高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有交联网络的碳纳米管阵列导热材料

蔡瑜 秦盟盟 封伟

蔡 瑜, 秦盟盟, 封 伟. 具有交联网络的碳纳米管阵列导热材料[J]. 功能高分子学报,2022,35(6):524-531 doi: 10.14133/j.cnki.1008-9357.20220524001
引用本文: 蔡 瑜, 秦盟盟, 封 伟. 具有交联网络的碳纳米管阵列导热材料[J]. 功能高分子学报,2022,35(6):524-531 doi: 10.14133/j.cnki.1008-9357.20220524001
CAI Yu, QIN Mengmeng, FENG Wei. Carbon Nanotube Arrays with Cross-Linked Networks for Thermal Conductivity[J]. Journal of Functional Polymers, 2022, 35(6): 524-531. doi: 10.14133/j.cnki.1008-9357.20220524001
Citation: CAI Yu, QIN Mengmeng, FENG Wei. Carbon Nanotube Arrays with Cross-Linked Networks for Thermal Conductivity[J]. Journal of Functional Polymers, 2022, 35(6): 524-531. doi: 10.14133/j.cnki.1008-9357.20220524001

具有交联网络的碳纳米管阵列导热材料

doi: 10.14133/j.cnki.1008-9357.20220524001
详细信息
    作者简介:

    蔡瑜:蔡 瑜(1997—),男,四川广元人,硕士,主要研究方向为导热复合材料。E-mail:caiyuu@tju.edu.cn

    通讯作者:

    封 伟, E-mail:weifeng@tju.edu.cn

  • 中图分类号: TM383.1

Carbon Nanotube Arrays with Cross-Linked Networks for Thermal Conductivity

  • 摘要: 垂直碳纳米管阵列(VACNT)中相邻碳纳米管的相互作用较弱,导致其水平热导率较低。通过化学气相沉积法在VACNT内部生长了随机取向的次级碳纳米管,次级碳纳米管在VACNT中形成交联网络,增强了VACNT的水平热导率。理论模拟分析表明,次级碳纳米管能够对集中的热量进行分散传导,从而有效调控碳纳米管阵列沿水平方向的热导率。实际测试结果表明,二次生长时间为30 min的碳纳米管阵列具有较为致密的网络结构,其密度为0.149 g/cm3,相比于VACNT的密度(0.118 g/cm3)提升了26.3%;其垂直热导率和水平热导率分别高达10.9 W/(m·K)和7.8 W/(m·K),水平热导率比VACNT的水平热导率提升幅度达231.6%。

     

  • 图  1  具有网络结构的VACNT的(a)制备和(b)剥离工艺流程图

    Figure  1.  Process flow diagram for (a) the preparation of VACNT with network structure and (b) exfoliation

    图  2  (a)VACNT、(b)VACNT-20和(c)VACNT-30的扫描电镜照片

    Figure  2.  SEM images of (a) VACNT, (b) VACNT-20 and (c) VACNT-30

    图  3  (a) VACNT-20和VACNT-30的拉曼光谱;(b)VACNT-20的元素分布图(扫描区域为插图红框内)

    Figure  3.  (a) Raman spectra of VACNT-20 and VACNT-30; (b) Elemental distribution of VACNT-20 (the scan area is marked with red lines in the insert)

    图  4  瞬态有限元模拟中 (a) VACNT和(b)VACNT网络的温度分布云图

    Figure  4.  Temperature distribution clouds of (a) VACNT and (b) VACNT network in transient finite element simulation

    图  5  (a)VACNT网络模型和(c)VACNT模型中温度沿径向和轴向的分布图;(b)VACNT网络模型与(d)VACNT模型中单根碳纳米管的温度分布云图

    Figure  5.  Temperature distribution along the radial and axial direction in (a) VACNT network model and (c) VACNT model; Temperature distribution clouds of individual carbon nanotube in (b) VACNT network model and (d) VACNT model

    图  6  (a)VACNT和(b)VACNT网络的热传导示意图

    Figure  6.  Schematic diagram of heat conduction in (a)VACNT and (b) VACNT network

    图  7  VACNT和VACNT网络的(a)垂直热导率和(b)水平热导率;(c)VACNT网络的声子路径随着网络逐渐致密的示意图

    Figure  7.  (a) Vertical thermal conductivity and (b) horizontal thermal conductivity of VACNT and VACNT networks; (c) Schematic diagram of phonon paths of VACNT networks as the networks become progressively denser

    表  1  有限元分析中材料的参数

    Table  1.   Material parameters in finite element analysis

    Cabon nanotubeDensity/
    (kg·m−3
    Heat capacity/
    (J·kg−1·K−1
    Vertical thermal
    conductivity/(W·m−1·K−1
    Horizontal thermal
    conductivity/(W·m−1·K−1
    Axial1308002000100
    Radial1308001002000
    下载: 导出CSV
  • [1] OTIABA K C, EKERE N N, BHATTI R S, MALLIK S, ALAM M O, AMALU E H. Thermal interface materials for automotive electronic control unit: Trends, technology and R&D challenges [J]. Microelectronics Reliability,2011,51(12):2031-2043. doi: 10.1016/j.microrel.2011.05.001
    [2] SONG Y, JIANG F, SONG N, SHI L, DING P. Multilayered structural design of flexible films for smart thermal management [J]. Composites Part A: Applied Science and Manufacturing,2021,141:106222.
    [3] ZHU Z, LI C, SONG F E, XIE L, GENG R, LIN C T, LI L, YAO Y. Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets [J]. Composites Science and Technology,2019,170:93-100.
    [4] HUANG C, QIAN X, YANG R. Thermal conductivity of polymers and polymer nanocomposites [J]. Materials Science and Engineering R:Reports,2018,132:1-22.
    [5] ZHANG W Y, KONG Q Q, TAO Z C, WEI J C, XIE L J, CUI X Y, CHEN C M. 3D thermally cross-linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material [J]. Advanced Materials Interfaces,2019,6(12):1900147.
    [6] MA L R, WANG Y X, WANG Y Y, WANG C G, GAO X P. Graphene induced carbonization of polyimide films to prepared flexible carbon films with improving-thermal conductivity [J]. Ceramics International,2020,46(3):3332-3338.
    [7] JIANG F, CUI S Q, SONG N, SHI L Y, DING P. Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites [J]. ACS Applied Materials & Interfaces,2018,10(19):16812-16821.
    [8] ZHANG X, MA W G, MIAO T T. Thermal performance of vertically-aligned multi-walled carbon nanotube array grown on platinum film [J]. Carbon,2014,77:266-274.
    [9] CAO H, TAN Z, LU M H, JI G, XIONG D B. Graphene interlayer for enhanced interface thermal conductance in metal matrix composites: An approach beyond surface metallization and matrix alloying [J]. Carbon,2019,150:60-68.
    [10] XU Z, BUEHLER M J. Nanoengineering heat transfer performance at carbon nanotube interfaces [J]. ACS Nano,2009,3(9):2767-2775.
    [11] DUTTA I, RAJ R, KUMAR P, CHEN T, NAGARAJ CM, LIU J, RENAVIKAR M, WAKHARKAR V. Liquid phase sintered solders with indium as minority phase for next generation thermal interface material applications [J]. Journal of Electronic Materials,2009,38(12):2735-2745.
    [12] FUJII M, ZHANG X, HUAQING X, AGO H, TAKAHASHI K, IKUTA T, ABE H, SHIMIZU T. Measuring the thermal conductivity of a single carbon nanotube [J]. Physical Review Letters,2005,95(6):065502.
    [13] CHEN H Y, CHEN M H, DI J T, XU G, LI H B. Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials [J]. The Journal of Physical Chemistry C,2012,116(6):3903-3909.
    [14] HAGGENMUELLER R, GUTHY C, LUKES J R, FISCHER J E, WINEY K I. Single wall carbon nanotube/polyethylene nanocomposites: Thermal and electrical conductivity [J]. Macromolecules,2007,40(7):2417-2421.
    [15] XIE H. Thermal and electrical transport properties of a self-organized carbon nanotube pellet [J]. Journal of Materials Science,2007,42(10):3695-3698.
    [16] MCNAMARA A J, JOSHI Y, ZHANG Z M. Thermal resistance of thermal conductive adhesive anchored carbon nanotubes interface material [J]. International Journal of Thermal Sciences,2015,96:221-226.
    [17] SU Y K, KWON I M, KIM Y G, LEE S, SEO Y S. A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena [J]. Carbon,2013,55:285-290.
    [18] JAKUBINEK M B, WHITE M A, GE L, JAYASINGHE C, CHO W, SCHULZ M J, SHANOV V. Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays [J]. Carbon,2010,48(3):3947-3952.
    [19] MCNAMARA A J, JOSHI Y, ZHANG Z M M. Characterization of nanostructured thermal interface materials: A review [J]. International Journal of Thermal Sciences,2012,62:2-11.
    [20] CROSS R, COLA B A, FISHER T, XU X, GALL K, GRAHAM S. A metallization and bonding approach for high performance carbon nanotube thermal interface materials [J]. Nanotechnology,2010,21(44):445705.
    [21] NA N, HASEGAWA K, ZHOU X S, NIHEI M, NODA S. Denser and taller carbon nanotube arrays on Cu foils useable as thermal interface materials [J]. Japanese Journal of Applied Physics,2015,54(9):50-52.
    [22] CHE J W, CAGIN T, GODDARD W A. Thermal conductivity of carbon nanotubes [J]. Nanotechnology,2000,11(2):65-69.
    [23] HUANG S, LIN H, QIU L, ZHANG L, CAI Z, CHEN T, YANG Z, YANG S, PENG H. Perpendicularly aligned carbon nanotube/olefin composite films for the preparation of graphene nanomaterials [J]. Journal of Materials Chemistry,2012,22(32):16209-16213.
    [24] WANG M, CHEN H, LIN W, LI Z, LI Q, CHEN M, MENG F, XING Y, YAO Y, WONG C P. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film [J]. ACS Applied Materials & Interfaces,2013,6(1):539-544.
    [25] CHAISITSAK S, NUKEAW J, TUANTRANONT A. Parametric study of atmospheric-pressure single-walled carbon nanotubes growth by ferrocene-ethanol mist CVD [J]. Diamond and Related Materials,2007,16(11):1958-1966. doi: 10.1016/j.diamond.2007.09.013
    [26] TANG B, WANG S L, ZHANG J, WANG Z W, HE Y F, HUANG W Q. Three-dimensional graphene monolith-based composite: Superiority in properties and applications [J]. International Materials Reviews,2018,63(3):204-225.
    [27] ZOU R, LIU F, HU N, NING H, JIANG X, XU C, FU S, LI Y, ZHOU X, YAN C. Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity [J]. Carbon,2019,149:173-180.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  25
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 录用日期:  2022-07-01
  • 网络出版日期:  2022-09-02
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回