高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯咔唑共价修饰黑磷纳米片及其在叠层阻变存储器中的应用

郑庭安 顾敏超 孙方成 陈彧

郑庭安, 顾敏超, 孙方成, 陈彧. 聚乙烯咔唑共价修饰黑磷纳米片及其在叠层阻变存储器中的应用[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20220919001
引用本文: 郑庭安, 顾敏超, 孙方成, 陈彧. 聚乙烯咔唑共价修饰黑磷纳米片及其在叠层阻变存储器中的应用[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20220919001
ZHENG Tingan, GU Minchao, SUN Fangcheng, CHEN Yu. Synthesis of Black Phosphorus Nanosheets Covalently Modified with Poly(N-vinylcarbazole) and Its Application in Stacked Resistive Random Access Memory Devices[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20220919001
Citation: ZHENG Tingan, GU Minchao, SUN Fangcheng, CHEN Yu. Synthesis of Black Phosphorus Nanosheets Covalently Modified with Poly(N-vinylcarbazole) and Its Application in Stacked Resistive Random Access Memory Devices[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20220919001

聚乙烯咔唑共价修饰黑磷纳米片及其在叠层阻变存储器中的应用

doi: 10.14133/j.cnki.1008-9357.20220919001
基金项目: 国家自然科学基金(51961145402)
详细信息
    作者简介:

    郑庭安(1998—),男,硕士生,从事高分子阻变存储研究。E-mail:zhengta_ch@163.com

    通讯作者:

    陈 彧 E-mail:yuchenavh@ecust.edu.cn;3148704620@qq.com

  • 中图分类号: O69; TB34; O633.21

Synthesis of Black Phosphorus Nanosheets Covalently Modified with Poly(N-vinylcarbazole) and Its Application in Stacked Resistive Random Access Memory Devices

  • 摘要: 提升阻变存储器存储密度的有效方法之一是通过对活性层的简单叠加制备三维垂直堆叠器件。使用S-1-十二烷基-S′-(α, α′-二甲基-α′′-乙酸)三硫代碳酸酯(DDAT)共价接枝的二维黑磷(BP)纳米材料(BP-DDAT)作为关键的二维模板和可逆加成-断裂链转移(RAFT)试剂,成功制备了由聚乙烯基咔唑(PVK)共价修饰的黑磷纳米片(BP-PVK)。采用傅里叶红外光谱、X射线光电子能谱、紫外-可见吸收光谱等手段对BP-PVK进行了表征。PVK在BP表面的共价接枝有效地提高了BP的环境稳定性和在常见有机溶剂中的溶解度。以BP-PVK为活性层,在玻璃基底上制备了一种结构为Al/BP-PVK/Al/BP-PVK/Al的双层17×17横条阵列垂直堆叠的阻变存储器件,该器件在室温下表现出了典型的双稳态非易失性可擦写存储性能,开/关电流比超过103,良品率和均一性较高。

     

  • 图  1  BP-PVK的合成

    Figure  1.  Synthesis of BP-PVK

    a —4-Nitrobenzenediazonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, acetonitrile, RT, 3 h; b —Na2S2O4, NaOH, H2O, RT, 5 h; c —4-Dimethylaminopyridine, dicyclohexylcarbodiimide, DDAT, dichloromethane, RT, overnight; d—N-vinylcarbazole, AIBN, THF, 70 ℃, 4 h

    图  2  (a,b) 液相剥离的BP纳米片和(c)BP-PVK的TEM图像;C6H4NO2-BP的(d) P2p核能级以及(e) C1s核能级XPS光谱

    Figure  2.  TEM images of (a,b) exfoliated BP and (c) BP-PVK; (d) P2p core-level and (e) C1s core-level XPS spectra of C6H4NO2-BP

    图  3  样品的(a)红外光谱和(b) 拉曼光谱;BP-PVK样品依据Ag1/Ag2 强度比的(c)面扫描拉曼成像图和(d)直方统计图

    Figure  3.  (a) FT-IR spectra and (b) Raman spectra of the samples; (c) Scanning Raman microscopy mapping depending on the Ag1/Ag2 intensity ratios and (d) Ag1/Ag2 intensity ratio statistical histogram of BP-PVK

    图  4  BP、PVK和BP-PVK的(a)UV-Vis光谱和(b)荧光光谱(λex= 342 nm)

    Figure  4.  (a)UV-Vis absorption and (b) photoluminescence spectra (λex= 342 nm) of BP、PVK and BP-PVK

    图  5  (a)叠层存储器件的制备过程;Al/BP-PVK/Al/BP-PVK/Al存储器件的(b)结构示意图和(c)光学照片

    Figure  5.  Fabrication process of the vertically stacked memory devices; (b) Schematic illustration and (c) optical image of the as-fabricated Al/BP-PVK/Al/BP-PVK/Al structured memory devices

    图  6  叠层器件中下层和上层活性层(a,b)的侧视图和顶视图,(c,d)AFM图像(扫描范围:5 μm×5 μm),(e,f)典型I-V特性曲线

    Figure  6.  (a, b) Schematic side and top view, (c, d) AFM images (scanning size: 5 μm×5 μm), (e, f) typical current-voltage (I-V) characteristics of the devices from the lower and upper active layer

    图  7  叠层器件中(a)下层和(b)上层活性层中器件在−1.0 V电压连续读取下的时间稳定性;1.0 V连续读取脉冲对(c)下层和(d)上层活性层中器件的开启和关闭态的影响,(脉冲宽度:10 μs;脉冲周期:20 μs);(e)下层和(f)上层活性层中器件在±3 V电压开启-关闭循环下开关态电流与循环次数的关系(脉冲宽度:100 ms;脉冲周期:300 ms)

    Figure  7.  Stability of the cells shown in the (a) lower layer and (b) upper layer of the stacked device under a constant stress of −1.0 V; Effect of continuous read pulses of −1.0 V (pulse width =10 μs, pulse period=20 μs) on both the ON and OFF state currents: (c) lower layer and (d) upper layer; The ON/OFF currents as a function of switching cycles for the cells shown in the (e) lower layer and (f) upper layer of the stacked device (pulse width = 100 ms, pulse period = 300 ms)

    图  8  制备的17×17横杆阵列双活性层堆叠器件中测试区域的示意图:(a)下层(红色区域)和(b)上层(蓝色区域);对来自下层(c,e,g)和上层(d,f,h)的各100个器件的存储特性进行统计结果:(c,d) 器件良率统计(蓝色代表闪存性能;棕色代表一次写入多次读出性能;绿色代表器件没有性能);器件的(e,f)开启和关闭电压、电流分布统计;(g,h)开/关电流比分布统计

    Figure  8.  Schematic diagram of test area shown in the both (a) lower layer (red region) and (b) upper layer (blue region) of the as-fabricated stacked memory device (17 ×17 crossbar arrays); Statistical analysis results for 100 tested devices: (c,d) Production yields of the devices (Blue: Flash memory; Brown: Write-once read many times (WORM) memory; Green: No performance); Statistical plots of (e) switch-ON/OFF voltages; (f) ON/OFF currents and (g,h) ON/OFF current ratios for the devices shown in the both lower layer (left panel) and upper layer (right panel)

  • [1] WU Q, BANERJEE W, CAO J, JI Z, LI L, LIU M. Improvement of durability and switching speed by incorporating nanocrystals in the HfO x based resistive random access memory devices [J]. Applied Physics Letters,2018,113(2):023105. doi: 10.1063/1.5030780
    [2] MA L P, LIU J, YANG Y. Organic electrical bistable devices and rewritable memory cells [J]. Applied Physics Letters,2002,80(16):2997-2999. doi: 10.1063/1.1473234
    [3] SUN S, ZHUANG X, WANG L, LIU B, ZHANG B, CHEN Y. BODIPY-based conjugated polymer covalently grafted reduced graphene oxide for flexible nonvolatile memory devices [J]. Carbon,2017,116:713-721. doi: 10.1016/j.carbon.2017.02.034
    [4] CAO Y, TIAN X, GU J, LIU B, ZHANG B, SONG S, FAN F, CHEN Y. Covalent functionalization of black phosphorus with conjugated polymer for information storage [J]. Angewandte Chemie International Edition,2018,57(17):4543-4548. doi: 10.1002/anie.201712675
    [5] ZHANG F, ZHANG H, KRYLYUK S, MILLIGAN C A, ZHU Y, ZEMLYANOV D Y, BENDERSKY L A, BURTON B P, DAVYDOV A V, APPENZELLER J. Electric-field induced structural transition in vertical MoTe2- and Mo1 xW xTe2-based resistive memories [J]. Nature Materials,2019,18(1):55-61. doi: 10.1038/s41563-018-0234-y
    [6] DOU F, ZHAO X, ZHANG W, ZHANG Y, GAO M, CHEN J, WANG S, WANG C. Non-volatile ternary memristors based on a polymer containing a carbazole donor with CuO NPs embedded [J]. New Journal of Chemistry,2022,46(2):704-713. doi: 10.1039/D1NJ04711F
    [7] REHMAN M M, UR REHMAN H M M, KIM W Y, SHERAZI S S H, RAO M W, KHAN M, MUHAMMAD Z. Biomaterial-based nonvolatile resistive memory devices toward ecofriendliness and biocompatibility [J]. ACS Applied Electronic Materials,2021,3(7):2832-2861. doi: 10.1021/acsaelm.1c00078
    [8] CHEN F, ZHOU Y, ZHU Y, ZHU R, GUAN P, FAN J, ZHOU L, VALANOOR N, VON WEGNER F, SARIBATIR E, BIRZNIEKS I, WAN T, CHU D. Recent progress in artificial synaptic devices: Materials, processing and applications [J]. Journal of Materials Chemistry C,2021,9(27):8372-8394. doi: 10.1039/D1TC01211H
    [9] SHEN Z, ZHAO C, QI Y, XU W, LIU Y, MITROVIC I Z, YANG L, ZHAO C. Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application [J]. Nanomaterials,2020,10(8):1437. doi: 10.3390/nano10081437
    [10] CHENG X F, ZHAO Y, YE W, YU C, HE J H, WANG F Y, LU J M. Scaled conductance quantization unravels the switching mechanism in organic ternary resistive memories [J]. Journal of Materials Chemistry C,2020,8(9):2964-2969. doi: 10.1039/C9TC06948H
    [11] LEE J H, PARK S P, PARK K, KIM H J. Flexible and waterproof resistive random-access memory based on nitrocellulose for skin-attachable wearable devices [J]. Advanced Functional Materials,2020,30(1):1907437. doi: 10.1002/adfm.201907437
    [12] 龚明磊, 刘铭扬, 王潇漾, 杨金波, 陈彧, 张斌. 贻贝启发的偶氮-聚多巴胺涂层用于光电双响应忆阻器件 [J]. 功能高分子学报,2022,35(4):339-348.

    GONG M L, LIU M Y, WANG X Y, YANG J B, CHEN Y, ZHANG B. Mussel-inspired Azo-polydopamine coating for photoelectric dual response memristive device [J]. Journal of Functional Polymers,2022,35(4):339-348.
    [13] ZHANG B, FAN F, XUE W, LIU G, FU Y, ZHUANG X, XU X H, GU J, LI R W, CHEN Y. Redox gated polymer memristive processing memory unit [J]. Nature Communications,2019,10(1):736. doi: 10.1038/s41467-019-08642-y
    [14] ZHANG B, CHEN W, ZENG J, FAN F, GU J, CHEN X, YAN L, XIE G, LIU S, YAN Q, BAIK S J, ZHANG Z G, CEHN W, HOU J, EI-KHOULY M E, ZHANG Z, LIU G, CHEN Y. 90% Yield production of polymer nano-memristor for in-memory computing [J]. Nature Communications,2021,12:1984.
    [15] LI D, ZHANG B, ZHU C, TIAN X, ZHAO Z, CHEN Y. In-situ growing D-A polymer from the surface of reduced graphene oxide: Synthesis and nonvolatile ternary memory effect [J]. Carbon,2019,143:851-858. doi: 10.1016/j.carbon.2018.11.083
    [16] BREEMEN A J J M V, PUTTEN J B P H V D, CAI R, REIMANN K, MARSMAN A W, WILLARD N, LEEUW D M D, GELINCK G H. Photocrosslinking of ferroelectric polymers and its application in three-dimensional memory arrays [J]. Applied Physics Letters,2011,98(18):183302. doi: 10.1063/1.3571284
    [17] YOO D, SONG Y, JANG J, HWANG W T, JUNG S H, HONG S, LEE J K, LEE T. Vertically stacked microscale organic nonvolatile memory devices toward three-dimensional high integration [J]. Organic Electronics,2015,21:198-202. doi: 10.1016/j.orgel.2015.03.023
    [18] LAI J T, FILLA D, SHEA R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents [J]. Macromolecules,2002,35(18):6754-6756. doi: 10.1021/ma020362m
    [19] ZHANG L, GAO L F, LI L, HU C X, YANG Q Q, ZHU Z Y, PENG R, WANG Q, PENG Y, JIN J, ZHANG H L. Negatively charged 2D black phosphorus for highly efficient covalent functionalization [J]. Materials Chemistry Frontiers,2018,2(9):1700-1706. doi: 10.1039/C8QM00237A
    [20] LI P, NIU L, CHEN Y, WANG J, LIU Y, ZHANG J, BLAU W J. In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes [J]. Nanotechnology,2010,22(1):015204.
    [21] SHI M, DONG N, HE N, WAN Y, CHENG H, HAN M, WANG J, CHEN Y. MoS2 nanosheets covalently functionalized with polyacrylonitrile: Synthesis and broadband laser protection performance [J]. Journal of Materials Chemistry C,2017,5:11920-11926.
    [22] HULTGREN R, GINGRICH N S, WARREN B E. The Atomic distribution in red and black phosphorus and the crystal structure of black phosphorus [J]. Jurnal of Chemical Physics,1935,3(6):351-355.
    [23] RYDER C R, WOOD J D, WELLS S A, YANG Y, JARIWALA D, MARKS T J, SCHATZ G C, HERSAM M C. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry [J]. Nature Chemistry,2016,8(6):597-602. doi: 10.1038/nchem.2505
    [24] CAO Y, ZHANG B, TIAN X, GU M, CHEN Y. Direct covalent modification of black phosphorus quantum dots with conjugated polymers for information storage [J]. Nanoscale,2019,11(8):3527-3533. doi: 10.1039/C8NR09711A
    [25] GUO Z, ZHANG H, LU S, WANG Z, TANG S, SHAO J, SUN Z, XIE H, WANG H, YU X F, CHU P K. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics [J]. Advanced Functional Materials,2015,25(45):6996-7002. doi: 10.1002/adfm.201502902
    [26] ZHANG B, LIU L, WANG L, LIU B, TIAN X, CHEN Y. Covalent modification of graphene oxide with poly(N-vinylcarbazole) containing pendant azobenzene chromophores for nonvolatile ternary memories [J]. Carbon,2018,134:500-506. doi: 10.1016/j.carbon.2018.04.016
    [27] BHARDWAJ A, KAUR J, WUEST M, WUEST F. In situ click chemistry generation of cyclooxygenase-2 inhibitors [J]. Nature Communications,2017,8:1. doi: 10.1038/s41467-016-0009-6
  • 加载中
图(8)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  11
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 录用日期:  2022-10-25
  • 网络出版日期:  2022-10-27

目录

    /

    返回文章
    返回