高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于明胶及其衍生物/甲基丙烯酸羟乙酯/硫酸钠的形状记忆水凝胶

何苗苗 陈凌东 张莉 甄辉 徐萍华 鲍娇慧

何苗苗, 陈凌东, 张 莉, 甄 辉, 徐萍华, 鲍娇慧. 基于明胶及其衍生物/甲基丙烯酸羟乙酯/硫酸钠的形状记忆水凝胶[J]. 功能高分子学报,2023,36(2):178-184 doi: 10.14133/j.cnki.1008-9357.20221103001
引用本文: 何苗苗, 陈凌东, 张 莉, 甄 辉, 徐萍华, 鲍娇慧. 基于明胶及其衍生物/甲基丙烯酸羟乙酯/硫酸钠的形状记忆水凝胶[J]. 功能高分子学报,2023,36(2):178-184 doi: 10.14133/j.cnki.1008-9357.20221103001
HE Miaomiao, CHEN Lingdong, ZHANG Li, ZHEN Hui, XU Pinghua, BAO Jiaohui. Shape Memory Hydrogel Based on Gelatin and Its Derivatives/Hydroxyethyl Methacrylate/Sodium Sulfate[J]. Journal of Functional Polymers, 2023, 36(2): 178-184. doi: 10.14133/j.cnki.1008-9357.20221103001
Citation: HE Miaomiao, CHEN Lingdong, ZHANG Li, ZHEN Hui, XU Pinghua, BAO Jiaohui. Shape Memory Hydrogel Based on Gelatin and Its Derivatives/Hydroxyethyl Methacrylate/Sodium Sulfate[J]. Journal of Functional Polymers, 2023, 36(2): 178-184. doi: 10.14133/j.cnki.1008-9357.20221103001

基于明胶及其衍生物/甲基丙烯酸羟乙酯/硫酸钠的形状记忆水凝胶

doi: 10.14133/j.cnki.1008-9357.20221103001
基金项目: 浙江省重点研发项目(2021C03035);浙江省属科研院所扶持经费项目(20220004)
详细信息
    作者简介:

    何苗苗(1992—),女,陕西渭南人,硕士研究生,医疗器械中级职称,主要研究方向为水凝胶材料。E-mail:1052567083@qq.com

    通讯作者:

    张 莉,E-mail:fancyzl11@163.com

  • 中图分类号: O63

Shape Memory Hydrogel Based on Gelatin and Its Derivatives/Hydroxyethyl Methacrylate/Sodium Sulfate

  • 摘要: 以明胶(Gel)、甲基丙烯酸羟乙酯(HEMA)为单体,以甲基丙烯酰化明胶(GelMA)为交联剂,通过光聚合法及Hofmeister效应制备出一种双网络(DN)水凝胶,光照结束后,将DN水凝胶浸泡到高浓度Na2SO4溶液中,得到DN/SO42−水凝胶。采用万能材料试验机测试水凝胶的力学性能,采用MTT法对水凝胶的生物相容性进行表征。结果表明:当Gel质量分数为 20%,HEMA质量分数为 40%,GelMA质量分数为10%时,水凝胶的拉伸强度最高可达0.94 MPa,断裂伸长率为496%。水凝胶网络中的分子链在高浓度Na2SO4溶液中收缩,在低浓度Na2SO4溶液中舒展,赋予水凝胶离子刺激响应的形状记忆性。此外,该水凝胶还具备生物可降解性和良好的生物相容性。

     

  • 图  1  DN/SO42−水凝胶的拉伸性能

    Figure  1.  Tensile properties of DN/SO42− hydrogels

    图  2  浸泡不同时间后的DN/SO42−水凝胶拉伸曲线

    Figure  2.  Tensile curves of DN/SO42− hydrogels with different immersion time

    图  3  (a)原始水凝胶在250%应变下的拉伸曲线;(b)原始和拉伸后的水凝胶的拉伸曲线;(c)水凝胶恢复过程的实物照片

    Figure  3.  (a) Tensile curves of original hydrogel at the strain of 250%; (b) Tensile curves of original hydrogel and stretched hydrogel; (c) Photos of hydrogels during the recovery process

    图  4  DN/SO42−水凝胶在(a)胰酶溶液和(b)PBS中浸泡不同时间后的降解情况; DN水凝胶在(c)胰酶溶液和(d)PBS中浸泡不同时间后的降解情况

    Figure  4.  Degradation processes of DN/SO42− hydrogel after immersing in (a) trypsin solution and (b) PBS for different time; Degradation processes of DN hydrogel after immersing in (c) trypsin solution and (d) PBS for different time

    图  5  DN/SO42−水凝胶的形状记忆性:(a)水凝胶被固定成不同的形状;(b)折叠后的水凝胶浸泡 Na2SO4溶液(w=2%)后恢复原状的过程;(c)扭曲后的水凝胶浸泡Na2SO4溶液(w=2%)后恢复原状的过程

    Figure  5.  Shape-memory property of the DN/SO42− hydrogel: (a) Hydrogels with different shapes; (b) The process of folded hydrogel recovering to the original shape after soaking in Na2SO4 solution (w=2%); (c) The process of twisted hydrogel recovering to the original shape after soaking in Na2SO4 solution (w=2%)

    图  6  (a)DN/SO42−水凝胶在不同温度下的溶胀性能;(b) L929细胞与不同浓度水凝胶浸出液共培养后的细胞存活率

    Figure  6.  (a) Swelling property of DN/SO42− hydrogels at different temperatures; (b) Cell viability of L929 cells after co-cultured with different mass concentrations of DN/SO42− hydrogel extract solution

  • [1] LI D, ZHAN W, ZUO W, LI L, ZHANG J, CAI G, TIAN Y. Elastic, tough and switchable swelling hydrogels with high entanglements and low crosslinks for water remediation [J]. Chemical Engineering Journal,2022,450:138417. doi: 10.1016/j.cej.2022.138417
    [2] CAI Z, TANG Y, WEI Y, WANG P, ZHANG H. Double-network hydrogel based on exopolysaccharides as a biomimetic extracellular matrix to augment articular cartilage regeneration [J]. Acta Biomaterialia,2022,152:124-143. doi: 10.1016/j.actbio.2022.08.062
    [3] JU Y X, HU R Z, WANG P Y, SHEN Y S, SHUANG F F, WANG J, SONG P, ZHAO W G, YAO X H, ZHANG D Y, CHEN T. Strong silk fibroin/PVA/chitosan hydrogels with high water content inspired by straw rammed earth brick structures [J]. ACS Sustainable Chemistry and Engineering,2022,10(39):13070-13080.
    [4] ZHENG A, WANG X, XIN X, PENG L, SU T, CAO L, JIANG X. Promoting lacunar bone regeneration with an injectable hydrogel adaptive to the microenvironment [J]. Bioactive Materials,2023,21:403-421. doi: 10.1016/j.bioactmat.2022.08.031
    [5] SAYED J E, KHOONKARI M, OGGIONI M, PERRIN P, SANSON N, KAMPERMAN M, WŁODARCZYK-BIEGUN M K. Multi-responsive jammed micro-gels ink: Toward control over the resolution and the stability of 3D printed scaffolds [J]. Advanced Functional Materials,2022,32(48):2207816.
    [6] LI C, DU Y, LV H, ZHANG J, ZHUANG P, YANG W, ZHANG Y, WANG J, CUI W, CHEN W. Injectable amphipathic artesunate prodrug-hydrogel microsphere as gene/drug nano-microplex for rheumatoid arthritis therapy [J]. Advanced Functional Materials,2022,32(44):2206261.
    [7] YANG Y, WANG X, YANG F, SHEN H, WU D. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels [J]. Advanced Materials,2016,28(33):7178-7184. doi: 10.1002/adma.201601742
    [8] XU L, MA F, HUANG J, FRANKIE LEUNG K L, QIN C, LU W W, GUO X E, TANG B. Metformin hydrochloride encapsulation by alginate strontium hydrogel for cartilage regeneration by reliving cellular senescence [J]. Biomacromolecules,2021,22(2):671-680. doi: 10.1021/acs.biomac.0c01488
    [9] BAEI P, DAEMI H, MOSTAFAEI F, AZAM SAYAHPOUR F, BAHARVAND H, ESLAMINEJAD M B. A tough polysaccharide-based cell-laden double-network hydrogel promotes articular cartilage tissue regeneration in rabbits [J]. Chemical Engineering Journal,2021,418:129277. doi: 10.1016/j.cej.2021.129277
    [10] ZHANG S, LI Y, ZHANG H, WANG G, WEI H, ZHANG X, MA N. Bioinspired conductive hydrogel with ultrahigh toughness and stable antiswelling properties for articular cartilage replacement [J]. ACS Materials Letters,2021,3(6):807-814. doi: 10.1021/acsmaterialslett.1c00203
    [11] ZHANG J, CHEN L, CHEN L, QIAN S, MOU X, FENG J. Highly antifouling, biocompatible and tough double network hydrogel based on carboxybetaine-type zwitterionic polymer and alginate [J]. Carbohydrate Polymers,2021,257:117627. doi: 10.1016/j.carbpol.2021.117627
    [12] HE M, CHEN L, ZHANG L, SHEN L, ZHEN H, WANG L, XU P, BAO J. A zwitterion-based hydrogel with high-strength, high transparency, anti-adhesion and degradability [J]. Journal of Materials Science,2022,57(35):16830-16841. doi: 10.1007/s10853-022-07675-x
    [13] TANG S, LIU K, CHEN J, LI Y, LIU M, LU L, ZHOU C, LUO B. Dual-cross-linked liquid crystal hydrogels with controllable viscoelasticity for regulating cell behaviors [J]. ACS Applied Materials and Interfaces,2022,14(19):21966-21977.
    [14] ZHAO B, ZHANG Y, LI D, MO X, PAN J. Hofmeister effect-enhanced gelatin/oxidized dextran hydrogels with improved mechanical properties and biocompatibility for wound healing [J]. Acta Biomaterialia,2022,151:235-253. doi: 10.1016/j.actbio.2022.08.009
    [15] JIANG S, DENG J, JIN Y, QIAN B, LV W, ZHOU Q, MEI E, NEISIANY R E, LIU Y, YOU Z, PAN J. Breathable, antifreezing, mechanically skin-like hydrogel textile wound dressings with dual antibacterial mechanisms [J]. Bioactive Materials,2023,21:313-323. doi: 10.1016/j.bioactmat.2022.08.014
    [16] GHOSH S K, DAS A, BASU A, HALDER A, DAS S, BASU S, ABDULLAH Md F, MUKHERJEE A, KUNDU S. Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release [J]. International Journal of Biological Macromolecules,2018,120:1823-1833. doi: 10.1016/j.ijbiomac.2018.09.212
    [17] ZHANG L, HE M, CHEN L, XU P, BAO J, HU X. An organic hydrogel with high-strength, high-water retention properties for pressure sore protection [J]. Journal of Materials Science,2021,56(33):18697-18709. doi: 10.1007/s10853-021-06571-0
    [18] LI J, CHEE H L, CHONG Y T, CHAN B Q Y, XUE K, LIM P C, LOH X J, WANG F. Hofmeister effect mediated strong PHEMA-gelatin hydrogel actuator [J]. ACS Applied Materials and Interfaces,2022,14(20):23826-23838.
    [19] GONG J P. Why are double network hydrogels so tough? [J]. Soft Matter,2010,6(12):2583. doi: 10.1039/b924290b
    [20] CHEN Q, CHEN H, ZHU L, ZHENG J. Fundamentals of double network hydrogels [J]. Journal of Materials Chemistry B,2015,3(18):3654-3676. doi: 10.1039/C5TB00123D
    [21] HE Q, HUANG Y, WANG S. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels [J]. Advanced Functional Materials,2018,28(5):1705069. doi: 10.1002/adfm.201705069
    [22] WANG X, QIAO C, JIANG S, LIU L, YAO J. Hofmeister effect in gelatin-based hydrogels with shape memory properties [J]. Colloids and Surfaces B:Biointerfaces,2022,217:112674. doi: 10.1016/j.colsurfb.2022.112674
    [23] IONESCU R E, FILLIT C, JAFFREZIC-RENAULT N, COSNIER S. Urease-gelatin interdigitated microelectrodes for the conductometric determination of protease activity [J]. Biosensors and Bioelectronics,2008,24(3):489-492. doi: 10.1016/j.bios.2008.06.021
    [24] JASPERS M, ROWAN A E, KOUWER P H J. Tuning hydrogel mechanics using the hofmeister effect [J]. Advanced Functional Materials,2015,25(41):6503-6510. doi: 10.1002/adfm.201502241
    [25] YANG J, LI Y, ZHU L, QIN G, CHEN Q. Double network hydrogels with controlled shape deformation: A mini review [J]. Journal of Polymer Science Part B:Polymer Physics,2018,56(19):1351-1362. doi: 10.1002/polb.24735
    [26] ZENG C, WU P, GUO J, ZHAO N, KE C, LIU G, ZHOU F, LIU W. Synergy of hofmeister effect and ligand crosslinking enabled the facile fabrication of super-strong, pre-stretching-enhanced gelatin-based hydrogels [J]. Soft Matter,2022,18(45):8675-8686. doi: 10.1039/D2SM01158A
  • 加载中
图(6)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  15
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 录用日期:  2023-02-08
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回