Shape Memory Hydrogel Based on Gelatin and Its Derivatives/Hydroxyethyl Methacrylate/Sodium Sulfate
-
摘要: 以明胶(Gel)、甲基丙烯酸羟乙酯(HEMA)为单体,以甲基丙烯酰化明胶(GelMA)为交联剂,通过光聚合法及Hofmeister效应制备出一种双网络(DN)水凝胶,光照结束后,将DN水凝胶浸泡到高浓度Na2SO4溶液中,得到DN/SO42−水凝胶。采用万能材料试验机测试水凝胶的力学性能,采用MTT法对水凝胶的生物相容性进行表征。结果表明:当Gel质量分数为 20%,HEMA质量分数为 40%,GelMA质量分数为10%时,水凝胶的拉伸强度最高可达0.94 MPa,断裂伸长率为496%。水凝胶网络中的分子链在高浓度Na2SO4溶液中收缩,在低浓度Na2SO4溶液中舒展,赋予水凝胶离子刺激响应的形状记忆性。此外,该水凝胶还具备生物可降解性和良好的生物相容性。Abstract: Double network (DN) hydrogel was prepared by photoinitiated polymerization with gelatin (Gel) and hydroxyethyl methacrylate (HEMA) as monomers, methacryloylated gelatin (GelMA) as a cross-linking agent, and 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylphenylacetone (I2959) as an initiator. Then the DN hydrogel was soaked into saturated Na2SO4 solution to prepare DN/SO42− hydrogel. Tensile property was tested by universal material testing machine. Results showed that when the mass fraction of Gel, HEMA, GelMA was 20%, 40%, and 10%, respectively, and the immersion time was 16 h, the tensile strength of the hydrogel could reach 0.94 MPa, and the elongation at break was 496%. Loading-unloading test showed that the hydrogel had good self-recovery performance. The hydrogel also had biodegradability because of the degradable cross-linking agent GelMA. It could be completely degraded after soaking in trypsin solution for 4 h. The molecular chains in the hydrogel network contracted in the high mass fraction salt solution and stretched in the low mass fraction salt solution, giving the shape memory of the hydrogel by ion stimulation response. The hydrogel with fixed shape (knotting, folding, twisting) could be recovered to its original shape within 5 min after soaking in low mass fraction Na2SO4 solution (w=2%). In addition, nontoxic components endowed the hydrogel with excellent biocompatibility, which had been confirmed by MTT method. After co-culture with different mass concentrations of DN/SO42− hydrogel extract solution, the viabilities of L929 cells were more than 80%.
-
Key words:
- double network hydrogel /
- mechanical property /
- shape memory /
- biodegradable /
- biocompatibility
-
图 4 DN/SO42−水凝胶在(a)胰酶溶液和(b)PBS中浸泡不同时间后的降解情况; DN水凝胶在(c)胰酶溶液和(d)PBS中浸泡不同时间后的降解情况
Figure 4. Degradation processes of DN/SO42− hydrogel after immersing in (a) trypsin solution and (b) PBS for different time; Degradation processes of DN hydrogel after immersing in (c) trypsin solution and (d) PBS for different time
图 5 DN/SO42−水凝胶的形状记忆性:(a)水凝胶被固定成不同的形状;(b)折叠后的水凝胶浸泡 Na2SO4溶液(w=2%)后恢复原状的过程;(c)扭曲后的水凝胶浸泡Na2SO4溶液(w=2%)后恢复原状的过程
Figure 5. Shape-memory property of the DN/SO42− hydrogel: (a) Hydrogels with different shapes; (b) The process of folded hydrogel recovering to the original shape after soaking in Na2SO4 solution (w=2%); (c) The process of twisted hydrogel recovering to the original shape after soaking in Na2SO4 solution (w=2%)
-
[1] LI D, ZHAN W, ZUO W, LI L, ZHANG J, CAI G, TIAN Y. Elastic, tough and switchable swelling hydrogels with high entanglements and low crosslinks for water remediation [J]. Chemical Engineering Journal,2022,450:138417. doi: 10.1016/j.cej.2022.138417 [2] CAI Z, TANG Y, WEI Y, WANG P, ZHANG H. Double-network hydrogel based on exopolysaccharides as a biomimetic extracellular matrix to augment articular cartilage regeneration [J]. Acta Biomaterialia,2022,152:124-143. doi: 10.1016/j.actbio.2022.08.062 [3] JU Y X, HU R Z, WANG P Y, SHEN Y S, SHUANG F F, WANG J, SONG P, ZHAO W G, YAO X H, ZHANG D Y, CHEN T. Strong silk fibroin/PVA/chitosan hydrogels with high water content inspired by straw rammed earth brick structures [J]. ACS Sustainable Chemistry and Engineering,2022,10(39):13070-13080. [4] ZHENG A, WANG X, XIN X, PENG L, SU T, CAO L, JIANG X. Promoting lacunar bone regeneration with an injectable hydrogel adaptive to the microenvironment [J]. Bioactive Materials,2023,21:403-421. doi: 10.1016/j.bioactmat.2022.08.031 [5] SAYED J E, KHOONKARI M, OGGIONI M, PERRIN P, SANSON N, KAMPERMAN M, WŁODARCZYK-BIEGUN M K. Multi-responsive jammed micro-gels ink: Toward control over the resolution and the stability of 3D printed scaffolds [J]. Advanced Functional Materials,2022,32(48):2207816. [6] LI C, DU Y, LV H, ZHANG J, ZHUANG P, YANG W, ZHANG Y, WANG J, CUI W, CHEN W. Injectable amphipathic artesunate prodrug-hydrogel microsphere as gene/drug nano-microplex for rheumatoid arthritis therapy [J]. Advanced Functional Materials,2022,32(44):2206261. [7] YANG Y, WANG X, YANG F, SHEN H, WU D. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels [J]. Advanced Materials,2016,28(33):7178-7184. doi: 10.1002/adma.201601742 [8] XU L, MA F, HUANG J, FRANKIE LEUNG K L, QIN C, LU W W, GUO X E, TANG B. Metformin hydrochloride encapsulation by alginate strontium hydrogel for cartilage regeneration by reliving cellular senescence [J]. Biomacromolecules,2021,22(2):671-680. doi: 10.1021/acs.biomac.0c01488 [9] BAEI P, DAEMI H, MOSTAFAEI F, AZAM SAYAHPOUR F, BAHARVAND H, ESLAMINEJAD M B. A tough polysaccharide-based cell-laden double-network hydrogel promotes articular cartilage tissue regeneration in rabbits [J]. Chemical Engineering Journal,2021,418:129277. doi: 10.1016/j.cej.2021.129277 [10] ZHANG S, LI Y, ZHANG H, WANG G, WEI H, ZHANG X, MA N. Bioinspired conductive hydrogel with ultrahigh toughness and stable antiswelling properties for articular cartilage replacement [J]. ACS Materials Letters,2021,3(6):807-814. doi: 10.1021/acsmaterialslett.1c00203 [11] ZHANG J, CHEN L, CHEN L, QIAN S, MOU X, FENG J. Highly antifouling, biocompatible and tough double network hydrogel based on carboxybetaine-type zwitterionic polymer and alginate [J]. Carbohydrate Polymers,2021,257:117627. doi: 10.1016/j.carbpol.2021.117627 [12] HE M, CHEN L, ZHANG L, SHEN L, ZHEN H, WANG L, XU P, BAO J. A zwitterion-based hydrogel with high-strength, high transparency, anti-adhesion and degradability [J]. Journal of Materials Science,2022,57(35):16830-16841. doi: 10.1007/s10853-022-07675-x [13] TANG S, LIU K, CHEN J, LI Y, LIU M, LU L, ZHOU C, LUO B. Dual-cross-linked liquid crystal hydrogels with controllable viscoelasticity for regulating cell behaviors [J]. ACS Applied Materials and Interfaces,2022,14(19):21966-21977. [14] ZHAO B, ZHANG Y, LI D, MO X, PAN J. Hofmeister effect-enhanced gelatin/oxidized dextran hydrogels with improved mechanical properties and biocompatibility for wound healing [J]. Acta Biomaterialia,2022,151:235-253. doi: 10.1016/j.actbio.2022.08.009 [15] JIANG S, DENG J, JIN Y, QIAN B, LV W, ZHOU Q, MEI E, NEISIANY R E, LIU Y, YOU Z, PAN J. Breathable, antifreezing, mechanically skin-like hydrogel textile wound dressings with dual antibacterial mechanisms [J]. Bioactive Materials,2023,21:313-323. doi: 10.1016/j.bioactmat.2022.08.014 [16] GHOSH S K, DAS A, BASU A, HALDER A, DAS S, BASU S, ABDULLAH Md F, MUKHERJEE A, KUNDU S. Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release [J]. International Journal of Biological Macromolecules,2018,120:1823-1833. doi: 10.1016/j.ijbiomac.2018.09.212 [17] ZHANG L, HE M, CHEN L, XU P, BAO J, HU X. An organic hydrogel with high-strength, high-water retention properties for pressure sore protection [J]. Journal of Materials Science,2021,56(33):18697-18709. doi: 10.1007/s10853-021-06571-0 [18] LI J, CHEE H L, CHONG Y T, CHAN B Q Y, XUE K, LIM P C, LOH X J, WANG F. Hofmeister effect mediated strong PHEMA-gelatin hydrogel actuator [J]. ACS Applied Materials and Interfaces,2022,14(20):23826-23838. [19] GONG J P. Why are double network hydrogels so tough? [J]. Soft Matter,2010,6(12):2583. doi: 10.1039/b924290b [20] CHEN Q, CHEN H, ZHU L, ZHENG J. Fundamentals of double network hydrogels [J]. Journal of Materials Chemistry B,2015,3(18):3654-3676. doi: 10.1039/C5TB00123D [21] HE Q, HUANG Y, WANG S. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels [J]. Advanced Functional Materials,2018,28(5):1705069. doi: 10.1002/adfm.201705069 [22] WANG X, QIAO C, JIANG S, LIU L, YAO J. Hofmeister effect in gelatin-based hydrogels with shape memory properties [J]. Colloids and Surfaces B:Biointerfaces,2022,217:112674. doi: 10.1016/j.colsurfb.2022.112674 [23] IONESCU R E, FILLIT C, JAFFREZIC-RENAULT N, COSNIER S. Urease-gelatin interdigitated microelectrodes for the conductometric determination of protease activity [J]. Biosensors and Bioelectronics,2008,24(3):489-492. doi: 10.1016/j.bios.2008.06.021 [24] JASPERS M, ROWAN A E, KOUWER P H J. Tuning hydrogel mechanics using the hofmeister effect [J]. Advanced Functional Materials,2015,25(41):6503-6510. doi: 10.1002/adfm.201502241 [25] YANG J, LI Y, ZHU L, QIN G, CHEN Q. Double network hydrogels with controlled shape deformation: A mini review [J]. Journal of Polymer Science Part B:Polymer Physics,2018,56(19):1351-1362. doi: 10.1002/polb.24735 [26] ZENG C, WU P, GUO J, ZHAO N, KE C, LIU G, ZHOU F, LIU W. Synergy of hofmeister effect and ligand crosslinking enabled the facile fabrication of super-strong, pre-stretching-enhanced gelatin-based hydrogels [J]. Soft Matter,2022,18(45):8675-8686. doi: 10.1039/D2SM01158A -