Preparation of High Toughness Polymer Composites with Self-Healing Capacity via Non-Covalent Bonding
-
摘要: 以鞣花酸(ELA)改性氧化石墨烯(EGO)作为“砖”、聚氨酯(PU)作为“泥”,并引入非共价键,通过蒸发诱导自组装制备了可修复仿珍珠层复合材料(PU-EGO)。利用红外光谱、电位分析仪、X射线衍射仪等对EGO结构进行表征,通过万能试验机对PU-EGO的力学性能进行测试。结果表明:ELA吸附于GO表面,且当PU与EGO质量比为3∶1时,PU-EGO的拉伸强度和韧性分别达到111.2 MPa和81.5 MJ/m3(相比PU分别提高了9.6倍和1.8倍)。此外,所制备的材料还具备良好的自修复性和重复加工性能。Abstract: Interfaces between nacreous tablets are crucial to the outstanding mechanical properties of nacre in natural shells and inspired by the “brick-and-mortar” structure and remarkable mechanical performance of nacre. Excellent research has been conducted to probe the effect of interfaces on strength and toughness of nacre, providing critical guidelines for the design of human-made laminated composites. Herein, a class of graphene oxide (GO) based artificial nacre composite material with self-healing capacity due to non-covalent bonding interactions was fabricated by functionalization of GO with ellagic acid through π-π stacking followed by evaporation-induced self assembling process between ellagic acid modified graphene oxide(EGO) and polyurethane(PU). The artificial nacre displays a strict “brick-and-mortar” structure, with EGO nanosheets as the brick and PU as the mortar. The structure of EGO was characterized by infrared spectroscopy, potential analyzer and X-ray diffraction, and the mechanical properties of PU-EGO were tested by universal testing machine. The results show that ellagic acid (ELA) is successfully adsorbed on GO surface, and when the mass ratio of PU to EGO is 3∶1, the tensile strength and toughness of the material reach 111.2 MPa and 81.5 MJ/m3, respectively (9.6 times and 1.8 times higher than that of PU), attributing to the interlayer slip of GO by breaking and recombing the π-π bond dynamically through which the energy can dissipate when PU-EGO is subjected to tensile stress. In addition, owning to the existence of non-covalent bonds, the resulting polymer composites display good recyclability. This work provides a pathway for the development of artificial nacre with self-healing capacity and recyclability.
-
Key words:
- ellagic acid /
- graphene-oxide /
- polyurethane /
- high toughness /
- self-healing /
- "brick and mortar" structure
-
表 1 样品的拉伸强度、断裂伸长率和韧性
Table 1. Stress, elongation at break and toughness of samples
Sample Stress/MPa Elongation at break/% Toughness/(MJ·m−3) PU 11.6 363 45.6 PU-GO(5∶1) 43.1 176 61.1 PU-EGO(5∶1) 63.5 262 123.1 PU-GO(3∶1) 63.3 45 19.7 PU-EGO(3∶1) 111.2 97 81.5 -
[1] MEYERS M A, MCKITTRICK J, CHEN P Y. Structural biological materials: Critical mechanics-materials connections [J]. Science,2019,6121(339):773-779. [2] WALTHER A, BJURHAGER I, MALHO J M, PERE J, RUOKOLAINEN J, BERGLUND L A, IKKALA O. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways [J]. Nano Letters,2010,10(8):2742-2748. doi: 10.1021/nl1003224 [3] MUNCH E, LAUNEY M E, ALSEM D H, SAIZ E, TOMSIA A P, RITCHIE R O. Tough, bio-inspired hybrid materials [J]. Science,2008,322(5907):1516-1520. doi: 10.1126/science.1164865 [4] TANG Z Y, KOTOV N A, MAGONOV S, OZTURK B. Nanostructured artificial nacre[J]. Nature Materials, 2003, 2: 413-418. [5] GAO H L, CHEN S M, MAO L B, SONG Z Q, YAO H B, CÖLFEN H, LUO X S, ZHANG F, ZHAO P, MENG Y F, NI Y, YU S H. Mass production of bulk artificial nacre with excellent mechanical properties [J]. Nature Communications,2017,8:287. doi: 10.1038/s41467-017-00392-z [6] CLANCY A J, ANTHONY D B, LUCA F D. Metal mimics: Lightweight, strong, and tough nanocomposites and nanomaterial assemblies [J]. ACS Applied Materials and Interface,2020,12:15955-15975. doi: 10.1021/acsami.0c01304 [7] ZHANG X L, XU Y, ZHANG X, WU H, SHEN J B, CHEN R, XIONG Y, LI J, GUO S Y. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and application [J]. Progress in Polymer Science,2019,89:76-107. doi: 10.1016/j.progpolymsci.2018.10.002 [8] CHEN K, ZHANG S H, LI A, TANG X K, LI L D, GUO L. Bioinspired interfacial chelating-like reinforcement strategy toward mechanically enhanced lamellar materials[J]. ACS Nano, 2018, 12(5): 4269-4279. [9] WANG X H, PENG J S, ZHANG Y Y, LI M Z, SAIZ E, TOMSIA A P, CHENG Q F. Ultratough bioinspired graphene fiber via sequential toughening of hydrogen and ionic bonding [J]. ACS Nano,2018,12(12):12638-12645. doi: 10.1021/acsnano.8b07392 [10] WANG Y, YUAN H, MA P M, BAI H Y, CHEN M Q, DONG W F, XIE Y, DESHMUKH Y S. Superior performance of artificial nacre based on graphene oxide nanosheets [J]. ACS Applied Materials and Interfaces,2017,9(4):4215-4222. doi: 10.1021/acsami.6b13834 [11] THAKUR V K, KESSLER M R. Self-healing polymer nanocomposite materials: A review [J]. Polymer,2015,69:369-383. doi: 10.1016/j.polymer.2015.04.086 [12] LI C H, WANG C, KEPLINGER C, ZUO J L, JIN L H, SUN Y, ZHENG P, CAO Y, LISSEL F, LINDER C, XIAO Z Y, BAO Z N. A highly stretchable autonomous self-healing elastomer [J]. Nature Chemistry,2016,8:618-624. doi: 10.1038/nchem.2492 [13] YANG X Y, WANG Y S, HUANG X, MA Y F, HUANG Y, YANG R C, DUAN H Q, CHEN Y S. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity [J]. Journal of Materials Chemistry,2011,21(10):3448-3454. doi: 10.1039/C0JM02494E [14] 高龙, 俞慧涛, 王健, 冯奕钰, 封伟. 基于氢键交联的低温自修复聚合物 [J]. 功能高分子学报,2020,33(6):547-553. doi: 10.14133/j.cnki.1008-9357.20200608001GAO L, YU H T, WANG J, FENG Y Y, FENG W. Low-temperature self-healing polymer based on hydrogen bonding crosslinking [J]. Journal of Functional Polymers,2020,33(6):547-553. doi: 10.14133/j.cnki.1008-9357.20200608001 [15] MARCANO D C, KOSYNKIN D V, BERLIN J M, SINITSKII A, SUN Z Z, SLESAREV A, ALEMANY L B. Improved synthesis of graphene oxide [J]. ACS Nano,2010,4(8):4806-4814. doi: 10.1021/nn1006368 [16] 陶俊杰, 王凌云, 董佳豪, 罗静. 植酸改性石墨烯的制备及其在防腐涂层中的应用 [J]. 涂料工业,2020,50(2):14-21.TAO J J, WANG L Y, DONG J H, LUO J. Preparation of phytic acid modified graphene and its application in anticorrosion coatings [J]. Paint and Coatings Industry,2020,50(2):14-21. -