion strength of PAzo-PEG in the cis state is reduced to 0.03 MPa. After three cycles of adhesion, the adhesive strength maintained 80% of the original strength.
-
Key words:
- adhesive /
- azobenzene /
- polymer /
- photoinduced solid-to-liquid transition /
- glass transition
-
图 2 (a)PAzo-PEG 旋涂薄膜在辐照前和紫外光(365 nm, 8.8 mW/cm2)辐照不同时间后的紫外-可见吸收光谱; (b)PAzo-PEG 薄膜在可见光(530 nm, 11.9 mW/cm2)辐照不同时间后的紫外-可见吸收光谱; (c)PAzo-PEG 薄膜在辐照前和经过4次交替紫外(365 nm, 8.8 mW/cm2, 5 min)、可见光(530 nm, 11.9 mW/cm2, 15 min)辐照后的紫外-可见吸收光谱; (d)紫外光和可见光交替辐照下338 nm处的吸收变化
Figure 2. (a) UV-Vis spectra of the PAzo-PEG spin-coated films before irradiation and after irradiation of UV light (365 nm, 8.8 mW/cm2) for different time; (b) UV-Vis spectra of the PAzo-PEG film after irradiation of visible light (530 nm, 11.9 mW/cm2) for different time; (c) UV-Vis spectra of the PAzo-PEG films before irradiation, after irradiation of alternating UV light (365 nm, 8.8 mW/cm2, 5 min) and visible light (530 nm, 11.9 mW/cm2, 15 min) for 4 cycles; (d) Absorption changes at 338 nm under the irradiation of alternating UV and visible light
图 3 (a)PAzo-PEG 粉末经紫外光(365 nm,26.6 mW/cm2)辐照由固态变为液态的光学显微镜照片;(b)反式 PAzo-PEG 的DSC曲线; (c)顺式 PAzo-PEG 的DSC曲线
Figure 3. (a) Optical microscopy images of PAzo-PEG powders after UV light (365 nm, 26.6 mW/cm2) irradiation changing from solid to liquid; (b) DSC curves of trans PAzo-PEG; (c) DSC curves of cis PAzo-PEG
图 4 (a)用反式(蓝)顺式(红) PAzo-PEG 黏合的2个石英基板进行搭接剪切强度测试(插图: 万能试验机上的 PAzo-PEG 黏合石英基板); (b)黏合剂的可逆循环使用; (c)光控解黏附过程的视频截图(PAzo-PEG 黏合的2个石英基板吊起一个500 g 的砝码, 并在紫外光(365 nm, 271.3 mW/cm2, 14 s)的照射下发生脱黏附)
Figure 4. (a) Lap joint shear strength tests with two quartz substrates glued with trans (blue) and cis (red) PAzo-PEG (The inset is the photo showing the quartz substrates bonded by PAzo-PEG on the universal testing machine); (b) Reuse of the adhesive; (c)Video screenshots of the photoswitchable adhesion process (Two quartz substrates bonded by PAzo-PEG lifted a 500 g weight. Then the quartz substrates are unbounded under the irradiation of UV light (365 nm, 271.3 mW/cm2, 14 s))
-
[1] ZHU Y, DI B, CHEN H, WANG X, TIAN Y. In situ synthesis of novel biomass lignin/silica based epoxy resin adhesive from renewable resources at different pHs [J]. Journal of Adhesion Science and Technology,2019,33(16):1806-1820. doi: 10.1080/01694243.2019.1617511 [2] LI X, DENG Y, LAI J, ZHAO G, DONG S. Tough, long-term, water-resistant, and underwater adhesion of low-molecular-weight supramolecular adhesives [J]. Journal of the American Chemical Society,2020,142(11):5371-5379. doi: 10.1021/jacs.0c00520 [3] RODRIGUEZ-EMMENEGGER C, PREUSS C M, YAMEEN B, POP-GEORGIEVSKI O, BACHMANN M, MUELLER J O, BRUNS M, GOLDMANN A S, BASTMEYER M, BARNER-KOWOLLIK C. Controlled cell adhesion on poly(dopamine) interfaces photopatterned with non-fouling brushes [J]. Advanced Materials,2013,25(42):6123-6127. doi: 10.1002/adma.201302492 [4] LIU X, SHI L, WAN X, DAI B, YANG M, GU Z, SHI X, JIANG L, WANG S. A spider-silk-inspired wet adhesive with supercold tolerance [J]. Advanced Materials,2021,33(14):2007301. doi: 10.1002/adma.202007301 [5] XU Z, CHEN L, LU L, DU R, MA W, CAI Y, AN X, WU H, LUO Q, XU Q, ZHANG Q, JIA X. A highly-adhesive and self-healing elastomer for bio-interfacial electrode [J]. Advanced Functional Materials,2021,31(1):2006432. doi: 10.1002/adfm.202006432 [6] LI J, CELIZ A D, YANG J, YANG Q, WAMALA I, WHYTE W, SEO B R, VASILYEV N V, VLASSAK J J, SUO Z, MOONEY D J. Tough adhesives for diverse wet surfaces [J]. Science,2017,357(6349):378-381. doi: 10.1126/science.aah6362 [7] FREEDMAN B R, UZUN O, LUNA N M M, ROCK A, CLIFFORD C, STOLER E, ÖSTLUND-SHOLARS G, JOHNSON C, MOONEY D J. Degradable and removable tough adhesive hydrogels [J]. Advanced Materials,2021,33(17):2008553. doi: 10.1002/adma.202008553 [8] ZENG Q, HAN K, ZHENG C, BAI Q, WU W, ZHU C, ZHANG Y, CUI N, LU T. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing [J]. Journal of Colloid and Interface Science,2022,607:1239-1252. doi: 10.1016/j.jcis.2021.09.092 [9] YANG Y, SHI K, YU K, XING F, LAI H, ZHOU Y, XIAO P. Degradable hydrogel adhesives with enhanced tissue adhesion, superior self-healing, cytocompatibility, and antibacterial property [J]. Advanced Healthcare Materials,2022,11(4):2101504. doi: 10.1002/adhm.202101504 [10] 张一帆, 柏广行, 李小杰, 刘晓亚. 基于超支化聚硫醚构建非水相生物黏合剂 [J]. 功能高分子学报,2021,34(4):387-393.ZHANG Y F, BAI G H, LI X J, LIU X Y. Non-aqueous bioadhesive based on hyperbranched polythioether [J]. Journal of Functional Polymers,2021,34(4):387-393. [11] 朱祺, 雷昆, 郑震, 王新灵, 肖海军. 可降解聚氨酯骨胶黏剂的研究 [J]. 功能高分子学报,2020,33(2):194-199.ZHU Q, LEI K, ZHENG Z, WANG X L, XIAO H J. Research on degradable polyurethane bone adhesive [J]. Journal of Functional Polymers,2020,33(2):194-199. [12] LIU Z, YAN F. Switchable adhesion: On-demand bonding and debonding [J]. Advanced Science,2022,9(12):2200264. doi: 10.1002/advs.202200264 [13] LI K, ZAN X, TANG C, LIU Z, FAN J, QIN G, YANG J, CUI W, ZHU L, CHEN Q. Tough, instant, and repeatable adhesion of self-healable elastomers to diverse soft and hard surfaces [J]. Advanced Science,2022,9(12):2105742. doi: 10.1002/advs.202105742 [14] HOHL D K, WEDER C. (De)bonding on demand with optically switchable adhesives [J]. Advanced Optical Materials,2019,7(16):1900230. doi: 10.1002/adom.201900230 [15] SRIDHAR L M, OSTER M O, HERR D E, GREGG J B D, WILSON J A, SLARK A T. Re-usable thermally reversible crosslinked adhesives from robust polyester and poly(ester urethane) Diels-Alder networks [J]. Green Chemistry,2020,22(24):8669-8679. doi: 10.1039/D0GC02938F [16] KATO R, MIRMIRA P, SOOKEZIAN A, GROCKE G L, PATEL S N, ROWAN S J. Ion-conducting dynamic solid polymer electrolyte adhesives [J]. ACS Macro Letters,2020,9(4):500-506. doi: 10.1021/acsmacrolett.0c00142 [17] WANG Z, HUANG K, WAN X, LIU M, CHEN Y, SHI X, WANG S. High-strength plus reversible supramolecular adhesives achieved by regulating intermolecular PtII···PtII interactions [J]. Angewandte Chemie International Edition,2022,61(40):e202211495. [18] WU Z, JI C, ZHAO X, HAN Y, MÜLLEN K, PAN K, YIN M. Green-light-triggered phase transition of azobenzene derivatives toward reversible adhesives [J]. Journal of the American Chemical Society,2019,141(18):7385-7390. doi: 10.1021/jacs.9b01056 [19] GEIM A K, DUBONOS S V, GRIGORIEVA I V, NOVOSELOV K S, ZHUKOV A A, SHAPOVAL S Y. Microfabricated adhesive mimicking gecko foot-hair [J]. Nature Materials,2003,2(7):461-463. doi: 10.1038/nmat917 [20] ITO S, YAMASHITA A, AKIYAMA H, KIHARA H, YOSHIDA M. Azobenzene-based (meth)acrylates: Controlled radical polymerization, photoresponsive solid-liquid phase transition behavior, and application to reworkable adhesives [J]. Macromolecules,2018,51(9):3243-3253. doi: 10.1021/acs.macromol.8b00156 [21] YE Z, LUM G Z, SONG S, RICH S, SITTI M. Phase change of gallium enables highly reversible and switchable adhesion [J]. Advanced Materials,2016,28(25):5088-5092. doi: 10.1002/adma.201505754 [22] GOULET-HANSSENS A, EISENREICH F, HECHT S. Enlightening materials with photoswitches [J]. Advanced Materials,2020,32(20):1905966. doi: 10.1002/adma.201905966 [23] XU W C, LIU C, LIANG S, ZHANG D, LIU Y, WU S. Designing rewritable dual-mode patterns using a stretchable photoresponsive polymer via orthogonal photopatterning [J]. Advanced Materials,2022,34(31):2202150. doi: 10.1002/adma.202202150 [24] QING X, LIU Y, WEI J, ZHENG R, ZHU C, YU Y. Phototunable morpho butterfly microstructures modified by liquid crystal polymers [J]. Advanced Optical Materials,2019,7(3):1801494. doi: 10.1002/adom.201801494 [25] LV J A, LIU Y, WEI J, CHEN E, QIN L, YU Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators [J]. Nature,2016,537(7619):179-184. doi: 10.1038/nature19344 [26] ZHANG Z Y, HE Y, WANG Z, XU J, XIE M, TAO P, JI D, MOTH-POULSEN K, LI T. Photochemical phase transitions enable coharvesting of photon energy and ambient heat for energetic molecular solar thermal batteries that upgrade thermal energy [J]. Journal of the American Chemical Society,2020,142(28):12256-12264. doi: 10.1021/jacs.0c03748 [27] HUANG X, SHANGGUAN Z, ZHANG Z Y, YU C, HE Y, FANG D, SUN W, LI Y C, YUAN C, WU S, LI T. Visible-light-induced reversible photochemical crystal-liquid transitions of azo-switches for smart and robust adhesives [J]. Chemistry of Materials,2022,34(6):2636-2644. doi: 10.1021/acs.chemmater.1c03881 [28] AKIYAMA H, KANAZAWA S, OKUYAMA Y, YOSHIDA M, KIHARA H, NAGAI H, NORIKANE Y, AZUMI R. Photochemically reversible liquefaction and solidification of multiazobenzene sugar-alcohol derivatives and application to reworkable adhesives [J]. ACS Applied Materials & Interfaces,2014,6(10):7933-7941. [29] AKIYAMA H, YOSHIDA M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms [J]. Advanced Materials,2012,24(17):2353-2356. doi: 10.1002/adma.201104880 [30] XU G, LI S, LIU C, WU S. Photoswitchable adhesives using azobenzene-containing materials [J]. Chemistry: An Asian Journal,2020,15(5):547-554. doi: 10.1002/asia.201901655 [31] YANG B, CAI F, HUANG S, YU H. Athermal and soft multi-nanopatterning of azopolymers: Phototunable mechanical properties [J]. Angewandte Chemie International Edition,2020,59(10):4035-4042. doi: 10.1002/anie.201914201 [32] ZHOU H, XUE C, WEIS P, SUZUKI Y, HUANG S, KOYNOV K, AUERNHAMMER G K, BERGER R, BUTT H J, WU S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions [J]. Nature Chemistry,2017,9(2):145-151. doi: 10.1038/nchem.2625 [33] IKEDA T, TSUTSUMI O. Optical switching and image storage by means of azobenzene liquid-crystal films [J]. Science,1995,268(5219):1873-1875. doi: 10.1126/science.268.5219.1873 [34] WEIS P, HESS A, KIRCHER G, HUANG S, AUERNHAMMER G K, KOYNOV K, BUTT H J, WU S. Effects of spacers on photoinduced reversible solid-to-liquid transitions of azobenzene-containing polymers [J]. Chemistry: A European Journal,2019,25(46):10946-10953. doi: 10.1002/chem.201902273 [35] ZHANG Z, CHEN M, SCHNEIDER I, LIU Y, LIANG S, SUN S, KOYNOV K, BUTT H J, WU S. Long alkyl side chains simultaneously improve mechanical robustness and healing ability of a photoswitchable polymer [J]. Macromolecules,2020,53(19):8562-8569. doi: 10.1021/acs.macromol.0c01784 [36] VICTOR J G, TORKELSON J M. On measuring the distribution of local free volume in glassy polymers by photochromic and fluorescence techniques [J]. Macromolecules,1987,20(9):2241-2250. doi: 10.1021/ma00175a032 [37] ZHAO Y. IKEDA T. Smart Light-Responsive Materials: Azobenzene-Comtaining Polymers and Liquid Crystals[M]. John Wiley & Sons, USA, 2009: 177-213. [38] ZHOU Y, CHEN M, BAN Q, ZHANG Z, SHUANG S, KOYNOV K, BUTT H J, KONG J, WU S. Light-switchable polymer adhesive based on photoinduced reversible solid-to-liquid transitions [J]. ACS Macro Letters,2019,8(8):968-972. doi: 10.1021/acsmacrolett.9b00459 -