Development of Silk Fibroin Based Bio-Ink for Tough Scaffold and Related Simulation Software for 3D Printing Scaffold
-
摘要: 基于丝素蛋白(SF)和有限元分析方法,开发了一种强韧支架用丝素蛋白基生物墨水及其3D打印支架压缩性能模拟软件。表征了墨水的可打印性及对应水凝胶和3D打印支架的力学性能,评估了相关打印支架的细胞相容性。基于所述丝素蛋白基生物墨水,设计并制备了不同高度和孔隙率的3D打印支架,利用所开发软件和电子万能材料试验机对打印支架的压缩性能进行了模拟预测和实测对比。结果表明:该墨水可打印性佳,对应支架强度高韧性好、细胞相容性好。所开发软件操作简便,具有3D打印支架建模、模型压缩力学性能预测以及指导3D打印支架快速制备等功能。Abstract: At present, the existing scaffold materials cannot well meet the high strength and toughness requirements for the repairing of typical stressed tissues. And the commercial software for 3D printing scaffold modeling and mechanical performance simulation is complex to operate and has poor interoperability with 3D printers. In order to solve these problems, a silk fibroin (SF) based bio-ink was prepared for tough scaffold, and a software was developed for compression performance simulation of 3D printing scaffold based on SF and finite element analysis strategy. The printability of the bio-ink and the mechanical properties of the corresponding hydrogels and 3D printing scaffolds were characterized. The cell compatibility of the related scaffolds was evaluated by using fibroblasts and living/dead staining kit. Based on the SF based bio-ink, scaffolds with different heights and porosities were designed and printed. By using the developed software and the universal testing machine, the compression performance of related scaffolds was simulated and tested separately, and further compared with each other. Results show that the SF based bio-ink has good printability. And the 3D printing scaffold prepared by this ink presents high strength and toughness (modulus of elasticity: (1.86 ± 0.28)MPa, modulus of compression: (1.95 ± 0.11)MPa, elongation at break: (114.03 ± 14.40)%, compression strain ≥ 70%). In addition, the scaffold has good cell compatibility (L929 cell viability≥92.4%), which is expected to be used for the repair and regeneration of stressed tissues. The software is easy to operate, and can be used not only for the modeling of 3D printing scaffolds, but also for accurately predicting their compressive mechanical properties. In addition, the model data can also be directly imported into the 3D printer to guide the efficient preparation of the corresponding 3D printing scaffolds. This research is expected to provide important guidance for the rapid design and fabrication of tissue specific 3D printing scaffolds with bionic structure and mechanical properties.
-
Key words:
- silk fibroin /
- 3D printing /
- software development /
- mechanical property simulation /
- scaffold
-
表 1 丝素蛋白基生物墨水的配方
Table 1. Specific formulations of the silk fibroin based bio-inks
Sample m(RSF)/g m(AM)/g m(OBC)/g m(Ru)/mg m(SPS)/mg m(MBA)/mg m(Water)/g w(Solid)/% RSF 0.32 0 0 0.748 2.28 0 0.68 32 AM 0 1.92 0 0.374 3.42 1.2 4.08 32 RSF/AM 0.11 1.81 0 0.748 3.42 1.2 4.08 32 RSF/AM/OBC 0.1 1.7 3 0.748 3.42 1.2 1.20 32 表 2 3DS模型的具体参数
Table 2. Specific parameters of 3DS models
Sample Diameter of print line/mm Line angle/(°) Spacing1)/mm Scaffold Scaffold porosity/% Length/mm Width/mm Layers 3DS-10 0.6 90 1.2 15 15 10 58.55 3DS-15 0.6 90 1.2 15 15 15 58.55 3DS-20 0.6 90 1.2 15 15 20 58.55 3DS-45.63% 0.6 90 0.9 15 15 10 45.63 3DS-52.17% 0.6 90 1.0 15 15 10 52.17 3DS-64.81% 0.6 90 1.4 15 15 10 64.81 1) The distance between the centers of the lines 表 3 丝素蛋白基生物墨水的可打印性及对应水凝胶的力学性能
Table 3. Printability of the silk fibroin based bio-inks and the mechanical properties of corresponding hydrogels
Sample Elastic modulus/MPa Elongation at break/% Modulus of compression/MPa Compressive strength/MPa Printability RSF RSF hydrogels are soft, brittle and virtually non-stretchable 0.0081 ± 0.0002 0.45 ± 0.01 N/A AM 0.12 ± 0.02 624.30 ± 151.06 0.15 ± 0.01 0.48 ± 0.04 N/A RSF/AM 0.18 ± 0.01 323.42 ± 69.69 0.21 ± 0.02 0.63 ± 0.01 N/A RSF/AM/OBC 3.11 ± 0.22 122.53 ± 11.99 1.99 ± 0.23 7.76 ± 0.26 Good -
[1] GU M J, FAN S N, ZHOU G D, MA K, YAO X, ZHANG Y P. Effects of dynamic mechanical stimulations on the regeneration of in vitro and in vivo cartilage tissue based on silk fibroin scaffold [J]. Composites Part B: Engineering,2022,235:109764. doi: 10.1016/j.compositesb.2022.109764 [2] JING L Z, FAN S N, YAO X, ZHANG Y P. Effects of compound stimulation of fluid shear stress plus ultrasound on stem cell proliferation and osteogenesis [J]. Regenerative Biomaterials,2021,8(6):rbab066. doi: 10.1093/rb/rbab066 [3] TANG Y, WANG Z, XIANG L, ZHAO Z, CUI W. Functional biomaterials for tendon/ligament repair and regeneration [J]. Regenerative Biomaterials,2022,9:rbac062. doi: 10.1093/rb/rbac062 [4] ZOU S Z, FAN S N, OLIVEIRA A L, YAO X, ZHANG Y P, SHAO H L. 3D printed gelatin scaffold with improved shape fidelity and cytocompatibility by using antheraea pernyi silk fibroin nanofibers [J]. Advanced Fiber Materials,2022,4(4):758-773. doi: 10.1007/s42765-022-00135-w [5] ARIFIN N, SUDIN I, NGADIMAN N H A, ISHAK M S A. A comprehensive review of biopolymer fabrication in additive manufacturing processing for 3D-tissue-engineering scaffolds [J]. Polymers,2022,14(10):2119. doi: 10.3390/polym14102119 [6] WANG S Q, ZHAO S, YU J C, GU Z, ZHANG Y Q. Advances in translational 3D printing for cartilage, bone, and osteochondral tissue engineering [J]. Small,2022,18(36):e2201869. doi: 10.1002/smll.202201869 [7] ALMARZA A J, ATHANASIOU K A. Design characteristics for the tissue engineering of cartilaginous tissues [J]. Annals of Biomedical Engineering,2004,32(1):2-17. doi: 10.1023/B:ABME.0000007786.37957.65 [8] ATHANASIOU K A, ROSENWASSER M P, BUCKWALTER J A, MALININ T I, MOW V C. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage [J]. Journal of Orthopaedic Research,1991,9(3):330-340. doi: 10.1002/jor.1100090304 [9] HERBERHOLD C, FABER S, STAMMBERGER T, STEINLECHNER M, PUTZ R, ENGLMEIER K H, REISER M, ECKSTEIN F. In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading [J]. Journal of Biomechanics,1999,32(12):1287-1295. doi: 10.1016/S0021-9290(99)00130-X [10] KAAB M J, ITO K, CLARK J M, NOTZLI H P. Deformation of articular cartilage collagen structure under static and cyclic loading [J]. Journal of Orthopaedic Research,1998,16(6):743-751. doi: 10.1002/jor.1100160617 [11] GAO F, XU Z Y, LIANG Q F, LI H F, PENG L Q, WU M M, ZHAO X L, CUI X, RUAN C S, LIU W G. Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds [J]. Advanced Science,2019,6(15):1900867. doi: 10.1002/advs.201900867 [12] CHU Y, HUANG L P, HAO W P, ZHAO T T, ZHAO H T, YANG W, XIE X, QIAN L, CHEN Y Y, DAI J W. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application [J]. Biomedical Materials,2021,16(6):064102. doi: 10.1088/1748-605X/ac2595 [13] NAGHIEH S, CHEN D. Printability: A key issue in extrusion-based bioprinting [J]. Journal of Pharmaceutical Analysis,2021,11(5):564-579. doi: 10.1016/j.jpha.2021.02.001 [14] 宁连旺. ANSYS有限元分析理论与发展 [J]. 山西科技,2008(4):65-66. doi: 10.3969/j.issn.1004-6429.2008.04.035NING L W. ANSYS theory of finite element analysis and its development [J]. Shanxi Science and Technology,2008(4):65-66. doi: 10.3969/j.issn.1004-6429.2008.04.035 [15] 于亚婷, 杜平安, 王振伟. 有限元法的应用现状研究 [J]. 机械设计,2005(3):6-9. doi: 10.3969/j.issn.1001-2354.2005.03.003YU Y T, DU P A, WANG Z W. Rsearch on the current application status of finite element method [J]. Mechanical Design,2005(3):6-9. doi: 10.3969/j.issn.1001-2354.2005.03.003 [16] CHEN J, ZHUANG A, SHAO H L, HU X C, ZHANG Y P. Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration [J]. Journal of Materials Chemistry B,2017,5(20):3640-3650. doi: 10.1039/C7TB00485K [17] HUANG L, YUAN W, HONG Y, FAN S N, YAO X, REN T, SONG L J, YANG G S, ZHANG Y P. 3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells [J]. Cellulose,2021,28(1):241-257. doi: 10.1007/s10570-020-03526-7 [18] KLUGE J A, KAHN B T, BROWN J E, OMENETTO F G, KAPLAN D L. Optimizing molecular weight of lyophilized silk as a shelf-stable source material [J]. ACS Biomaterials Science & Engineering,2016,2(4):595-605. [19] 史乾坤, 王玉鹏, 张浩, 周东方. 蛋白质基生物材料的生物医学应用进展 [J]. 功能高分子学报,2020,34(2):161-171. doi: 10.14133/j.cnki.1008-9357.20201201001SHI Q K, WANG Y P, ZHANG H, ZHOU D F. Advances in protein-based biomaterials for biomedical applications [J]. Journal of Functional Polymers,2020,34(2):161-171. doi: 10.14133/j.cnki.1008-9357.20201201001 [20] YAO X, ZOU S Z, FAN S N, NIU Q Q, ZHANG Y P. Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications [J]. Materials Today Bio,2022,16:100381. doi: 10.1016/j.mtbio.2022.100381 [21] ZHUANG A, HUANG X Y, FAN S N, YAO X, ZHU B, ZHANG Y P. One-step approach to prepare transparent conductive regenerated silk fibroin/PEDOT: PSS films for electroactive cell culture [J]. ACS Applied Materials & Interfaces,2022,14(1):123-137. [22] MU X, SAHOO J K, CEBE P, KAPLAN D L. Photo-crosslinked silk fibroin for 3D printing [J]. Polymers,2020,12(12):2936. doi: 10.3390/polym12122936 [23] ZOU S Z, YAO X, SHAO H L, REIS R L, KUNDU S C, ZHANG Y P. Nonmulberry silk fibroin-based biomaterials: Impact on cell behavior regulation and tissue regeneration [J]. Acta Biomaterialia,2022,153:68-84. doi: 10.1016/j.actbio.2022.09.021 [24] CHAWLA S, MIDHA S, SHARMA A, GHOSH S. Silk-based bioinks for 3D bioprinting [J]. Advanced Healthcare Materials,2018,7(8):e1701204. doi: 10.1002/adhm.201701204 [25] HUANG L, DU X Y, FAN S N, YANG G S, SHAO H L, LI D J, CAO C B, ZHU Y F, ZHU M F, ZHANG Y P. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores [J]. Carbohydrate Polymers,2019,221:146-156. doi: 10.1016/j.carbpol.2019.05.080 [26] ZHONG N P, DONG T, CHEN Z C, GUO Y W, SHAO Z Z, ZHAO X. A novel 3D-printed silk fibroin-based scaffold facilitates tracheal epithelium proliferation in vitro [J]. Journal of Biomaterials Applications,2019,34(1):3-11. doi: 10.1177/0885328219845092 [27] ATHUKORALALAGE S S, BALU R, DUTTA N K, ROY CHOUDHURY N. 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: A brief review [J]. Polymers (Basel),2019,11(5):898. doi: 10.3390/polym11050898 [28] NIMESKERN L, AVILA H M, SUNDBERG J, GATENHOLM P, MULLER R, STOK K S. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement [J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,22:12-21. doi: 10.1016/j.jmbbm.2013.03.005 [29] 黄利. 丝素蛋白仿生组织工程支架的成型、结构与性能研究 [D]. 上海: 东华大学, 2020.HUANG L. Preparation, structures and properties of silk fibroin based biomimetic tissue engineering scaffolds [D]. Shanghai: DongHua University, 2020. [30] CHEN F, LU S P, ZHU L, TANG Z Q, WANG Q L, QIN G, YANG J, SUN G Z, ZHANG Q, CHEN Q. Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances [J]. Journal of Materials Chemistry B,2019,7(10):1708-1715. doi: 10.1039/C8TB02445F [31] SENNAKESAVAN G, MOSTAKHDEMIN M, DKHAR L K, SEYFODDIN A, FATIHHI S J. Acrylic acid/acrylamide based hydrogels and its properties: A review [J]. Polymer Degradation and Stability,2020,180:109308. doi: 10.1016/j.polymdegradstab.2020.109308 [32] HUANG L, HUANG J W, SHAO H L, HU X C, CAO C B, FAN S N, SONG L J, ZHANG Y P. Silk scaffolds with gradient pore structure and improved cell infiltration performance [J]. Materials Science & Engineering C: Materials for Biological Applications,2019,94:179-189. [33] ARNOLD M P, DANIELS A U, RONKEN S, GARCIA H A, FRIEDERICH N F, KUROKAWA T, GONG J P, WIRZ D. Acrylamide polymer double-network hydrogels: Candidate cartilage repair materials with cartilage-like dynamic stiffness and attractive surgery-related attachment mechanics [J]. Cartilage,2011,2(4):374-383. doi: 10.1177/1947603511402320 [34] WEI J X, WANG B X, LI Z, WU Z T, ZHANG M H, SHENG N, LIANG Q Q, WANG H P, CHEN S Y. A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation [J]. Carbohydrate Polymers,2020,238(11):116207. doi: 10.1016/j.carbpol.2020.116207 -