Research Progress of Ionic Porous Organic Polymers
-
摘要: 离子型多孔有机聚合物(i-POP)是一种框架或孔道中具有离子位点的新型多孔有机聚合物。i-POP比表面积大且可设计性强,其理化性质和活性位点可以通过改变离子化构筑单元来调控。与中性多孔有机聚合物相比,i-POP结构中可控的离子位点和高电荷密度拓宽了多孔有机聚合物的应用范围;同时,可将孔道的限域效应、框架的特定功能与电荷性质结合,进一步增强其功能特性。近年来,非晶态i-POP的组成结构和合成方法得到较大的发展,并且在吸附与分离、催化等领域展现出重要的应用价值。Abstract: Ionic porous organic polymer (i-POP) is an emerging class of organic porous polyelectrolytes featuring ionized backbones or side groups on the skeletons. i-POPs are highly designable exhibiting large specific surface areas and intrinsic nanopores. Their physicochemical properties and functionality can be skillfully regulated by varying ionized building blocks. Compared with neutral porous organic polymers, i-POPs possess controllable ionic sites and high charge density, broadening the application ranges of porous organic polymers. Meanwhile, their applicability can be strengthened by the inherent association between pore confinement, skeleton function, and abundant ionic sites. The compositions, structures, and synthetic methods of amorphous i-POPs have been significantly explored in recent years. Tremendous studies have demonstrated that i-POPs are promising for various advanced applications including adsorption/separation, sensing, catalysis and so on.
-
图 4 i-POP在吸附分离领域中的应用:(a) TAPOP-1的结构;(b) TAPOP在氧气、二氧化碳、氮气条件下的发射强度变化[28];(c) MeLi@N-CMP的结构;(d) N-CMP, MeLi@N-CMP和Li@N-CMP的氢气负载量[31];(e) POP-Im1的结构;(f) POP-Im1处理的K2Cr2O7 溶液的颜色变化[32];(g) CPPs-ImPro的合成方法;(h) CPPs-ImPro吸附SO2的机理[18]
Figure 4. Application of i-POP in absorption and separation: (a) Structure of TAPOP-1; (b) Evolution of emission intensity of TAPOP when purged with oxygen, carbon dioxide, and nitrogen[28]; (c) Structure of MeLi@N-CMP; (d) H2 uptake of N-CMP, MeLi@N-CMP, and Li@N-CMP[31]; (e) Structure of POP-Im1; (f) Color change of aqueous K2Cr2O7 solution dealt with POP-Im1[32]; (g) Synthetic pathway to CPPs-ImPro; (h) Mechanism of CPPs-ImPro for SO2 capture[18]
图 5 i-POP在催化领域中的应用:(a) Ir(I)@bipyCTF的结构;(b,c) Ir(I)@bipyCTF催化1,2-二氯苯硼化反应的动力学特征和循环试验[34];(d) Pd@i-PT1的TEM图像和Pd粒径分布[22];(e) Pd@i-PTn催化反应示意图;(f) i-HCPs的结构;(g) i-HCPs催化反应产率随时间的变化;(h) i-HCPs催化剂的循环稳定性[7]
Figure 5. Application of i-POP in catalysis: (a) Structure of Ir(I)@bipyCTF; (b, c) Kinetic profiles and reusability of Ir(I)@bipyCTF for 1,2-dichlorobenzene[34]; (d) TEM image and particle size distribution of Pd@i-PT1[22]; (e) Schematic of Pd@i-PTn catalyzed intermolecular oxidative coupling of diphenylether to dibenzofuran; (f) Structure of i-HCPs; (g) Time-resolved profile and (h) reusability of i-HCPs[7]
-
[1] ZHOU T, HUANG X Y, DING N, LIN Z, YAO Y, GUO J. Porous polyelectrolyte frameworks: Synthesis, post-ionization and advanced applications [J]. Chemical Society Reviews,2022,51(1):237-267. doi: 10.1039/D1CS00889G [2] XU D, GUO J N, YAN F. Porous ionic polymers: Design, synthesis, and applications [J]. Progress in Polymer Science,2018,79:121-143. doi: 10.1016/j.progpolymsci.2017.11.005 [3] FISCHER S, SCHIMANOWITZ A, DAWSON R, SENKOVSKA I, KASKEL S, THOMAS A. Cationic microporous polymer networks by polymerisation of weakly coordinating cations with CO2-storage ability [J]. Journal of Materials Chemistry A,2014,2(30):11825-11829. doi: 10.1039/C4TA02022G [4] WANG J, WEI YANG J G, YI G, ZHANG Y. Phosphonium salt incorporated hypercrosslinked porous polymers for CO2 capture and conversion [J]. Chemical Communications,2015,51(86):15708-15711. doi: 10.1039/C5CC06295K [5] BUYUKCAKIR O, JE S H, CHOI D S, TALAPANENI S N, SEO Y, JUNG Y, POLYCHRONOPOULOU K, COSKUN A. Porous cationic polymers: The impact of counteranions and charges on CO2 capture and conversion [J]. Chemical Communications,2016,52(5):934-937. doi: 10.1039/C5CC08132G [6] BUYUKCAKIR O, JE S H, TALAPANENI S N, KIM D, COSKUN A. Charged covalent triazine frameworks for CO2 capture and conversion [J]. ACS Applied Materials & Interfaces,2017,9(8):7209-7216. [7] ZHANG W L, MA F P, MA L, ZHOU Y, WANG J. Imidazolium-functionalized ionic hypercrosslinked porous polymers for efficient synthesis of cyclic carbonates from simulated flue gas [J]. ChemSusChem,2020,13(2):341-350. doi: 10.1002/cssc.201902952 [8] CHEN P, ZHANG L, SUN J S, XIAO E K, WU X T, ZHU G. An ionic liquid on a porous organic framework support: A recyclable catalyst for the knoevenagel condensation in an aqueous system [J]. ChemPlusChem,2020,85(5):943-947. doi: 10.1002/cplu.202000093 [9] MA H P, REN H, ZOU X Q, MENG S, SUN F X, ZHU G S. Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 /N2 and CH4 /N2 mixtures [J]. Polymer Chemistry,2014,5(1):144-152. doi: 10.1039/C3PY00647F [10] PAN Y, ZHAI X F, YIN J, ZHANG T Q, MA L J, ZHOU Y, ZHANG Y F, MENG J Q. Hierarchical porous and zinc-ion-crosslinked PIM-1 nanocomposite as a CO2 cycloaddition catalyst with high efficiency [J]. ChemSusChem,2019,12(10):2231-2239. doi: 10.1002/cssc.201803066 [11] FISCHER S, SCHMIDT J, STRAUCH P, THOMAS A. An anionic microporous polymer network prepared by the polymerization of weakly coordinating anions [J]. Angewandte Chemie: International Edition,2013,52(46):12174-12178. doi: 10.1002/anie.201303045 [12] ZHAO W X, ZHANG F, YANG L Y, BI S, WU D Q, YAO Y F, WAGNER M, GRAF R, HANSEN M R, ZHUANG X D, FENG X L. Anionic porous polymers with tunable structures and catalytic properties [J]. Journal of Materials Chemistry A,2016,4(39):15162-15168. doi: 10.1039/C6TA04917F [13] GU C, HUANG N, CHEN Y C, ZHANG H H, ZHANG S T, LI F H, MA Y G, JIANG D L. Porous organic polymer films with tunable work functions and selective hole and electron flows for energy conversions [J]. Angewandte Chemie: International Edition,2016,55(9):3049-3053. doi: 10.1002/anie.201510723 [14] LI C Y, WANG W L, YAN L, WANG Y Q, JIANG M, DING Y J. Phosphonium salt and ZnX2-PPh3 integrated hierarchical POP: Tailorable synthesis and highly efficient cooperative catalysis in CO2 utilization [J]. Journal of Materials Chemistry A,2016,4(41):16017-16027. doi: 10.1039/C6TA05823J [15] ZHANG Q, ZHANG S B, LI S H. Novel functional organic network containing quaternary phosphonium and tertiary phosphorus [J]. Macromolecules,2012,45(7):2981-2988. doi: 10.1021/ma300278d [16] YAN Z J, YUAN Y, TIAN Y Y, ZHANG D M, ZHU G S. Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites [J]. Angewandte Chemie: International Edition,2015,54(43):12733-12737. doi: 10.1002/anie.201503362 [17] ZHAO H X, WANG Y X, WANG R H. In situ formation of well-dispersed palladium nanoparticles immobilized in imidazolium-based organic ionic polymers [J]. Chemical Communications,2014,50(74):10871-10874. doi: 10.1039/C4CC04662E [18] ZHANG P F, JIANG X G, WAN S, DAI S. Charged porous polymers using a solid C―O cross-coupling reaction [J]. Chemistry,2015,21(37):12866-12870. doi: 10.1002/chem.201501814 [19] SAMANTA P, DESAI A V, ANOTHUMAKKOOL B, SHIROLKAR M M, KARMAKAR A, KURUNGOT S, GHOSH S K. Enhanced proton conduction by post-synthetic covalent modification in a porous covalent framework [J]. Journal of Materials Chemistry A,2017,5(26):13659-13664. doi: 10.1039/C7TA00964J [20] ZHANG P F, QIAO Z A, JIANG X G, VEITH G M, DAI S. Nanoporous ionic organic networks: Stabilizing and supporting gold nanoparticles for catalysis [J]. Nano Letters,2015,15(2):823-828. doi: 10.1021/nl504780j [21] HAO S, LIU Y C, SHANG C N, LIANG Z Q, YU J H. CO2 adsorption and catalytic application of imidazole ionic liquid functionalized porous organic polymers [J]. Polymer Chemistry,2017,8(11):1833-1839. doi: 10.1039/C6PY02091G [22] WANG K, CUI W W, BIAN Z Y, LIU Y Q, JIANG S, ZHOU Y, WANG J. Size and stability modulation of Pd nanoparticles on porous hypercrosslinked ionic polymer for heterogeneous aerobic oxidative coupling of diaryl ether [J]. Applied Catalysis B:Environmental,2021,281:119425. [23] YUAN Y, SUN F X, LI L, CUI P, ZHU G S. Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves [J]. Nature Communications,2014,5:4260. doi: 10.1038/ncomms5260 [24] LU W G, YUAN D Q, SCULLEY J, ZHAO D, KRISHNA R, ZHOU H C. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure [J]. Journal of the American Chemical Society,2011,133(45):18126-18129. doi: 10.1021/ja2087773 [25] XIANG Z H, CAO D P, WANG W C, YANG W T, HAN B Y, LU J M. Postsynthetic lithium modification of covalent-organic polymers for enhancing hydrogen and carbon dioxide storage [J]. The Journal of Physical Chemistry C,2012,116(9):5974-5980. doi: 10.1021/jp300137e [26] HAN S, FENG Y L, ZHANG F, YANG C Q, YAO Z Q, ZHAO W X, QIU F, YANG L Y, YAO Y F, ZHUANG X D, FENG X L. Metal-phosphide-containing porous carbons derived from an ionic-polymer framework and applied as highly efficient electrochemical catalysts for water splitting [J]. Advanced Functional Materials,2015,25(25):3899-3906. doi: 10.1002/adfm.201501390 [27] DANI A, CROCELLÀ V, MAGISTRIS C, SANTORO V, YUAN J, BORDIGA S. Click-based porous cationic polymers for enhanced carbon dioxide capture [J]. Journal of Materials Chemistry A,2017,5(1):372-383. doi: 10.1039/C6TA08574A [28] HU X M, CHEN Q, SUI Z Y, ZHAO Z Q, BOVET N, LAURSEN B W, HAN B H. Triazatriangulenium-based porous organic polymers for carbon dioxide capture [J]. RSC Advances,2015,5(109):90135-90143. doi: 10.1039/C5RA18047C [29] MA H P, REN H, ZOU X Q, SUN F X, YAN Z J, CAI K, WANG D Y, ZHU G S. Novel lithium-loaded porous aromatic framework for efficient CO2 and H2 uptake [J]. Journal of Materials Chemistry A,2013,1(3):752-758. doi: 10.1039/C2TA00616B [30] LI A, LU R F, WANG Y, WANG X, HAN K L, DENG W Q. Lithium-doped conjugated microporous polymers for reversible hydrogen storage [J]. Angewandte Chemie: International Edition,2010,49(19):3330-3333. doi: 10.1002/anie.200906936 [31] XU D, SUN L, LI G, SHANG J, YANG R X, DENG W Q. Methyllithium-doped naphthyl-containing conjugated microporous polymer with enhanced hydrogen storage performance [J]. Chemistry,2016,22(23):7944-7949. doi: 10.1002/chem.201504666 [32] SU Y Q, WANG Y X, LI X J, LI X X, WANG R H. Imidazolium-based porous organic polymers: Anion exchange-driven capture and luminescent probe of Cr2O72− [J]. ACS Applied Materials & Interfaces,2016,8(29):18904-18911. [33] LIU Y C, CUI Y Z, ZHANG C H, DU J F, WANG S, BAI Y, LIANG Z Q, SONG X W. Post-cationic modification of a pyrimidine-based conjugated microporous polymer for enhancing the removal performance of anionic dyes in water [J]. Chemistry,2018,24(29):7480-7488. doi: 10.1002/chem.201800548 [34] TAHIR N, MUNIZ-MIRANDA F, EVERAERT J, TACK P, HEUGEBAERT T, LEUS K, VINCZE L, STEVENS C V, van SPEYBROECK V, van der VOORT P. Immobilization of Ir(I) complex on covalent triazine frameworks for C―H borylation reactions: A combined experimental and computational study [J]. Journal of Catalysis,2019,371:135-143. doi: 10.1016/j.jcat.2019.01.030 [35] SUN Q, MA S Q, DAI Z F, MENG X J, XIAO F S. A hierarchical porous ionic organic polymer as a new platform for heterogeneous phase transfer catalysis [J]. Journal of Materials Chemistry A,2015,3(47):23871-23875. doi: 10.1039/C5TA07267K [36] WANG J Q, SNG W S, YI G S, ZHANG Y G. Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion [J]. Chemical Communications,2015,51(60):12076-12079. doi: 10.1039/C5CC04702A [37] CHO H C, LEE H S, CHUN J, LEE S M, KIM H J, SON S U. Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates [J]. Chemical Communications,2011,47(3):917-919. doi: 10.1039/C0CC03914D [38] KIM K, BUYUKCAKIR O, COSKUN A. Diazapyrenium-based porous cationic polymers for colorimetric amine sensing and capture from CO2 scrubbing conditions [J]. RSC Advances,2016,6(81):77406-77409. doi: 10.1039/C6RA16714D -