高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

还原响应性聚氨酯三嵌段共聚物的合成及应用

彭泽林 谭佳佳 张国颖

彭泽林, 谭佳佳, 张国颖. 还原响应性聚氨酯三嵌段共聚物的合成及应用[J]. 功能高分子学报,2022,35(6):509-516 doi: 10.14133/j.cnki.1008-9357.20220506002
引用本文: 彭泽林, 谭佳佳, 张国颖. 还原响应性聚氨酯三嵌段共聚物的合成及应用[J]. 功能高分子学报,2022,35(6):509-516 doi: 10.14133/j.cnki.1008-9357.20220506002
PENG Zelin, TAN Jiajia, ZHANG Guoying. Synthesis and Application of Redox-Responsive Polyurethane Triblock Copolymer[J]. Journal of Functional Polymers, 2022, 35(6): 509-516. doi: 10.14133/j.cnki.1008-9357.20220506002
Citation: PENG Zelin, TAN Jiajia, ZHANG Guoying. Synthesis and Application of Redox-Responsive Polyurethane Triblock Copolymer[J]. Journal of Functional Polymers, 2022, 35(6): 509-516. doi: 10.14133/j.cnki.1008-9357.20220506002

还原响应性聚氨酯三嵌段共聚物的合成及应用

doi: 10.14133/j.cnki.1008-9357.20220506002
基金项目: 国家自然科学基金(51973206)
详细信息
    作者简介:

    彭泽林(1996—),男,硕士生,主要研究方向为可降解聚合物的合成与应用。E-mail: zlp2019@mail.ustc.edu.cn

    通讯作者:

    谭佳佳,E-mail:jjt621@mail.ustc.edu.cn

    张国颖,E-mail:gyzhang@ustc.edu.cn

  • 中图分类号: O63

Synthesis and Application of Redox-Responsive Polyurethane Triblock Copolymer

  • 摘要: 设计合成了一类对还原性微环境具有响应性的两亲性聚氨酯三嵌段共聚物−聚乙二醇-聚氨基甲酸酯-聚乙二醇 (PEG-PU(SS)-PEG),其中PU(SS)中间嵌段由双(2-羟乙基)二硫化物和六亚甲基二异氰酸酯 (HDI) 经逐步聚合得到。该聚合物可以在水溶液中经纳米闪沉法自组装形成直径约100 nm、分别由PEG嵌段和PU(SS) 嵌段构成壳层和内核的纳米胶束,在其疏水内核中可以负载疏水性化疗药物姜黄素,构成还原环境响应性纳米载药体系,载药量和载药效率分别可达22.2%和71.3%。体外药物释放实验结果表明:由于共聚物链上疏水性PU(SS) 嵌段中二硫键结构的存在,在谷胱甘肽 (GSH) 作用下,可触发聚合物链发生降解,从而导致胶束结构解离,释放所负载的姜黄素;在GSH处理6 h后,姜黄素的累积释放量可达约90%。

     

  • 图  1  两亲性三嵌段共聚物PEG-PU(SS)-PEG的自组装及其还原响应性降解及药物释放过程示意图

    Figure  1.  Schematic illustrations for the self-assembly, redox-responsive disintegration and resulted drug release of the amphiphilic PEG-PU(SS)-PEG triblock copolymer

    图  2  PEG-PU(SS)-PEG三嵌段共聚物的合成路线

    Figure  2.  Synthetic route of PEG-PU(SS)-PEG triblock copolymer

    图  3  PEG-PU(SS)-PEG三嵌段共聚物的 (a) 1H-NMR谱图和 (b) GPC曲线

    Figure  3.  (a) 1H-NMR spectrum and (b) GPC curve of PEG-PU(SS)-PEG triblock copolymer

    图  4  PEG-PU(SS)-PEG组装体在 (a) 经GSH处理前和 (b) 加入GSH处理8 h后的TEM照片

    Figure  4.  TEM images obtained for PEG-PU(SS)-PEG self-assemblies (a) without GSH and (b) after being treated with GSH for 8 h

    图  5  mPEG45-OH和PEG-PU(SS)-PEG经GSH处理不同时间后的GPC曲线

    Figure  5.  GPC traces recorded for mPEG45-OH and PEG-PU(SS)-PEG after being treated with GSH for different time

    图  6  (a) PEG-PU(SS)-PEG胶束分散液的归一化散射光强(I/I0)和<Dh>随GSH处理时间的变化;(b) PEG-PU(SS)-PEG胶束在加入GSH前和经GSH处理6 h后的<Dh>分布

    Figure  6.  (a) Evolution of the normalized scattering intensity (I/I0) and <Dh>, recorded for PEG-PU(SS)-PEG micellar dispersion in the presence of GSH; (b) The hydrodynamic diameter distributions of PEG-PU(SS)-PEG micellar dispersions before and after 6 h of incubation with GSH

    图  7  负载有NR的PEG-PU(SS)-PEG组装体分散液在加入GSH后 (a) 荧光光谱随时间的变化以及 (b)在614 nm处的归一化荧光强度随时间的变化

    Figure  7.  (a) Evolution of the fluorescence emission spectra and (b) evolution of the normalized fluorescence intensity at 614 nm recorded for NR-loaded PEG-PU(SS)-PEG micellar dispersions upon addition of GSH

    图  8  姜黄素溶液的(a)荧光光谱和(b)荧光强度-浓度标准曲线;负载姜黄素的PEG-PU(SS)-PEG组装体的(c)荧光发射光谱和(d)在有GSH或无GSH存在情况下的药物释放曲线

    Figure  8.  (a) Fluorescence emission spectra and (b) fluorescence intensity-concentration standard calibration curves of curcumin solution; (c) Fluorescence emission spectrum and (d) release profile of curcumin from curcumin-loaded PEG-PU(SS)-PEG nanocarriers in the absence and presence of GSH, respectively

  • [1] ALCONCEL S N S, BAAS A S, MAYNARD H D. FDA-approved poly(ethylene glycol)-protein conjugate drugs [J]. Polymer Chemistry,2011,2(7):1442-1448. doi: 10.1039/c1py00034a
    [2] EKLADIOUS I, COLSON Y L, GRINSTAFF M W. Polymer-drug conjugate therapeutics: Advances, insights and prospects [J]. Nature Reviews Drug Discovery,2019,18(4):273-294. doi: 10.1038/s41573-018-0005-0
    [3] MILLA P, DOSIO F, CATTEL L. PEGylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery [J]. Current Drug Metabolism,2012,13(1):105-119. doi: 10.2174/138920012798356934
    [4] MATSUMURA Y, MAEDA H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs [J]. Cancer Research,1986,46(12):6387-6392.
    [5] MAEDA H, WU J, SAWA T, MATSUMURA Y, HORI K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review [J]. Journal of Controlled Release,2000,65(1):271-284.
    [6] MAEDA H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity [J]. Advanced Drug Delivery Reviews,2015,91(30):3-6.
    [7] SHI Y, MEEL R V D, CHEN X Y, LAMMERS T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy [J]. Theranostics,2020,10(17):7921-7924. doi: 10.7150/thno.49577
    [8] PARK C, KIM H, KIM S, KIM C. Enzyme responsive nanocontainers with cyclodextrin gatekeepers [J]. Journal of the American Chemical Society,2009,131(46):16614-16615. doi: 10.1021/ja9061085
    [9] MORI T, BEPPU S, BERBER M R, MORI H, MAKIMURA T, TSUKAMOTO A, MINAGAWA K, HIRANO T, TANAKA M, NIIDOME T, KATAYAMA Y, HIRANO T, MAEDA Y. Design of temperature-responsive polymers with enhanced hysteresis: α, α-Disubstituted vinyl polymers [J]. Langmuir,2010,26(12):9224-9232. doi: 10.1021/la100020t
    [10] KAMETA N, TANAKA A, AKIYAMA H, MINAMIKAWA H, MASUDA M, SHIMIZU T. Photoresponsive soft nanotubes for controlled guest release [J]. Chemistry,2011,17(19):5251-5255. doi: 10.1002/chem.201100179
    [11] 张名扬, 程健, 胡进明. 一氧化碳高分子递送载体研究进展 [J]. 功能高分子学报,2020,33(5):421-432.

    ZHANG M Y, CHENG J, HU J M. Recent advances on macromolecular nanovectors for carbon monoxide delivery [J]. Journal of Functional Polymers,2020,33(5):421-432.
    [12] TAN J J, DENG Z Y, SONG C Z, XU J, ZHANG Y B, YU Y, HU J M, LIU S Y. Coordinating external and built-in triggers for tunable degradation of polymeric nanoparticles via cycle amplification [J]. Journal of the American Chemical Society,2021,143(34):13738-13748. doi: 10.1021/jacs.1c05617
    [13] LIU L, LUAN S J, ZHANG C L, WANG R, ZHANG Y N, ZHANG M Y, SHENG Q L, HAN G, WANG T S, SONG S Y. Encapsulation and pH-responsive release of bortezomib by dopamine grafted hyaluronate nanogels [J]. International Journal of Biological Macromolecules,2021,183(31):369-378.
    [14] SUCH G K, YAN Y, JOHNSTON A P, GUNAWAN S T, CARUSO F. Interfacing materials science and biology for drug carrier design [J]. Advanced Functional Materials,2015,27(14):2278-2297.
    [15] 王磊, 龚飞荣, 刘峰, 张伟安. 一种还原响应性紫杉醇胶束的制备与性能 [J]. 功能高分子学报,2019,32(1):71-79.

    WANG L, GONG F R, LIU F, ZHANG W A. Preparation and properties of redox-responsive paclitaxel micelle [J]. Journal of Functional Polymers,2019,32(1):71-79.
    [16] DENG Z Y, LIU S Y. Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles [J]. Journal of Controlled Release,2020,326(10):276-296.
    [17] DENG Z Y, HU J M, LIU S Y. Disulfide-based self-immolative linkers and functional bioconjugates for biological applications [J]. Macromolecular Rapid Communications,2020,41(1):1900531. doi: 10.1002/marc.201900531
    [18] 谌康谧, 姚跃君, 郑鸿浩, 高长有. 基于还原响应性的生物可降解不饱和聚氨酯的合成及其性能研究 [J]. 高分子学报,2019,50(6):623-632. doi: 10.11777/j.issn1000-3304.2019.18275

    SHEN K M, YAO Y Z, ZHENG H H, GAO C Y. Synthesis and properties of biodegradable unsaturated polyurethanes with reductive responsiveness [J]. Acta Polymerica Sinica,2019,50(6):623-632. doi: 10.11777/j.issn1000-3304.2019.18275
    [19] 解洁奇, 姚跃君, 高长有. 活性氧响应性可降解不饱和聚氨酯的合成及其性能研究 [J]. 高分子学报,2021,52(8):987-995. doi: 10.11777/j.issn1000-3304.2021.21052

    XIE J Q, YAO Y J, GAO C Y. Synthesis and properties of ROS-responsive biodegradable polyurethanes with unsaturated double bonds [J]. Acta Polymerica Sinica,2021,52(8):987-995. doi: 10.11777/j.issn1000-3304.2021.21052
    [20] CHIEN Y C, CHUANG W T, JENG U S, HSU S H. Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers [J]. ACS Applied Materials & Interfaces,2017,9(6):5419-5429.
    [21] GUELCHER S A. Biodegradable polyurethanes: Synthesis and applications in regenerative medicine [J]. Tissue Engineering Part B:Reviews,2008,14(1):3-17. doi: 10.1089/teb.2007.0133
    [22] GAJBHIYE K R, CHAUDHARI B P, POKHARKAR V B, PAWAR A, GAJBHIYE V. Stimuli-responsive biodegradable polyurethane nano-constructs as a potential triggered drug delivery vehicle for cancer therapy [J]. International Journal of Pharmaceutics,2020,588(15):119781.
    [23] GHAFFARI S B, SARRAFZADEH M H, SALAMI M, KHORRAMIZADEH M R. A pH-sensitive delivery system based on N-succinyl chitosan-ZnO nanoparticles for improving antibacterial and anticancer activities of curcumin [J]. International Journal of Biological Macromolecules,2020,151(15):428-440.
    [24] WEGIEL L A, ZHAO Y H, MAUER L J, EDGAR K J, TAYLOR L S. Curcumin amorphous solid dispersions: The influence of intra and intermolecular bonding on physical stability [J]. Pharmaceutical Development and Technology,2014,19(8):976-986. doi: 10.3109/10837450.2013.846374
    [25] TARRAHI R, KHATAEE A, KARIMI A, GOLIZADEH M, EBADI FARD AZAR F. Development of a cellulose-based scaffold for sustained delivery of curcumin [J]. International Journal of Biological Macromolecules,2021,183(31):132-144.
    [26] UDENI G S, CHING Y C, CHENG H C. Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel [J]. Polymers,2017,9(2):64.
  • 加载中
图(8)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  19
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 网络出版日期:  2022-06-25
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回