高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非共价键制备高韧性可修复聚合物复合材料

张玉 张乐兴 汪洋 东为富

张 玉, 张乐兴, 汪 洋, 东为富. 基于非共价键制备高韧性可修复聚合物复合材料[J]. 功能高分子学报,2023,36(2):170-177 doi: 10.14133/j.cnki.1008-9357.20221025001
引用本文: 张 玉, 张乐兴, 汪 洋, 东为富. 基于非共价键制备高韧性可修复聚合物复合材料[J]. 功能高分子学报,2023,36(2):170-177 doi: 10.14133/j.cnki.1008-9357.20221025001
ZHANG Yu, ZHANG Lexing, WANG Yang, DONG Weifu. Preparation of High Toughness Polymer Composites with Self-Healing Capacity via Non-Covalent Bonding[J]. Journal of Functional Polymers, 2023, 36(2): 170-177. doi: 10.14133/j.cnki.1008-9357.20221025001
Citation: ZHANG Yu, ZHANG Lexing, WANG Yang, DONG Weifu. Preparation of High Toughness Polymer Composites with Self-Healing Capacity via Non-Covalent Bonding[J]. Journal of Functional Polymers, 2023, 36(2): 170-177. doi: 10.14133/j.cnki.1008-9357.20221025001

基于非共价键制备高韧性可修复聚合物复合材料

doi: 10.14133/j.cnki.1008-9357.20221025001
基金项目: 国家自然科学基金(22005122); 江苏省自然科学基金(BK20190612)
详细信息
    作者简介:

    张玉:张 玉(1998—),男,湖南怀化人,硕士,主要研究方向为仿生结构材料。E-mail:gbtgsbz@icloud.com

    通讯作者:

    汪 洋,E-mail:ywang@jiangnan.edu.cn

  • 中图分类号: TQ327.6

Preparation of High Toughness Polymer Composites with Self-Healing Capacity via Non-Covalent Bonding

  • 摘要: 以鞣花酸(ELA)改性氧化石墨烯(EGO)作为“砖”、聚氨酯(PU)作为“泥”,并引入非共价键,通过蒸发诱导自组装制备了可修复仿珍珠层复合材料(PU-EGO)。利用红外光谱、电位分析仪、X射线衍射仪等对EGO结构进行表征,通过万能试验机对PU-EGO的力学性能进行测试。结果表明:ELA吸附于GO表面,且当PU与EGO质量比为3∶1时,PU-EGO的拉伸强度和韧性分别达到111.2 MPa和81.5 MJ/m3(相比PU分别提高了9.6倍和1.8倍)。此外,所制备的材料还具备良好的自修复性和重复加工性能。

     

  • 图  1  PU的合成过程

    Figure  1.  Procedure for preparation of PU

    图  2  PU-EGO的制备过程示意图

    Figure  2.  Schematic illustration for preparation of PU-EGO

    图  3  (a) GO的透射电镜照片; (b) GO、PU、ELA和EGO的FT-IR谱图;(c)GO和EGO的Zeta电位图

    Figure  3.  (a) TEM image of GO; (b) FT-IR spectra of GO, PU, ELA and EGO; (c) Zeta potentials of GO and EGO

    图  4  (a)GO、ELA和EGO的XRD谱图;(b)ELA和EGO的TGA曲线

    Figure  4.  (a) XRD patterns of GO, ELA and EGO; (b) TGA curves of ELA and EGO

    图  5  (a) PU-EGO的SEM照片; (b) PU、EGO、PA、PU-GO和PU-EGO的红外谱图

    Figure  5.  (a) SEM image of PU-EGO; (b) FT-IR spectra of PU, EGO, PA, PU-GO and PU-EGO

    图  6  (a)PU、PU-GO和PU-EGO的应力-应变曲线;(b)PU-EGO的受力示意图

    Figure  6.  (a) Stress-strain curves of PU, PU-GO and PU-EGO; (b) Schematic illustration of PU-EGO under stress

    图  7  PU-EGO(a)回收前后及(b)修复前后应力-应变曲线; (c)水修复过程示意图

    Figure  7.  Stress-strain curves of PU-EGO before and after (a) recycled and (b) self-healed; (c) Schematic illustration of water-assisted self-healing process

    表  1  样品的拉伸强度、断裂伸长率和韧性

    Table  1.   Stress, elongation at break and toughness of samples

    SampleStress/MPaElongation at break/%Toughness/(MJ·m−3
    PU11.636345.6
    PU-GO(5∶1)43.117661.1
    PU-EGO(5∶1)63.5262123.1
    PU-GO(3∶1)63.34519.7
    PU-EGO(3∶1)111.29781.5
    下载: 导出CSV
  • [1] MEYERS M A, MCKITTRICK J, CHEN P Y. Structural biological materials: Critical mechanics-materials connections [J]. Science,2019,6121(339):773-779.
    [2] WALTHER A, BJURHAGER I, MALHO J M, PERE J, RUOKOLAINEN J, BERGLUND L A, IKKALA O. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways [J]. Nano Letters,2010,10(8):2742-2748. doi: 10.1021/nl1003224
    [3] MUNCH E, LAUNEY M E, ALSEM D H, SAIZ E, TOMSIA A P, RITCHIE R O. Tough, bio-inspired hybrid materials [J]. Science,2008,322(5907):1516-1520. doi: 10.1126/science.1164865
    [4] TANG Z Y, KOTOV N A, MAGONOV S, OZTURK B. Nanostructured artificial nacre[J]. Nature Materials, 2003, 2: 413-418.
    [5] GAO H L, CHEN S M, MAO L B, SONG Z Q, YAO H B, CÖLFEN H, LUO X S, ZHANG F, ZHAO P, MENG Y F, NI Y, YU S H. Mass production of bulk artificial nacre with excellent mechanical properties [J]. Nature Communications,2017,8:287. doi: 10.1038/s41467-017-00392-z
    [6] CLANCY A J, ANTHONY D B, LUCA F D. Metal mimics: Lightweight, strong, and tough nanocomposites and nanomaterial assemblies [J]. ACS Applied Materials and Interface,2020,12:15955-15975. doi: 10.1021/acsami.0c01304
    [7] ZHANG X L, XU Y, ZHANG X, WU H, SHEN J B, CHEN R, XIONG Y, LI J, GUO S Y. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and application [J]. Progress in Polymer Science,2019,89:76-107. doi: 10.1016/j.progpolymsci.2018.10.002
    [8] CHEN K, ZHANG S H, LI A, TANG X K, LI L D, GUO L. Bioinspired interfacial chelating-like reinforcement strategy toward mechanically enhanced lamellar materials[J]. ACS Nano, 2018, 12(5): 4269-4279.
    [9] WANG X H, PENG J S, ZHANG Y Y, LI M Z, SAIZ E, TOMSIA A P, CHENG Q F. Ultratough bioinspired graphene fiber via sequential toughening of hydrogen and ionic bonding [J]. ACS Nano,2018,12(12):12638-12645. doi: 10.1021/acsnano.8b07392
    [10] WANG Y, YUAN H, MA P M, BAI H Y, CHEN M Q, DONG W F, XIE Y, DESHMUKH Y S. Superior performance of artificial nacre based on graphene oxide nanosheets [J]. ACS Applied Materials and Interfaces,2017,9(4):4215-4222. doi: 10.1021/acsami.6b13834
    [11] THAKUR V K, KESSLER M R. Self-healing polymer nanocomposite materials: A review [J]. Polymer,2015,69:369-383. doi: 10.1016/j.polymer.2015.04.086
    [12] LI C H, WANG C, KEPLINGER C, ZUO J L, JIN L H, SUN Y, ZHENG P, CAO Y, LISSEL F, LINDER C, XIAO Z Y, BAO Z N. A highly stretchable autonomous self-healing elastomer [J]. Nature Chemistry,2016,8:618-624. doi: 10.1038/nchem.2492
    [13] YANG X Y, WANG Y S, HUANG X, MA Y F, HUANG Y, YANG R C, DUAN H Q, CHEN Y S. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity [J]. Journal of Materials Chemistry,2011,21(10):3448-3454. doi: 10.1039/C0JM02494E
    [14] 高龙, 俞慧涛, 王健, 冯奕钰, 封伟. 基于氢键交联的低温自修复聚合物 [J]. 功能高分子学报,2020,33(6):547-553. doi: 10.14133/j.cnki.1008-9357.20200608001

    GAO L, YU H T, WANG J, FENG Y Y, FENG W. Low-temperature self-healing polymer based on hydrogen bonding crosslinking [J]. Journal of Functional Polymers,2020,33(6):547-553. doi: 10.14133/j.cnki.1008-9357.20200608001
    [15] MARCANO D C, KOSYNKIN D V, BERLIN J M, SINITSKII A, SUN Z Z, SLESAREV A, ALEMANY L B. Improved synthesis of graphene oxide [J]. ACS Nano,2010,4(8):4806-4814. doi: 10.1021/nn1006368
    [16] 陶俊杰, 王凌云, 董佳豪, 罗静. 植酸改性石墨烯的制备及其在防腐涂层中的应用 [J]. 涂料工业,2020,50(2):14-21.

    TAO J J, WANG L Y, DONG J H, LUO J. Preparation of phytic acid modified graphene and its application in anticorrosion coatings [J]. Paint and Coatings Industry,2020,50(2):14-21.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  35
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 录用日期:  2023-01-04
  • 网络出版日期:  2023-01-07
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回