高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

给体-受体型二维共轭聚合物的分子共平面性对阻变均一性的影响

袁磊 何智龙 刘书智 刘钢

袁磊, 何智龙, 刘书智, 刘钢. 给体-受体型二维共轭聚合物的分子共平面性对阻变均一性的影响[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20220726001
引用本文: 袁磊, 何智龙, 刘书智, 刘钢. 给体-受体型二维共轭聚合物的分子共平面性对阻变均一性的影响[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20220726001
YUAN Lei, HE Zhilong, LIU Shuzhi, LIU Gang. Effect of Molecular Coplanarity on Resistive Switching Homogeneity of D-A Type Two-Dimensional Conjugated Polymers[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20220726001
Citation: YUAN Lei, HE Zhilong, LIU Shuzhi, LIU Gang. Effect of Molecular Coplanarity on Resistive Switching Homogeneity of D-A Type Two-Dimensional Conjugated Polymers[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20220726001

给体-受体型二维共轭聚合物的分子共平面性对阻变均一性的影响

doi: 10.14133/j.cnki.1008-9357.20220726001
详细信息
    作者简介:

    袁磊:袁 磊(1996—),男,硕士研究生,研究方向为聚合物忆阻器的材料设计。E-mail:Yuanlei_sherlock@sjtu.edu.cn

    通讯作者:

    刘书智,E-mail:Liushuzhi@sjtu.edu.cn

    刘 钢, E-mail:Gang.liu@sjtu.edu.cn

  • 中图分类号: O69;TB34;O633.21

Effect of Molecular Coplanarity on Resistive Switching Homogeneity of D-A Type Two-Dimensional Conjugated Polymers

  • 摘要: 有机忆阻器具有超快速度、超低功耗、非易失性存储等优势,有希望成为突破当前冯·诺依曼瓶颈和摩尔定律极限的关键电子元器件。利用2,6-双(三甲基锡)- 4,8-双(5-己基-2-噻吩)-苯并[1,2-b:4,5-b’]二噻吩,4,9-二溴-6,7-双苯基[1,2,5]噻二唑-[3,4-g]喹喔啉和4,8-二溴苯并[1,2-c:4,5-c']双[1,2,5]噻二唑,通过Stille偶联法合成得到两种新型二维共轭给体-受体型聚合物pBDTT-PTQx和pBDTT-BBT,通过选取位阻较小的取代基、长度较短的烷基链和强推拉电子效应的共轭给体-受体单元优化分子共平面性,并对比研究了共平面性对材料阻变特性的影响。两种材料均具有高鲁棒性的Flash型阻变行为,可循环擦写100圈以上, 其中pBDTT-BBT具有更好的分子共平面性,器件表面均方粗糙度仅为1.71 nm,开/关电压的扰动系数仅为9.4%和6.7%,高/低阻态的扰动系数为13.7%和9.4%,相较于PBDTT-PTQx,开/关电压与高/低阻值的稳定性和均一性获得很大提升。

     

  • 图  1  pBDTT-PTQx与pBDTT-BBT合成路线

    Figure  1.  Synthesis of the pBDTT-PTQx and pBDTT-BBT

    图  2  样品的UV-Vis光谱

    Figure  2.  UV-Vis absorption spectra of samples

    图  3  样品的循环伏安曲线

    Figure  3.  Cyclic voltammogram curves of samples

    图  4  (a) 器件结构示意图;(b) 薄膜厚度AFM图;(c) pBDTT-PTQx和(d) pBDTT-BBT的AFM形貌图(扫描范围为10 μm×10 μm)

    Figure  4.  (a) Schematic diagram of the device structure; (b) AFM image of film thickness; AFM images of (c) pBDTT-PTQx and (d) pBDTT-BBT film morphology (Scanning range 10 μm×10 μm)

    图  5  器件的(a,c)I-V循环曲线和(b,d)阻态保持时间

    Figure  5.  (a, c) I-V curves of and (b, d) resistance retention time of samples

    图  6  器件的(a, b)开/关电压分布和(c,d)高低阻值分布

    Figure  6.  (a, b) Switching voltage distribution and (c, d) resistance state distribution of samples

    图  7  pBDTT-PTQx和pBDTT-BBT的(a,e)最优构型,(b,f)结构单元分子静电势,(c,g)结构单元的HOMO轨道和(d,h)结构单元的LUMO轨道

    Figure  7.  (a, e) Molecular optimal structure, (b, f) Molecular electrostatic potential, (c, g) HOMO and (d, h) LUMO of the molecule unit of pBDTT-PTQx and pBDTT-BBT

  • [1] WALDROP M M. The chips are down for Moore’s law [J]. Nature,2016,530:144-147. doi: 10.1038/530144a
    [2] SOMEYA T, BAO Z N, MALLIARAS G G. The rise of plastic bioelectronics [J]. Nature,2016,540:379-385. doi: 10.1038/nature21004
    [3] ZIDAN M A, LU W D. The future of electronics based on memristive systems [J]. Nature Electronics,2018,1:22-29. doi: 10.1038/s41928-017-0006-8
    [4] YANG J J, STRUKOV D B, STEWART D R. Memristive devices for computing [J]. Nature Nanotechnology,2013,8:13-24. doi: 10.1038/nnano.2012.240
    [5] 陈威林, 高双, 伊晓辉, 尚杰, 刘钢, 李润伟. 有机和杂化阻变材料与器件 [J]. 功能高分子学报,2019,32(4):434-447. doi: 10.14133/j.cnki.1008-9357.20181030002

    CHEN W L, GAO S, YI X H, SHANG J, LIU G, LI R W. Organic and hybrid resistive switching materials and devices [J]. Journal of Functional Polymers,2019,32(4):434-447. doi: 10.14133/j.cnki.1008-9357.20181030002
    [6] CHOI B J, Y J J. High-speed and low-energy nitride memristors [J]. Advanced Functional Materials,2016,26:5290-5296. doi: 10.1002/adfm.201600680
    [7] MERCED, STRANCHAN J P. Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications [J]. Nanotechnology,2016,27(36):365202. doi: 10.1088/0957-4484/27/36/365202
    [8] BURGT Y V D, SALLEO A. Organic electronics for neuromorphic computing [J]. Nature Electronics,2018,1:386-387. doi: 10.1038/s41928-018-0103-3
    [9] LIU S, CHEN X, LIU G. Conjugated polymers for information storage and neuromorphic computing [J]. Polymer International,2020,70:374-403.
    [10] YUAN L, LIU S, LIU G. Organic memory and memristors: From mechanisms, materials to devices [J]. Advanced Electronic Materials,2021,7:1-35.
    [11] LEE J, LU W D. On-demand reconfiguration of nanomaterials: When electronics meets ionics [J]. Advanced Materials,2018,30:1702770.
    [12] KIM S, DU C, SHERIDAN P, MA W, CHOI S, LU W D. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity [J]. Nano Letters,2015,15:2203-2211. doi: 10.1021/acs.nanolett.5b00697
    [13] BURGT Y V D, TALIN A A, SALLEO A. A non-volatile organic electrochemical device as a low voltage artificial synapse for neuromorphic computing [J]. Nature Materials,2017,16:414-419. doi: 10.1038/nmat4856
    [14] CHEN Y, LIU G, WANG C, ZHANG W B, LI R W, WANG L X. Polymer memristor for information storage and neuromorphic applications [J]. Materials Horizons,2014,1:489-506. doi: 10.1039/C4MH00067F
    [15] ZHOU L, MAO J Y, REN Y, HAN S T, ROY V A L, ZHOU Y. Biological spiking synapse constructed from solution processed bimetal core−shell nanoparticle based composites [J]. Small,2018,14:1-10.
    [16] YEN H J, WANG H L. Flexible memory devices with tunable electrical bistability via controlled energetics in donor−donor and donor-acceptor conjugated polymers [J]. Journal of Materials Chemistry C,2014,2:4374-4378. doi: 10.1039/C4TC00039K
    [17] YANG Y, JIN P, DING S, CHU Y, SHEN Y. Organic solubility carbazole containing polyimides with tunable memory characteristics based on different dianhydride moieties [J]. Macromolecular Chemistry and Physics,2018,219:1800195.
    [18] 龚明磊, 刘铭扬, 王潇漾, 杨金波, 陈彧, 张斌. 贻贝启发的偶氮-聚多巴胺涂层用于光电双响应忆阻器件 [J]. 功能高分子学报,2022,35(4):339-348. doi: 10.14133/j.cnki.1008-9357.20210701001

    GONG M L, LIU M Y, WANG X Y, YANG J B, CHEN Y, ZHANG B. Mussel-inspired azo-polydopamine coating for photoelectric dual response memristive device [J]. Journal of Functional Polymers,2022,35(4):339-348. doi: 10.14133/j.cnki.1008-9357.20210701001
    [19] JANG B C, SEONG H, KIM S K, YANG S Y, IM S G, CHOI S Y. Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition [J]. ACS Applied Materials & Interfaces,2016,8:12951-12958.
    [20] LI Y, QIAN Q, ZHU X, LI Y, ZHANG M, LI J, MA C, LI H, LU J, ZHANG Q. Recent advances in organic based materials for resistive memory applications [J]. InfoMat,2020,2:995-1033. doi: 10.1002/inf2.12120
    [21] ZHANG B, CHEN W, ZENG J, FAN F, ZHANG Z, LIU G, CHEN Y. 90% Yield production of polymer nano-memristor for in-memory computing [J]. Nature communications,2021,12(1):1-11. doi: 10.1038/s41467-020-20314-w
    [22] CHEN H, WU L, XIAO X, WANG H, JIANG J, WANG L, XU Q, LU J. Synthesis of poly (pyridine-imide) s and their electronic memory performances [J]. Science China Chemistry,2017,60(2):237-242. doi: 10.1007/s11426-016-0369-y
    [23] LIU J, YIN Z, CAO X, ZHAO F, LIN A, XIE L, FAN Q, BOEY F, ZHANG H, HUANG W. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes [J]. ACS NANO,2010,4(7):3987-3992. doi: 10.1021/nn100877s
    [24] WANG J, ZHANG J, XIAO Y, XIAO T, ZHU R, YAN C, FU Y, LU G, LU X, MARDER S R, ZHAN X. Effect of isomerization on high-performance nonfullerene electron acceptors [J]. Journal of the American Chemical Society,2018,140(29):9140-9147. doi: 10.1021/jacs.8b04027
    [25] LI S, CHENG T, YIN C, ZHOU S, FAN Q, WU W, JIANG X. Phenothiazine versus phenoxazine: Structural effects on the photophysical properties of NIR-II AIE fluorophores [J]. ACS Applied Materials & Interfaces,2020,12(39):43466-43473.
  • 加载中
图(7)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  11
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 录用日期:  2022-10-10
  • 网络出版日期:  2022-10-13

目录

    /

    返回文章
    返回