高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透明质酸功能修饰聚乳酸取向超细纤维促进血管平滑肌细胞的迁移

岳蒙 张彦中

岳蒙, 张彦中. 透明质酸功能修饰聚乳酸取向超细纤维促进血管平滑肌细胞的迁移[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20220609001
引用本文: 岳蒙, 张彦中. 透明质酸功能修饰聚乳酸取向超细纤维促进血管平滑肌细胞的迁移[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20220609001
YUE Meng, ZHANG Yanzhong. Hyaluronic Acid-Modified Aligned Ultrafine Fibers of Poly(lactic acid) Promote Vascular Smooth Muscle Cell Migration[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20220609001
Citation: YUE Meng, ZHANG Yanzhong. Hyaluronic Acid-Modified Aligned Ultrafine Fibers of Poly(lactic acid) Promote Vascular Smooth Muscle Cell Migration[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20220609001

透明质酸功能修饰聚乳酸取向超细纤维促进血管平滑肌细胞的迁移

doi: 10.14133/j.cnki.1008-9357.20220609001
基金项目: 国家自然科学基金(32071345、31771050);东华大学中央高校基本科研业务费学科交叉(理工科)重点计划项目(2232019A3-09);国家重点研发计划专项(2016YFC1100203)
详细信息
    作者简介:

    岳蒙:岳 蒙(1995—),男,河南三门峡人,硕士,主要研究方向为仿生材料与再生医学。E-mail:yuemeng33@126.com

    通讯作者:

    张彦中,E-mail:yzzhang@dhu.edu.cn

  • 中图分类号: R318.08

Hyaluronic Acid-Modified Aligned Ultrafine Fibers of Poly(lactic acid) Promote Vascular Smooth Muscle Cell Migration

  • 摘要: 基于稳定射流同轴电纺丝法(SJCES),选用透明质酸(HA)对电纺左旋聚乳酸(PLLA)取向超细纤维进行表面功能修饰得到壳-芯结构的取向纤维(HA-PLLA),以提高血管平滑肌细胞(vSMCs)在纤维表面的黏附和迁移能力。首先在无血清饥饿处理条件下观察HA促进vSMCs迁移的功效;然后采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、红外光谱仪(FTIR)、X-射线衍射仪(XRD)和万能材料测试仪等对纤维形貌、壳-芯结构和力学性能进行表征;最后通过改良版“伤口”愈合实验检测HA-PLLA取向纤维诱导vSMCs迁移的功效。结果表明:HA具有显著促进vSMCs迁移的作用;SJCES法可成功制备HA-PLLA壳-芯取向纤维;HA修饰可显著提高PLLA取向纤维的细胞相容性,并增强其定向引导vSMCs 迁移的能力,从而证实了HA-PLLA取向纤维促进vSMCs迁移的有效性。

     

  • 图  1  HA对vSMCs迁移的影响:(a)不同血清浓度对 vSMCs黏附的影响;(b、c)对图1(a)进行的细胞黏附率和(c)铺展面积的定量分析;(d)不同血清浓度对vSMCs增殖的影响;(e)无血清培养下HA质量浓度对vSMCs增殖的影响;(f)无血清培养下HA质量浓度对vSMCs迁移的影响;(g、h)对图1(f)“伤口”宽度和细胞24 h内平均迁移速率的定量分析

    Figure  1.  Effect of HA on the migration of vSMCs: (a) Effect of different serum volume fractions on the adhesion of vSMCs; (b、c) Quantitative analysis of the cell adhesion rate and spreading area in Fig.1(a); (d) Effect of different serum volume fractions on the proliferation of vSMCs; (e) Effect of HA mass concentrations on the proliferation of vSMCs in serum-free culture; (f) Effect of HA mass concentrations on the migration of vSMCs in serum-free culture; (g、h) Quantitative analysis of the “wound” width and the average migration rate of cells within 24 h from Fig.1(f)

    图  2  通过SJCES法成功制备HA-PLLA取向纤维:(a)PLLA和HA-PLLA取向纤维的形貌;(b)PLLA取向纤维的直径分布;(c)HA-PLLA取向纤维的直径分布;(d)HA-PLLA 取向纤维的壳-芯结构;(e)HA粉末、PLLA取向纤维、交联后的HA-PLLA取向纤维(淡蓝色谱线)和未交联HA-PLLA(深蓝色谱线)取向纤维水洗后的FT-IR光谱图

    Figure  2.  Preparation of HA-PLLA aligned fibers by SJCES: (a) Morphologies of PLLA and HA-PLLA aligned fibers; (b) Diameter distribution of PLLA aligned fibers; (c) Diameter distribution of HA-PLLA aligned fibers; (d) HA-PLLA aligned fiber in shell-core structure; (e) FT-IR spectra of HA powder, PLLA aligned fiber, crosslinked HA-PLLA aligned fiber (light blue line) and uncrosslinked HA-PLLA aligned fiber after washing treatment (dark blue line)

    图  3  HA引入后对PLLA取向纤维力学性能的影响:(a)拉伸应力-应变曲线;(b)杨氏模量;(c)拉伸强度;(d)断裂延伸率;(e)偏振红外光谱和相应的二向色性比值;(f)XRD光谱;(g)稳定射流电纺丝过程中电荷的表面分布情况

    Figure  3.  Effect of HA introduction on the tensile properties of PLLA aligned fibers: (a) Tensile stress-strain curves; (b) Young's modulus; (c) Tensile strength; (d) Strain at break; (e) Polarized infrared spectroscopy and corresponding Dr; (f) XRD patterns; (g) Surface distribution of electric charges during the stable jet electrospinning

    图  4  HA功能修饰对PLLA取向纤维诱导vSMCs迁移行为的影响:(a)细胞在垂直和平行于取向纤维方向上的迁移情况(蓝色为细胞核DAPI染色);(b)对图4(a)“伤口”宽度的定量分析;(c)72 h内细胞的平均迁移速率;(d)细胞增殖情况

    Figure  4.  Effect of HA surface modification of PLLA aligned fibers on the migration behavior of vSMCs: (a) Migration of cells (nucleus stained in blue by DAPI) in the directions of perpendicular and parallel to the fiber alignment; (b) Quantitative analysis of the width of the "wound" in Fig.4(a); (c) Average cell migration rate within 72 h; (d) Cell proliferation

  • [1] MAEDEH R, NARGES N B, SEPIDEH J, NAVID R, MOHAMMAD R, POOYAN M, OMID A, RAJENDER S V. Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering [J]. Nano-Micro Letters,2021,13(1):182. doi: 10.1007/s40820-021-00697-1
    [2] MOHAMMAD V, WILLIAM D, MATTHEW H E, ASHISH A P, HEYI L, KRZYSZTOF M, ANDREY V D, SERGEI S S. Mimicking biological stress-strain behaviour with synthetic elastomers [J]. Nature,2017,549(7673):497-501. doi: 10.1038/nature23673
    [3] SUZANNE E K, BENTE J K, NOUD H, HANNAH F M B, DEWY C V, PATRICIA Y W D, JUDITH A K R L, CARLIJIN R H, ROB B M V, CARLIJIN V C B, ANTHAL I P M S. Animal studies for the evaluation of in situ tissue-engineered vascular grafts: A systematic review, evidence map, and meta-analysis [J]. NPJ Regenerative Medicine,2022,7(1):17. doi: 10.1038/s41536-022-00211-0
    [4] PRERAK G, GAURAB R C, GURU J, MANOJ A, DEBAKI G, SAMIT K N, BIMAN B M. Functionalized silk vascular grafts with decellularized human Wharton's jelly improves remodeling via immunomodulation in rabbit jugular vein [J]. Advanced Healthcare Materials,2021,10(19):2100750. doi: 10.1002/adhm.202100750
    [5] XU C, INAI R, KOTAKI M, RAMAKRISHNA S. Aligned biodegradable nanotibrous structure: A potential scaffold for blood vessel engineering [J]. Biomaterials,2004,25(5):877-886. doi: 10.1016/S0142-9612(03)00593-3
    [6] RENATO S N, JIANG L, OUYANG Y, LUO J, LIU Z, YANG Y, QIU P, KENICHI K, CHEN Y E, MA P X, YANG B. Biomimetic tubular scaffold with heparin conjugation for rapid degradation in in situ regeneration of a small diameter neoartery [J]. Biomaterials,2021,274:120874. doi: 10.1016/j.biomaterials.2021.120874
    [7] YUAN H, QIN J, XIE J, LI B, YU Z, PENG Z, YI B, LOU X, LU X, ZHANG Y. Highly aligned core-shell structured nanofibers for promoting phenotypic expression of vSMCs for vascular regeneration [J]. Nanoscale,2016,8(36):16307-16322. doi: 10.1039/C6NR05075A
    [8] CHEN H, YUAN L, SONG L, WU Z, LI D. Biocompatible polymer materials: Role of protein-surface interactions [J]. Progress in Polymer Science,2008,33(11):1059-1087. doi: 10.1016/j.progpolymsci.2008.07.006
    [9] 孟庆圆, 崔福斋, 朱宁, 王小平. 电纺丝方法制备卵磷脂改性聚乳酸血管组织工程支架材料 [J]. 生物骨科材料与临床研究,2009,6(4):42-45.

    MENG Q Y,CUI F Z,ZHU N,WANG X P. Electrospun PLLA scaffold of blood tissue engineering modified by lecithin [J]. Orthopaedic Biomechanics Materials and Clinical Study,2009,6(4):42-45.
    [10] KANG S, CHI Y J, CHO K, LEE H J, KOH W G. Dual surface modification of poly(L-lactide) scaffold achieved by thermal incorporation of aligned nanofiber and click immobilization of VEGF to enhance endothelialization and blood compatibility [J]. Applied Surface Science,2022,589:152969.
    [11] RICHARD D P, MATTHEW G B, HARSHAD A N. Hyaluronic acid: The scientific and clinical evidence [J]. Journal of Plastic Reconstructive and Aesthetic Surgery,2007,60(10):1110-1119. doi: 10.1016/j.bjps.2007.03.005
    [12] THAPASIMUTHU V A, JASEER M, ANUMIL J, ARUN J, MOHANAN P V, LISSY K K. Advantages of hyaluronic acid as a component of fibrin sheet for care of acute wound [J]. Biologicals,2011,39(2):81-88. doi: 10.1016/j.biologicals.2011.01.003
    [13] FENG C, LIU C, LIU S, WANG Z, YU K, ZENG X. Electrospun nanofibers with core-shell structure for treatment of bladder regeneration [J]. Tissue Engineering Part A,2019,25(17-18):1289-1299. doi: 10.1089/ten.tea.2018.0255
    [14] QIN K, WANG F, RUSSELL M L S, ZHENG X, WANG H, HU Y, GAO Z, XU Q, ZHAO Q. Hyaluronan promotes the regeneration of vascular smooth muscle with potent contractile function in rapidly biodegradable vascular grafts [J]. Biomaterials,2020,257:120226. doi: 10.1016/j.biomaterials.2020.120226
    [15] 朱益锐, 蔡志祥, 郭亚龙, 张洪斌. 基于透明质酸构建的功能材料及其在生物医药领域中的应用 [J]. 功能高分子学报,2021,34(1):26-48. doi: 10.14133/j.cnki.1008-9357.20200615001

    ZHU Y R, CAI Z X, GUO Y L, ZHANG H B. Hyaluronan-based functional materials for their biomedical applications [J]. Journal of Functional Polymers,2021,34(1):26-48. doi: 10.14133/j.cnki.1008-9357.20200615001
    [16] YASH M K, MEHMET B, ABIGAIL W, DIETMAR W H, ANDRES J G, ROBERT E G. Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro [J]. Tissue Engineering Part A,2014,20(1-2):398-409. doi: 10.1089/ten.tea.2012.0426
    [17] YI B, SHEN Y, TANG H, WANG X, LI B, ZHANG Y. Stiffness of aligned fibers regulates the phenotypic expression of vascular smooth muscle cells [J]. ACS Applied Materials & Interfaces,2019,11(7):6867-6880.
    [18] SHI Y, EMANUELA F B, THOMAS M M, KATRIN O, MARTIN P, ROLF A S. Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin [J]. BMC Cancer,2012,12:571. doi: 10.1186/1471-2407-12-571
    [19] VICTOR S, HEBA A K, BRIAN W F. Serum can overcome contact inhibition in confluent human pulmonary artery smooth muscle cells [J]. Plos One,2013,8(8):e71490. doi: 10.1371/journal.pone.0071490
    [20] ZHANG J, DUAN Y, SATO H, TSUJI H, NODA I, YAN S, OZAKI Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy [J]. Macromolecules,2005,38(19):8012-8021. doi: 10.1021/ma051232r
    [21] WANG Y, GUO L, REN L, YIN S, GE J, GAO Q, THOMAS L, LUO S. A study on the performance of hyaluronic acid immobilized chitosan film [J]. Biomedical Materials,2009,4(3):035009. doi: 10.1088/1748-6041/4/3/035009
    [22] ERIC K B, JESSICA D S, EBONY A T, LAURA J T, CAROLINE L S. Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions [J]. Carbohydrate Polymers,2012,87(1):926-929.
    [23] JEFFREY J D H, YU J, WANG A, RANDALL L, FANG J, LI S. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering [J]. Biofabrication,2017,9(3):035007. doi: 10.1088/1758-5090/aa834b
    [24] YI B, ZHANG H, YU Z, YUAN H, WANG X, ZHANG Y. Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration [J]. Journal of Materials Chemistry B,2018,6(23):3934-3945. doi: 10.1039/C8TB00535D
    [25] LI D, XIA Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning [J]. Nano Letters,2004,4(5):933-938. doi: 10.1021/nl049590f
    [26] ANNETTE P, ANNIKA B, TAMARA G, TIM K, GREGOR K, MICHAEL H, BARBARA S, DIETER S, ULRICH K, VOLKMAR G, OLIVER B, JOACHIM K. CD44 and hyaluronan promote invasive growth of B35 neuroblastoma cells into the brain [J]. Biochim Biophys Acta,2010,1803(2):261-274. doi: 10.1016/j.bbamcr.2009.12.003
    [27] MEHDI K, SAKAI S, MASAHITO T. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells [J]. International Journal of Biological Macromolecules,2017,97:308-316. doi: 10.1016/j.ijbiomac.2016.12.088
    [28] LI J, WU F, ZHANG K, HE Z, ZOU D, LUO X, FAN Y, YANG P, ZHAO A, HUANG N. Controlling molecular weight of hyaluronic acid conjugated on amine-rich surface: Toward better multifunctional biomaterials for cardiovascular implants [J]. ACS Applied Materials & Interfaces,2017,9(36):30343-30358.
    [29] YU Y, ZHU S, HOU Y, LI J, GUAN S. Sulfur contents in sulfonated hyaluronic acid direct the cardiovascular cells fate [J]. ACS Applied Materials & Interfaces,2020,12(41):46827-46836.
    [30] YAYOI K, VIORICA P, EMMANUELLE S, GERRIT B, TAKUYA I, RIHOKO K, ASA M, SATOSHI S, HIDETO Y, OLIVIER J, TAKEHISA H. Wound healing promotion by hyaluronic acid: Effect of molecular weight on gene expression and in vivo wound closure [J]. Pharmaceuticals,2021,14(4):301. doi: 10.3390/ph14040301
    [31] AMIT C, JAIDEEP A, ARITRI G, SOUGATA R C, SABU T, PALLAB D, PROSENJIT S. Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications[J] International Journal of Biological Macromolecules, 2018, 116: 774-785.
  • 加载中
图(4)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  17
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-09
  • 录用日期:  2022-08-26
  • 网络出版日期:  2022-08-30

目录

    /

    返回文章
    返回