Preparation and Properties of PCL/PBL Electrospun Fibers
-
摘要: 通过溶液静电纺丝法制备了聚己内酯/聚丁内酰胺(PCL/PBL)电纺纤维膜。采用扫描电子显微镜(SEM)、水相接触角测量仪、原子力显微镜(AFM)、能谱仪(EDS)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、热重分析仪(TGA)、差示扫描量热仪(DSC)、电子万能拉力机对PCL/PBL电纺纤维的形貌、亲疏水性、结晶性能、热性能及力学性能进行了研究。结果表明,随着PBL含量的增加,纤维直径增大、分布变窄,且纤维膜的亲水性明显改善;PCL与PBL有一定相容性,PCL/PBL电纺纤维膜的结晶度高于PCL或PBL均聚物电纺纤维膜,并随PBL含量增加而提高;PCL/PBL电纺纤维膜中PCL熔点随PBL含量增加而略有增加,PBL组分的熔点则基本不变。两组分的结晶温度和纤维膜热稳定性均随PBL含量增加而降低。PBL的加入使电纺纤维膜的力学性能明显提高。Abstract: Electrospun polycaprolactone (PCL) nanofibers are often used as biomedical materials for drug release systems and tissue engineering scaffolds due to their biodegradability, but the hydrophobicity and mechanical defects limit the wider applications. Here, polybutyrolactam (PBL), a biodegradable polyamide with excellent mechanical properties and high moisture regain, was blended with PCL in co-solvent to electrospin fiber membranes with improved mechanical properties and the hydrophilicity. Scanning electron microscope (SEM), water contact angle measuring instrument, atomic force microscope (AFM), energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), differential scanning calorimetry (DSC), electronic universal tension machine were used to investigate the morphology, diameter and distribution of fibers, the hydrophilicity, crystallinity, thermal and mechanical properties of the fiber membranes. It was found that increasing the PBL content increased the fiber diameter, narrowed the diameter distribution, and significantly improved the hydrophilicity of the fiber membrane. PBL had been shown to be compatible with PCL, and the crystallinity of PCL/PBL electrospun fiber membranes with increasing PBL content was higher than that of monocomponent fiber membranes. Increasing the PBL content also slightly raised the melting point of the PCL component in the fiber membranes, while that of PBL remained unchanged. The crystallization temperatures of PBL and PCL, as well as the thermal stability of the fiber membranes decreased with increasing PBL content. The addition of PBL significantly improved the mechanical properties of electrospun fiber membranes. The greater PBL content was, the better the mechanical properties of the fiber membrane were.
-
Key words:
- polycaprolactone /
- polybutyrolactam /
- electrospinning /
- hydrophilicity /
- compatibility /
- mechanical property
-
表 1 PCL/PBL电纺纤维特性
Table 1. Characters of PCL/PBL electrospun fibers
Sample D/μm CV Xc/% ρ/% PCL — — 35 — PCL/PBL(95/5) 0.841 ± 0.238 0.283 36 34.6 ± 1.5 PCL/PBL(90/10) 0.583 ± 0.078 0.134 42 27.9 ± 0.4 PCL/PBL(85/15) 1.088 ± 0.142 0.131 47 22.8 ± 0.5 PCL/PBL(80/20) 1.010 ± 0.095 0.094 52 18.0 ± 0.6 PBL 0.125 ± 0.030 0.240 29 - 表 2 PCL/PBL电纺纤维膜表面元素分布
Table 2. Element distribution on PCL/PBL electrospun fiber membranes surface
Sample wt /% wp /% N O C N O C PCL/PBL(95/5) 0.9 30.3 68.8 4.4 17.5 78.1 PCL/PBL(90/10) 1.8 29.7 68.5 5.9 20.2 73.9 PCL/PBL(85/15) 2.7 29.2 68.1 6.9 21.1 72.0 PCL/PBL(80/20) 3.6 28.7 67.7 7.7 21.6 70.7 表 3 PCL/PBL电纺纤维膜的力学性能
Table 3. Mechanical properties of PCL/PBL electrospun fiber membranes
Sample Young’s modulus/MPa Tensile strength/MPa Elongation at break/% PCL/PBL(95/5) 26.01 ± 10.97 1.41 ± 0.33 5.9 ± 3.8 PCL/PBL(90/10) 34.29 ± 5.87 1.65 ± 0.35 5.9 ± 3.2 PCL/PBL(85/15) 27.67 ± 6.40 1.81 ± 0.10 38.4 ± 18.1 PCL/PBL(80/20) 45.90 ± 8.30 3.16 ± 0.99 37.8 ± 6.9 -
[1] CHEN S X, LI R Q, LI X R, XIE J W. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine [J]. Advanced Drug Delivery Reviews,2018,132(6):188-213. [2] LI J J, YANG Y Y, YU D G, DU Q, YANG X L. Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers [J]. European Journal of Pharmaceutical Sciences,2018,122(10):195-204. [3] HIVECHI A, BAHRAMI S H, SIEGEL R A. Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone [J]. Materials Science & Engineering C: Materials for Biological Applications,2019,94(10):929-937. [4] HOUSHYAR S, KUMAR G S, RIFAI A, TRAN N, NAYAK R, SHANKS R A, PADHYE R, FOX K, BHATTACHARYYA A. Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management [J]. Materials Science and Engineering:C,2019,100(7):378-387. [5] HOMAEIGOHAR S, BOCCACCINI A R. Nature-derived and synthetic additives to poly(ɛ-caprolactone) nanofibrous systems for biomedicine: An updated overview [J]. Frontiers in Chemistry,2022,9:809676. doi: 10.3389/fchem.2021.809676 [6] CHANDRA R, RUSTGI R. Biodegradable polymers [J]. Progress in Polymer Science,1998,23(7):1273-1335. doi: 10.1016/S0079-6700(97)00039-7 [7] OKADA M. Chemical syntheses of biodegradable polymers [J]. Progress in Polymer Science,2002,27(1):87-133. doi: 10.1016/S0079-6700(01)00039-9 [8] NAIR L S, LAURENCIN C T. Biodegradable polymers as biomaterials [J]. Progress in Polymer Science,2007,32(8):762-798. [9] LI P F, RUAN L M, WANG R F, LIU T Q, SONG G, GAO X F, JIANG G H, LIU X Y. Electrospun scaffold of collagen and polycaprolactone containing ZnO quantum dots for skin wound regeneration [J]. Journal of Bionic Engineering,2021,18(6):1378-1390. doi: 10.1007/s42235-021-00115-7 [10] 陈晨, 陈涛, 赵黎明, 邱永隽. CO2对酰基化合物引发2-吡咯烷酮聚合的影响 [J]. 功能高分子学报,2020,33(3):290-296.CHEN C, CHEN T, ZHAO L M, QIU Y J. Influence of CO2 on acyl compound initiated polymerization of 2-pyrrolidone [J]. Journal of Functional Polymers,2020,33(3):290-296. [11] BACSKAI R. Synthesis and thermal stability evaluation of end-capped nylon 4 oligomers [J]. Polymer Bulletin,1984,11(3):229-236. [12] HASHIMOTO K, HAMANO T, OKADA M. Degradation of several polyamides in soils [J]. Journal of Applied Polymer Science,1994,54(10):1579-1583. doi: 10.1002/app.1994.070541023 [13] FUKUDA Y, SASANUMA Y. Computational characterization of nylon 4, a biobased and biodegradable polyamide superior to nylon 6 [J]. ACS Omega,2018,3(8):9544-9555. doi: 10.1021/acsomega.8b00915 [14] TACHIBANA K, URANO Y, NUMATA K. Biodegradability of nylon 4 film in a marine environment [J]. Polymer Degradation and Stability,2013,98(9):1847-1851. doi: 10.1016/j.polymdegradstab.2013.05.007 [15] YAMANO N, KAWASAKI N, IDA S, NAKAYAMA Y, NAKAYAMA A. Biodegradation of polyamide 4 in vivo [J]. Polymer Degradation and Stability,2017,137(6):281-288. [16] NAKAYAMA A, YAMANO N, KAWASAKI N, NAKAYAMA Y. Synthesis and biodegradation of poly(2-pyrrolidone-co-ε-caprolactone)s [J]. Polymer Degradation and Stability,2013,98(9):1882-1888. doi: 10.1016/j.polymdegradstab.2013.04.011 [17] CHEN T, WANG C, ZHAO L, WANG L, QIU Y. Suspension polymerization of 2-pyrrolidone in the presence of CO2 and organic promoters [J]. Journal of Applied Polymer Science,2021,138(4):49736. doi: 10.1002/app.49736 [18] BLAZKOVA L, MALINOVA L, BENESOVA V, RODA J, BROZEK J. Nanofibers prepared by electrospinning from solutions of biobased polyamide 4 [J]. Journal of Polymer Science Part A:Polymer Chemistry,2017,55(13):2203-2210. doi: 10.1002/pola.28605 [19] GHASEMI-MOBARAKEH L, PRABHAKARAN M P, MORSHED M, NASR-ESFAHANI M H, RAMAKRISHNA S. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering [J]. Biomaterials,2008,29(34):4532-4539. doi: 10.1016/j.biomaterials.2008.08.007 [20] 张媛婷, 明远, 陈涛, 赵黎明, 邱永隽. 聚乳酸/聚丁内酰胺电纺核-壳结构纤维的制备及性能 [J]. 功能高分子学报,2022,35(2):137-145. doi: 10.14133/j.cnki.1008-9357.20210531001ZHANG Y T, MING Y, CHEN T, ZHAO L M, QIU Y J. Preparation and properties of PLLA/PBL electrospun fibers with core-sheath structure [J]. Journal of Functional Polymers,2022,35(2):137-145. doi: 10.14133/j.cnki.1008-9357.20210531001 [21] 祝振鑫. 膜材料的亲水性、膜表面对水的湿润性和水接触角的关系 [J]. 膜科学与技术,2014,34(2):1-4. doi: 10.3969/j.issn.1007-8924.2014.02.001ZHU Z X. Hydrophilicity, wettability and contact angle [J]. Membrane Science and Technology,2014,34(2):1-4. doi: 10.3969/j.issn.1007-8924.2014.02.001 [22] CHEN T, ZHONG G C, ZHANG Y T, ZHAO L M, QIU Y J. Bio-based and biodegradable electrospun fibers composed of poly(L-lactide) and polyamide 4 [J]. Chinese Journal of Polymer Science,2020,38(1):53-62. doi: 10.1007/s10118-019-2299-8 [23] MARTINS-FRANCHETTI S M, EGERTON T A, WHITE J R. Morphological changes in poly(caprolactone)/poly(vinyl chloride) blends caused by biodegradation [J]. Journal of Polymers and the Environment,2010,18(1):79-83. doi: 10.1007/s10924-009-0158-3 [24] WAN Y, LU X L, DALAI S Q, ZHANG J. Thermophysical properties of polycaprolactone/chitosan blend membranes [J]. Thermochimica Acta,2009,487(1-2):33-38. doi: 10.1016/j.tca.2009.01.007 [25] ALI S, KHATRI Z, OH K W, KIM I S, KIM S H. Preparation and characterization of hybrid polycaprolactone/cellulose ultrafine fibers via electrospinning [J]. Macromolecular Research,2014,22(5):562-568. doi: 10.1007/s13233-014-2078-x [26] ZHONG Z, GUO Q. Miscibility and morphology of thermosetting polymer blends of novolac resin with poly(ethylene oxide) [J]. Polymer,1998,39(3):517-523. doi: 10.1016/S0032-3861(97)00309-1 [27] ZHENG H, ZHENG S, GUO Q. Thermosetting polymer blends of unsaturated polyester resin and poly(ethylene oxide): I. Miscibility and thermal properties [J]. Journal of Polymer Science Part A:Polymer Chemistry,1997,35(15):3161-3168. doi: 10.1002/(SICI)1099-0518(19971115)35:15<3161::AID-POLA9>3.0.CO;2-Z -