高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚己内酯/聚丁内酰胺电纺纤维的制备及性能

明远 陈涛 赵黎明 邱勇隽

明 远, 陈 涛, 赵黎明, 邱勇隽. 聚己内酯/聚丁内酰胺电纺纤维的制备及性能[J]. 功能高分子学报,2023,36(2):160-169 doi: 10.14133/j.cnki.1008-9357.20220520001
引用本文: 明 远, 陈 涛, 赵黎明, 邱勇隽. 聚己内酯/聚丁内酰胺电纺纤维的制备及性能[J]. 功能高分子学报,2023,36(2):160-169 doi: 10.14133/j.cnki.1008-9357.20220520001
MING Yuan, CHEN Tao, ZHAO Liming, QIU Yongjun. Preparation and Properties of PCL/PBL Electrospun Fibers[J]. Journal of Functional Polymers, 2023, 36(2): 160-169. doi: 10.14133/j.cnki.1008-9357.20220520001
Citation: MING Yuan, CHEN Tao, ZHAO Liming, QIU Yongjun. Preparation and Properties of PCL/PBL Electrospun Fibers[J]. Journal of Functional Polymers, 2023, 36(2): 160-169. doi: 10.14133/j.cnki.1008-9357.20220520001

聚己内酯/聚丁内酰胺电纺纤维的制备及性能

doi: 10.14133/j.cnki.1008-9357.20220520001
基金项目: 上海市自然科学基金 (21ZR1416000);上海市“科技创新行动计划” 技术标准项目(21DZ2205900)
详细信息
    作者简介:

    明远:明 远(1997—),女,山东潍坊人,硕士,主要研究方向为静电纺丝。E-mail:1059807411@qq.com

    通讯作者:

    陈 涛,E-mail:tchen@ecust.edu.cn

    赵黎明,E-mail:zhaoliming@ecust.edu.cn

  • 中图分类号: TQ340

Preparation and Properties of PCL/PBL Electrospun Fibers

  • 摘要: 通过溶液静电纺丝法制备了聚己内酯/聚丁内酰胺(PCL/PBL)电纺纤维膜。采用扫描电子显微镜(SEM)、水相接触角测量仪、原子力显微镜(AFM)、能谱仪(EDS)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、热重分析仪(TGA)、差示扫描量热仪(DSC)、电子万能拉力机对PCL/PBL电纺纤维的形貌、亲疏水性、结晶性能、热性能及力学性能进行了研究。结果表明,随着PBL含量的增加,纤维直径增大、分布变窄,且纤维膜的亲水性明显改善;PCL与PBL有一定相容性,PCL/PBL电纺纤维膜的结晶度高于PCL或PBL均聚物电纺纤维膜,并随PBL含量增加而提高;PCL/PBL电纺纤维膜中PCL熔点随PBL含量增加而略有增加,PBL组分的熔点则基本不变。两组分的结晶温度和纤维膜热稳定性均随PBL含量增加而降低。PBL的加入使电纺纤维膜的力学性能明显提高。

     

  • 图  1  PCL/PBL电纺纤维的SEM图像及纤维直径分布

    Figure  1.  SEM images and fiber diameter distributions of PCL/PBL electrospun fibers

    图  2  PCL/PBL电纺纤维膜水相接触角

    Figure  2.  Water contact angles of PCL/PBL electrospun fiber membranes

    图  3  PCL/PBL电纺纤维膜的AFM图像

    Figure  3.  AFM images of PCL/PBL electrospun fiber membranes

    图  4  PCL/PBL电纺纤维的TEM图像

    Figure  4.  TEM images of PCL/PBL electrospun fibers

    图  5  PCL/PBL电纺纤维膜的红外谱图

    Figure  5.  FT-IR spectra of PCL/PBL electrospun fiber membranes

    图  6  PCL/PBL电纺纤维膜的XRD曲线

    Figure  6.  XRD patterns of PCL/PBL electrospun fiber membranes

    图  7  PCL/PBL电纺纤维膜的(a)TGA曲线和(b)DTG曲线

    Figure  7.  (a) TGA and (b) DTG curves of PCL/PBL electrospun fiber membranes

    图  8  PCL/PBL电纺纤维膜的DSC曲线

    Figure  8.  DSC curves of PCL/PBL electrospun fiber membranes

    图  9  PCL/PBL电纺纤维膜的低温DSC曲线

    Figure  9.  Low temperature DSC curves of PCL/PBL electrospun fiber membranes

    表  1  PCL/PBL电纺纤维特性

    Table  1.   Characters of PCL/PBL electrospun fibers

    SampleD/μmCVXc/%ρ/%
    PCL35
    PCL/PBL(95/5)0.841 ± 0.2380.2833634.6 ± 1.5
    PCL/PBL(90/10)0.583 ± 0.0780.1344227.9 ± 0.4
    PCL/PBL(85/15)1.088 ± 0.1420.1314722.8 ± 0.5
    PCL/PBL(80/20)1.010 ± 0.0950.0945218.0 ± 0.6
    PBL0.125 ± 0.0300.24029-
    下载: 导出CSV

    表  2  PCL/PBL电纺纤维膜表面元素分布

    Table  2.   Element distribution on PCL/PBL electrospun fiber membranes surface

    Samplewt /%wp /%
    NOCNOC
    PCL/PBL(95/5)0.930.368.84.417.578.1
    PCL/PBL(90/10)1.829.768.55.920.273.9
    PCL/PBL(85/15)2.729.268.16.921.172.0
    PCL/PBL(80/20)3.628.767.77.721.670.7
    下载: 导出CSV

    表  3  PCL/PBL电纺纤维膜的力学性能

    Table  3.   Mechanical properties of PCL/PBL electrospun fiber membranes

    SampleYoung’s modulus/MPaTensile strength/MPaElongation at break/%
    PCL/PBL(95/5)26.01 ± 10.971.41 ± 0.335.9 ± 3.8
    PCL/PBL(90/10)34.29 ± 5.871.65 ± 0.355.9 ± 3.2
    PCL/PBL(85/15)27.67 ± 6.401.81 ± 0.1038.4 ± 18.1
    PCL/PBL(80/20)45.90 ± 8.303.16 ± 0.9937.8 ± 6.9
    下载: 导出CSV
  • [1] CHEN S X, LI R Q, LI X R, XIE J W. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine [J]. Advanced Drug Delivery Reviews,2018,132(6):188-213.
    [2] LI J J, YANG Y Y, YU D G, DU Q, YANG X L. Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers [J]. European Journal of Pharmaceutical Sciences,2018,122(10):195-204.
    [3] HIVECHI A, BAHRAMI S H, SIEGEL R A. Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone [J]. Materials Science & Engineering C: Materials for Biological Applications,2019,94(10):929-937.
    [4] HOUSHYAR S, KUMAR G S, RIFAI A, TRAN N, NAYAK R, SHANKS R A, PADHYE R, FOX K, BHATTACHARYYA A. Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management [J]. Materials Science and Engineering:C,2019,100(7):378-387.
    [5] HOMAEIGOHAR S, BOCCACCINI A R. Nature-derived and synthetic additives to poly(ɛ-caprolactone) nanofibrous systems for biomedicine: An updated overview [J]. Frontiers in Chemistry,2022,9:809676. doi: 10.3389/fchem.2021.809676
    [6] CHANDRA R, RUSTGI R. Biodegradable polymers [J]. Progress in Polymer Science,1998,23(7):1273-1335. doi: 10.1016/S0079-6700(97)00039-7
    [7] OKADA M. Chemical syntheses of biodegradable polymers [J]. Progress in Polymer Science,2002,27(1):87-133. doi: 10.1016/S0079-6700(01)00039-9
    [8] NAIR L S, LAURENCIN C T. Biodegradable polymers as biomaterials [J]. Progress in Polymer Science,2007,32(8):762-798.
    [9] LI P F, RUAN L M, WANG R F, LIU T Q, SONG G, GAO X F, JIANG G H, LIU X Y. Electrospun scaffold of collagen and polycaprolactone containing ZnO quantum dots for skin wound regeneration [J]. Journal of Bionic Engineering,2021,18(6):1378-1390. doi: 10.1007/s42235-021-00115-7
    [10] 陈晨, 陈涛, 赵黎明, 邱永隽. CO2对酰基化合物引发2-吡咯烷酮聚合的影响 [J]. 功能高分子学报,2020,33(3):290-296.

    CHEN C, CHEN T, ZHAO L M, QIU Y J. Influence of CO2 on acyl compound initiated polymerization of 2-pyrrolidone [J]. Journal of Functional Polymers,2020,33(3):290-296.
    [11] BACSKAI R. Synthesis and thermal stability evaluation of end-capped nylon 4 oligomers [J]. Polymer Bulletin,1984,11(3):229-236.
    [12] HASHIMOTO K, HAMANO T, OKADA M. Degradation of several polyamides in soils [J]. Journal of Applied Polymer Science,1994,54(10):1579-1583. doi: 10.1002/app.1994.070541023
    [13] FUKUDA Y, SASANUMA Y. Computational characterization of nylon 4, a biobased and biodegradable polyamide superior to nylon 6 [J]. ACS Omega,2018,3(8):9544-9555. doi: 10.1021/acsomega.8b00915
    [14] TACHIBANA K, URANO Y, NUMATA K. Biodegradability of nylon 4 film in a marine environment [J]. Polymer Degradation and Stability,2013,98(9):1847-1851. doi: 10.1016/j.polymdegradstab.2013.05.007
    [15] YAMANO N, KAWASAKI N, IDA S, NAKAYAMA Y, NAKAYAMA A. Biodegradation of polyamide 4 in vivo [J]. Polymer Degradation and Stability,2017,137(6):281-288.
    [16] NAKAYAMA A, YAMANO N, KAWASAKI N, NAKAYAMA Y. Synthesis and biodegradation of poly(2-pyrrolidone-co-ε-caprolactone)s [J]. Polymer Degradation and Stability,2013,98(9):1882-1888. doi: 10.1016/j.polymdegradstab.2013.04.011
    [17] CHEN T, WANG C, ZHAO L, WANG L, QIU Y. Suspension polymerization of 2-pyrrolidone in the presence of CO2 and organic promoters [J]. Journal of Applied Polymer Science,2021,138(4):49736. doi: 10.1002/app.49736
    [18] BLAZKOVA L, MALINOVA L, BENESOVA V, RODA J, BROZEK J. Nanofibers prepared by electrospinning from solutions of biobased polyamide 4 [J]. Journal of Polymer Science Part A:Polymer Chemistry,2017,55(13):2203-2210. doi: 10.1002/pola.28605
    [19] GHASEMI-MOBARAKEH L, PRABHAKARAN M P, MORSHED M, NASR-ESFAHANI M H, RAMAKRISHNA S. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering [J]. Biomaterials,2008,29(34):4532-4539. doi: 10.1016/j.biomaterials.2008.08.007
    [20] 张媛婷, 明远, 陈涛, 赵黎明, 邱永隽. 聚乳酸/聚丁内酰胺电纺核-壳结构纤维的制备及性能 [J]. 功能高分子学报,2022,35(2):137-145. doi: 10.14133/j.cnki.1008-9357.20210531001

    ZHANG Y T, MING Y, CHEN T, ZHAO L M, QIU Y J. Preparation and properties of PLLA/PBL electrospun fibers with core-sheath structure [J]. Journal of Functional Polymers,2022,35(2):137-145. doi: 10.14133/j.cnki.1008-9357.20210531001
    [21] 祝振鑫. 膜材料的亲水性、膜表面对水的湿润性和水接触角的关系 [J]. 膜科学与技术,2014,34(2):1-4. doi: 10.3969/j.issn.1007-8924.2014.02.001

    ZHU Z X. Hydrophilicity, wettability and contact angle [J]. Membrane Science and Technology,2014,34(2):1-4. doi: 10.3969/j.issn.1007-8924.2014.02.001
    [22] CHEN T, ZHONG G C, ZHANG Y T, ZHAO L M, QIU Y J. Bio-based and biodegradable electrospun fibers composed of poly(L-lactide) and polyamide 4 [J]. Chinese Journal of Polymer Science,2020,38(1):53-62. doi: 10.1007/s10118-019-2299-8
    [23] MARTINS-FRANCHETTI S M, EGERTON T A, WHITE J R. Morphological changes in poly(caprolactone)/poly(vinyl chloride) blends caused by biodegradation [J]. Journal of Polymers and the Environment,2010,18(1):79-83. doi: 10.1007/s10924-009-0158-3
    [24] WAN Y, LU X L, DALAI S Q, ZHANG J. Thermophysical properties of polycaprolactone/chitosan blend membranes [J]. Thermochimica Acta,2009,487(1-2):33-38. doi: 10.1016/j.tca.2009.01.007
    [25] ALI S, KHATRI Z, OH K W, KIM I S, KIM S H. Preparation and characterization of hybrid polycaprolactone/cellulose ultrafine fibers via electrospinning [J]. Macromolecular Research,2014,22(5):562-568. doi: 10.1007/s13233-014-2078-x
    [26] ZHONG Z, GUO Q. Miscibility and morphology of thermosetting polymer blends of novolac resin with poly(ethylene oxide) [J]. Polymer,1998,39(3):517-523. doi: 10.1016/S0032-3861(97)00309-1
    [27] ZHENG H, ZHENG S, GUO Q. Thermosetting polymer blends of unsaturated polyester resin and poly(ethylene oxide): I. Miscibility and thermal properties [J]. Journal of Polymer Science Part A:Polymer Chemistry,1997,35(15):3161-3168. doi: 10.1002/(SICI)1099-0518(19971115)35:15<3161::AID-POLA9>3.0.CO;2-Z
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  98
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 录用日期:  2022-11-29
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回