高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强韧支架用丝素蛋白基生物墨水及其3D打印支架模拟软件的开发

耿亚楠 赵梦露 姚响 张耀鹏

耿亚楠, 赵梦露, 姚 响, 张耀鹏. 强韧支架用丝素蛋白基生物墨水及其3D打印支架模拟软件的开发[J]. 功能高分子学报,2023,36(2):107-116 doi: 10.14133/j.cnki.1008-9357.20221107001
引用本文: 耿亚楠, 赵梦露, 姚 响, 张耀鹏. 强韧支架用丝素蛋白基生物墨水及其3D打印支架模拟软件的开发[J]. 功能高分子学报,2023,36(2):107-116 doi: 10.14133/j.cnki.1008-9357.20221107001
GENG Yanan, ZHAO Menglu, YAO Xiang, ZHANG Yaopeng. Development of Silk Fibroin Based Bio-Ink for Tough Scaffold and Related Simulation Software for 3D Printing Scaffold[J]. Journal of Functional Polymers, 2023, 36(2): 107-116. doi: 10.14133/j.cnki.1008-9357.20221107001
Citation: GENG Yanan, ZHAO Menglu, YAO Xiang, ZHANG Yaopeng. Development of Silk Fibroin Based Bio-Ink for Tough Scaffold and Related Simulation Software for 3D Printing Scaffold[J]. Journal of Functional Polymers, 2023, 36(2): 107-116. doi: 10.14133/j.cnki.1008-9357.20221107001

强韧支架用丝素蛋白基生物墨水及其3D打印支架模拟软件的开发

doi: 10.14133/j.cnki.1008-9357.20221107001
基金项目: 上海市科学技术委员会(20XD1400100、22520711900、20ZR1402400);国家自然科学基金(52273125、52173031)
详细信息
    作者简介:

    耿亚楠(1998—),女,硕士,主要研究方向为生物墨水及其3D打印。E-mail:13262588980@163.com

    通讯作者:

    姚 响,E-mail:yaoxiang@dhu.edu.cn;张耀鹏,E-mail:zyp@dhu.edu.cn

  • 中图分类号: R318.08

Development of Silk Fibroin Based Bio-Ink for Tough Scaffold and Related Simulation Software for 3D Printing Scaffold

  • 摘要: 基于丝素蛋白(SF)和有限元分析方法,开发了一种强韧支架用丝素蛋白基生物墨水及其3D打印支架压缩性能模拟软件。表征了墨水的可打印性及对应水凝胶和3D打印支架的力学性能,评估了相关打印支架的细胞相容性。基于所述丝素蛋白基生物墨水,设计并制备了不同高度和孔隙率的3D打印支架,利用所开发软件和电子万能材料试验机对打印支架的压缩性能进行了模拟预测和实测对比。结果表明:该墨水可打印性佳,对应支架强度高韧性好、细胞相容性好。所开发软件操作简便,具有3D打印支架建模、模型压缩力学性能预测以及指导3D打印支架快速制备等功能。

     

  • 图  1  开发软件的核心功能:(a)3D打印支架建模;(b)支架压缩性能模拟分析;(c)模型数据导出与3D打印机共享

    Figure  1.  Core functionalities of the developed software: (a) Modelling of 3D printed scaffold; (b) Simulation analysis of scaffold compression performance; (c) Model data sharing with the 3D printer

    图  2  利用RSF/AM/OBC墨水制备的典型3DS的力学性能:(a)拉伸应力-应变曲线;(b)压缩应力-应变曲线

    Figure  2.  Mechanical properties of typical 3DS prepared using RSF/AM/OBC bio-ink: (a) Tensile stress-strain curve; (b) Compressive stress-strain curve

    图  3  L929细胞在RSF/AM/OBC打印支架上培养7 d后的活/死荧光染色图

    Figure  3.  Live/dead staining of the cells on the RSF/AM/OBC printing scaffold after cultured 7 d

    图  4  3DS建模及模型数据导出指导3DS的快速制备

    Figure  4.  3DS modeling and its guidance for the rapid preparation of corresponding 3DS

    图  5  不同高度、不同孔隙率支架压缩应力-应变曲线真实测量值和模拟值的对比结果

    Figure  5.  Comparison of real measured and simulated values of compressive stress-strain curves of scaffolds with different heights and porosities

    表  1  丝素蛋白基生物墨水的配方

    Table  1.   Specific formulations of the silk fibroin based bio-inks

    Samplem(RSF)/gm(AM)/gm(OBC)/gm(Ru)/mgm(SPS)/mgm(MBA)/mgm(Water)/gw(Solid)/%
    RSF0.32000.7482.2800.6832
    AM01.9200.3743.421.24.0832
    RSF/AM0.111.8100.7483.421.24.0832
    RSF/AM/OBC0.11.730.7483.421.21.2032
    下载: 导出CSV

    表  2  3DS模型的具体参数

    Table  2.   Specific parameters of 3DS models

    SampleDiameter of print line/mmLine angle/(°)Spacing1)/mmScaffoldScaffold porosity/%
    Length/mmWidth/mmLayers
    3DS-100.6901.215151058.55
    3DS-150.6901.215151558.55
    3DS-200.6901.215152058.55
    3DS-45.63%0.6900.915151045.63
    3DS-52.17%0.6901.015151052.17
    3DS-64.81%0.6901.415151064.81
    1) The distance between the centers of the lines
    下载: 导出CSV

    表  3  丝素蛋白基生物墨水的可打印性及对应水凝胶的力学性能

    Table  3.   Printability of the silk fibroin based bio-inks and the mechanical properties of corresponding hydrogels

    SampleElastic modulus/MPaElongation at break/%Modulus of compression/MPaCompressive strength/MPaPrintability
    RSFRSF hydrogels are soft, brittle and virtually non-stretchable0.0081 ± 0.00020.45 ± 0.01N/A
    AM0.12 ± 0.02624.30 ± 151.060.15 ± 0.010.48 ± 0.04N/A
    RSF/AM0.18 ± 0.01323.42 ± 69.690.21 ± 0.020.63 ± 0.01N/A
    RSF/AM/OBC3.11 ± 0.22122.53 ± 11.991.99 ± 0.237.76 ± 0.26Good
    下载: 导出CSV
  • [1] GU M J, FAN S N, ZHOU G D, MA K, YAO X, ZHANG Y P. Effects of dynamic mechanical stimulations on the regeneration of in vitro and in vivo cartilage tissue based on silk fibroin scaffold [J]. Composites Part B: Engineering,2022,235:109764. doi: 10.1016/j.compositesb.2022.109764
    [2] JING L Z, FAN S N, YAO X, ZHANG Y P. Effects of compound stimulation of fluid shear stress plus ultrasound on stem cell proliferation and osteogenesis [J]. Regenerative Biomaterials,2021,8(6):rbab066. doi: 10.1093/rb/rbab066
    [3] TANG Y, WANG Z, XIANG L, ZHAO Z, CUI W. Functional biomaterials for tendon/ligament repair and regeneration [J]. Regenerative Biomaterials,2022,9:rbac062. doi: 10.1093/rb/rbac062
    [4] ZOU S Z, FAN S N, OLIVEIRA A L, YAO X, ZHANG Y P, SHAO H L. 3D printed gelatin scaffold with improved shape fidelity and cytocompatibility by using antheraea pernyi silk fibroin nanofibers [J]. Advanced Fiber Materials,2022,4(4):758-773. doi: 10.1007/s42765-022-00135-w
    [5] ARIFIN N, SUDIN I, NGADIMAN N H A, ISHAK M S A. A comprehensive review of biopolymer fabrication in additive manufacturing processing for 3D-tissue-engineering scaffolds [J]. Polymers,2022,14(10):2119. doi: 10.3390/polym14102119
    [6] WANG S Q, ZHAO S, YU J C, GU Z, ZHANG Y Q. Advances in translational 3D printing for cartilage, bone, and osteochondral tissue engineering [J]. Small,2022,18(36):e2201869. doi: 10.1002/smll.202201869
    [7] ALMARZA A J, ATHANASIOU K A. Design characteristics for the tissue engineering of cartilaginous tissues [J]. Annals of Biomedical Engineering,2004,32(1):2-17. doi: 10.1023/B:ABME.0000007786.37957.65
    [8] ATHANASIOU K A, ROSENWASSER M P, BUCKWALTER J A, MALININ T I, MOW V C. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage [J]. Journal of Orthopaedic Research,1991,9(3):330-340. doi: 10.1002/jor.1100090304
    [9] HERBERHOLD C, FABER S, STAMMBERGER T, STEINLECHNER M, PUTZ R, ENGLMEIER K H, REISER M, ECKSTEIN F. In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading [J]. Journal of Biomechanics,1999,32(12):1287-1295. doi: 10.1016/S0021-9290(99)00130-X
    [10] KAAB M J, ITO K, CLARK J M, NOTZLI H P. Deformation of articular cartilage collagen structure under static and cyclic loading [J]. Journal of Orthopaedic Research,1998,16(6):743-751. doi: 10.1002/jor.1100160617
    [11] GAO F, XU Z Y, LIANG Q F, LI H F, PENG L Q, WU M M, ZHAO X L, CUI X, RUAN C S, LIU W G. Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds [J]. Advanced Science,2019,6(15):1900867. doi: 10.1002/advs.201900867
    [12] CHU Y, HUANG L P, HAO W P, ZHAO T T, ZHAO H T, YANG W, XIE X, QIAN L, CHEN Y Y, DAI J W. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application [J]. Biomedical Materials,2021,16(6):064102. doi: 10.1088/1748-605X/ac2595
    [13] NAGHIEH S, CHEN D. Printability: A key issue in extrusion-based bioprinting [J]. Journal of Pharmaceutical Analysis,2021,11(5):564-579. doi: 10.1016/j.jpha.2021.02.001
    [14] 宁连旺. ANSYS有限元分析理论与发展 [J]. 山西科技,2008(4):65-66. doi: 10.3969/j.issn.1004-6429.2008.04.035

    NING L W. ANSYS theory of finite element analysis and its development [J]. Shanxi Science and Technology,2008(4):65-66. doi: 10.3969/j.issn.1004-6429.2008.04.035
    [15] 于亚婷, 杜平安, 王振伟. 有限元法的应用现状研究 [J]. 机械设计,2005(3):6-9. doi: 10.3969/j.issn.1001-2354.2005.03.003

    YU Y T, DU P A, WANG Z W. Rsearch on the current application status of finite element method [J]. Mechanical Design,2005(3):6-9. doi: 10.3969/j.issn.1001-2354.2005.03.003
    [16] CHEN J, ZHUANG A, SHAO H L, HU X C, ZHANG Y P. Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration [J]. Journal of Materials Chemistry B,2017,5(20):3640-3650. doi: 10.1039/C7TB00485K
    [17] HUANG L, YUAN W, HONG Y, FAN S N, YAO X, REN T, SONG L J, YANG G S, ZHANG Y P. 3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells [J]. Cellulose,2021,28(1):241-257. doi: 10.1007/s10570-020-03526-7
    [18] KLUGE J A, KAHN B T, BROWN J E, OMENETTO F G, KAPLAN D L. Optimizing molecular weight of lyophilized silk as a shelf-stable source material [J]. ACS Biomaterials Science & Engineering,2016,2(4):595-605.
    [19] 史乾坤, 王玉鹏, 张浩, 周东方. 蛋白质基生物材料的生物医学应用进展 [J]. 功能高分子学报,2020,34(2):161-171. doi: 10.14133/j.cnki.1008-9357.20201201001

    SHI Q K, WANG Y P, ZHANG H, ZHOU D F. Advances in protein-based biomaterials for biomedical applications [J]. Journal of Functional Polymers,2020,34(2):161-171. doi: 10.14133/j.cnki.1008-9357.20201201001
    [20] YAO X, ZOU S Z, FAN S N, NIU Q Q, ZHANG Y P. Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications [J]. Materials Today Bio,2022,16:100381. doi: 10.1016/j.mtbio.2022.100381
    [21] ZHUANG A, HUANG X Y, FAN S N, YAO X, ZHU B, ZHANG Y P. One-step approach to prepare transparent conductive regenerated silk fibroin/PEDOT: PSS films for electroactive cell culture [J]. ACS Applied Materials & Interfaces,2022,14(1):123-137.
    [22] MU X, SAHOO J K, CEBE P, KAPLAN D L. Photo-crosslinked silk fibroin for 3D printing [J]. Polymers,2020,12(12):2936. doi: 10.3390/polym12122936
    [23] ZOU S Z, YAO X, SHAO H L, REIS R L, KUNDU S C, ZHANG Y P. Nonmulberry silk fibroin-based biomaterials: Impact on cell behavior regulation and tissue regeneration [J]. Acta Biomaterialia,2022,153:68-84. doi: 10.1016/j.actbio.2022.09.021
    [24] CHAWLA S, MIDHA S, SHARMA A, GHOSH S. Silk-based bioinks for 3D bioprinting [J]. Advanced Healthcare Materials,2018,7(8):e1701204. doi: 10.1002/adhm.201701204
    [25] HUANG L, DU X Y, FAN S N, YANG G S, SHAO H L, LI D J, CAO C B, ZHU Y F, ZHU M F, ZHANG Y P. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores [J]. Carbohydrate Polymers,2019,221:146-156. doi: 10.1016/j.carbpol.2019.05.080
    [26] ZHONG N P, DONG T, CHEN Z C, GUO Y W, SHAO Z Z, ZHAO X. A novel 3D-printed silk fibroin-based scaffold facilitates tracheal epithelium proliferation in vitro [J]. Journal of Biomaterials Applications,2019,34(1):3-11. doi: 10.1177/0885328219845092
    [27] ATHUKORALALAGE S S, BALU R, DUTTA N K, ROY CHOUDHURY N. 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: A brief review [J]. Polymers (Basel),2019,11(5):898. doi: 10.3390/polym11050898
    [28] NIMESKERN L, AVILA H M, SUNDBERG J, GATENHOLM P, MULLER R, STOK K S. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement [J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,22:12-21. doi: 10.1016/j.jmbbm.2013.03.005
    [29] 黄利. 丝素蛋白仿生组织工程支架的成型、结构与性能研究 [D]. 上海: 东华大学, 2020.

    HUANG L. Preparation, structures and properties of silk fibroin based biomimetic tissue engineering scaffolds [D]. Shanghai: DongHua University, 2020.
    [30] CHEN F, LU S P, ZHU L, TANG Z Q, WANG Q L, QIN G, YANG J, SUN G Z, ZHANG Q, CHEN Q. Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances [J]. Journal of Materials Chemistry B,2019,7(10):1708-1715. doi: 10.1039/C8TB02445F
    [31] SENNAKESAVAN G, MOSTAKHDEMIN M, DKHAR L K, SEYFODDIN A, FATIHHI S J. Acrylic acid/acrylamide based hydrogels and its properties: A review [J]. Polymer Degradation and Stability,2020,180:109308. doi: 10.1016/j.polymdegradstab.2020.109308
    [32] HUANG L, HUANG J W, SHAO H L, HU X C, CAO C B, FAN S N, SONG L J, ZHANG Y P. Silk scaffolds with gradient pore structure and improved cell infiltration performance [J]. Materials Science & Engineering C: Materials for Biological Applications,2019,94:179-189.
    [33] ARNOLD M P, DANIELS A U, RONKEN S, GARCIA H A, FRIEDERICH N F, KUROKAWA T, GONG J P, WIRZ D. Acrylamide polymer double-network hydrogels: Candidate cartilage repair materials with cartilage-like dynamic stiffness and attractive surgery-related attachment mechanics [J]. Cartilage,2011,2(4):374-383. doi: 10.1177/1947603511402320
    [34] WEI J X, WANG B X, LI Z, WU Z T, ZHANG M H, SHENG N, LIANG Q Q, WANG H P, CHEN S Y. A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation [J]. Carbohydrate Polymers,2020,238(11):116207. doi: 10.1016/j.carbpol.2020.116207
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  34
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 录用日期:  2022-12-30
  • 网络出版日期:  2023-01-04
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回