高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梧桐果壳衍生硬碳用作钠离子电池负极材料

钟家宝 李瑀 王玲 封伟

钟家宝, 李 瑀, 王 玲, 等. 梧桐果壳衍生硬碳用作钠离子电池负极材料[J]. 功能高分子学报,2022,35(6):1-9 doi: 10.14133/j.cnki.1008-9357.20220401001
引用本文: 钟家宝, 李 瑀, 王 玲, 等. 梧桐果壳衍生硬碳用作钠离子电池负极材料[J]. 功能高分子学报,2022,35(6):1-9 doi: 10.14133/j.cnki.1008-9357.20220401001
ZHONG Jiabao, LI Yu, WANG Ling, FENG Wei. Sycamore Husk-Derived Hard Carbon as Anode Material for Sodium-Ion Batteries[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20220401001
Citation: ZHONG Jiabao, LI Yu, WANG Ling, FENG Wei. Sycamore Husk-Derived Hard Carbon as Anode Material for Sodium-Ion Batteries[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20220401001

梧桐果壳衍生硬碳用作钠离子电池负极材料

doi: 10.14133/j.cnki.1008-9357.20220401001
基金项目: 国家电网总部科技项目(5455 DW190009)
详细信息
    作者简介:

    钟家宝(1996—),男,江西赣州人,硕士,主要研究方向为钠离子电池硬碳负极材料。E-mail:1846288257@qq.com

    通讯作者:

    封 伟,E-mail:weifeng@tju.edu.cn

  • 中图分类号: TM912.9

Sycamore Husk-Derived Hard Carbon as Anode Material for Sodium-Ion Batteries

  • 摘要: 采用天然廉价的梧桐果壳作为硬碳前驱体,经过一系列的洗涤、干燥、研磨和除杂,成功制备了在不同碳化温度下的梧桐果壳衍生硬碳。通过扫描电镜、高分辨率透射电镜、X射线衍射、拉曼光谱、等温氮气吸附探究了温度对材料的表面形貌、物相结构以及孔径分布的影响;通过恒电流充放电、循环伏安和交流阻抗测试考察了材料的电化学性能。结果表明,随着碳化温度的升高,梧桐果壳衍生硬碳的比表面积下降、孔洞减少,石墨化作用导致层间距下降。当碳化温度为1000 ℃时,硬碳材料的比表面积为4 m2/g,首圈库仑效率高达 73%,而首次充放电容量分别为 290 mAh/g和 400 mAh/g。在50 mA/g电流密度下充放电100圈后,放电比容量保持在240 mAh/g,钠离子扩散系数达到10−8 cm2/s,并且在大倍率充放电过程中保持优良的倍率性能。

     

  • 图  1  WTHC的制备示意图

    Figure  1.  Schematic diagram of preparation of WTHC

    图  2  WT的热重曲线

    Figure  2.  TG curve of WT

    图  3  样品的(a,b,c)扫描电镜照片和(d,e,f)高分辨率透射电镜照片(插图为选区电子衍射照片)

    Figure  3.  (a, b, c) SEM images and (d, e, f) HR-TEM images of samples (The insets are the corresponding selected area electron diffraction pattern)

    图  4  WTHC的(a)XRD 谱图和(b)Raman谱图

    Figure  4.  (a) XRD patterns and (b) Raman spectra of WTHC

    图  5  WTHC的(a)N2吸附-脱附等温曲线和(b)相应孔径分布

    Figure  5.  (a) N2 adsorption-desorption isotherms and (b) pore size distributions of WTHC

    图  6  WTHC的(a,b,c)循环伏安曲线和(d,e,f)前3圈充放电曲线

    Figure  6.  (a, b,c) CV curves and (d, e, f) the galvanostaic charge-discharge curves of WTHC in the first three cycles

    图  7  WTHC电极(a)在50 mA/g电流密度下的循环性能和(b)不同电流密度下的倍率性能

    Figure  7.  (a) Cycling performances at the current density of 50 mA/g and (b) rate capabilities at different current densities of WTHC electrodes

    图  8  WTHC恒电流滴定时(a)放电和(b)充电过程电压-时间曲线; (c)充电和(d)放电过程Na +的表观扩散系数

    Figure  8.  Voltage-time curves of (a) discharging and (b) charging process of WTHC during galvanostatic titration; Na+ apparent diffusion coefficient during (c) charging and (d) discharging processes

    图  9  循环前WTHC电极的EIS曲线

    Figure  9.  EIS curves of WTHC before cycling

  • [1] LUO W, FENG Y Y, QIN C Q, LI M, CAO C, LI S P, LONG P, LIU E Z, HU W P, YOSHINO K, FENG W. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds [J]. Nanoscale,2015,7(39):16214-16221. doi: 10.1039/C5NR03558A
    [2] GUNEY M S. Solar power and application methods [J]. Renewable & Sustainable Energy Reviews,2016,57:776-785.
    [3] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414(6861):359-367. doi: 10.1038/35104644
    [4] 陈亚炜, 牛树章, 潘郑泽, 吕伟. 碳材料功能化设计及其在锂硫电池中的研究进展 [J]. 中国材料进展,2016,35(12):905-912.

    CHEN Y W, NIU S Z, PAN Z Z, LV W. Functional design of carbon materials and their research progress in lithium-sulfur batteries [J]. Materials China,2016,35(12):905-912.
    [5] ROBERTS S, KENDRICK E. The re-emergence of sodium ion batteries: Testing, processing, and manufacturability [J]. Nanotechnology Science and Applications,2018,11:23-33. doi: 10.2147/NSA.S146365
    [6] HIRSH H S, LI Y X, TAN D, ZHANG M H, ZHAO E Y, MENG Y S. Sodium-ion batteries paving the way for grid energy storage [J]. Advanced Energy Materials,2020,10(32):2001274. doi: 10.1002/aenm.202001274
    [7] CAO B, LI X F. Recent progress on carbon-based anode materials for Na-ion batteries [J]. Acta Physico-Chimica Sinica,2020,36(5):1905003.
    [8] 李瑀, 付浩宇, 封伟. 合成聚合物衍生硬碳在钠离子电池中的研究进展 [J]. 天津大学学报(自然科学与工程技术版),2022,55(1):11-23.

    LI Y, FU H Y, FENG W. Research progress of synthetic polymer-derived hard carbons in sodium-ion batteries [J]. Journal of Tianjin University (Science and Technology),2022,55(1):11-23.
    [9] ALLAN P K, GRIFFIN J M, DARWICHE A, BORKIEWICZ O J, WIADEREK K M, CHAPMAN K W, MORRIS A J, CHUPAS P J, MONCONDUIT L, GREY C P. Tracking sodium-antimonide phase transformations in sodium-ion anodes: Insights from operando pair distribution function analysis and solid-state NMR spectroscopy [J]. Journal of the American Chemical Society,2016,138(7):2352-2365. doi: 10.1021/jacs.5b13273
    [10] ZHANG B M, ZHANG C B, ZHANG H, HU Y X, ZHANG Y S, LU C, LI J, KONG L B, LIU M C. Three-dimensional honeycomb-like MoSe2/rGO as high performance sodium ions storage materials with long cycle stability and high rate capability [J]. Applied Surface Science,2020,513:145826. doi: 10.1016/j.apsusc.2020.145826
    [11] ZHAO L, ZHAO J, HU Y S, LI H, ZHOU Z B. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery [J]. Advanced Energy Materials,2012,2(8):962-965. doi: 10.1002/aenm.201200166
    [12] GHIMBEU C M, GORKA J, SIMONE V, SIMONIN L, MARTINET S, VIX-GUTERL C. Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects [J]. Nano Energy,2018,44:327-335. doi: 10.1016/j.nanoen.2017.12.013
    [13] HASEGAWA G, KANAMORI K, KANNARI N, OZAKI J, NAKANISHI K, ABE T. Hard carbon anodes for Na-ion batteries: Toward a practical use [J]. ChemElectroChem,2015,2(12):1917-1920. doi: 10.1002/celc.201500412
    [14] 王华燕, 陈慧鑫, 张桥保, 张力. 生物质碳材料作为钠/钾离子电池负极材料的研究进展 [J]. 中国材料进展,2021,40(8):596-606.

    WANG H Y, CHEN H X, ZHANG Q B, ZHANG L. Research progress of biomass carbon materials as anode materials for sodium/potassium ion batteries [J]. Materials China,2021,40(8):596-606.
    [15] RATH P C, PATRA J, HUANG H T, BRESSER D, WU T Y, CHANG J K. Carbonaceous anodes derived from sugarcane bagasse for sodium-ion batteries [J]. ChemSusChem,2019,12(10):2302-2309. doi: 10.1002/cssc.201900319
    [16] WANG K, JIN Y, SUN S, HUANG Y, PENG J, LUO J, ZHANG Q, QIU Y, FANG C, HAN J. Low-cost and high-performance hard carbon anode materials for sodium-ion batteries [J]. ACS Omega,2017,2(4):1687-1695. doi: 10.1021/acsomega.7b00259
    [17] DU Y F, SUN G H, LI Y, CHENG J Y, CHEN C M. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity [J]. Carbon,2021,178(8):243-255.
    [18] LI Y, HU Y S, TITIRICI M M, CHEN L, HUANG X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries [J]. Advanced Energy Materials,2016,6(18):1600659. doi: 10.1002/aenm.201600659
    [19] DAHBI M, KISO M, KUBOTA K, HORIBA T, CHAFIK T, HIDA K, MATSUYAMA T, KOMABA S. Synthesis of hard carbon from argan shells for Na-ion batteries [J]. Journal of Materials Chemistry A,2017,5(20):9917-9928. doi: 10.1039/C7TA01394A
    [20] SUN Y, XIAO H, LI H, HE Y, ZHANG Y, HU Y, JU Z, ZHUANG Q, CUI Y. Nitrogen/oxygen co-doped hierarchically porous carbon for high-performance potassium storage [J]. Chemistry-A European Journal,2019,25(30):7359-7365. doi: 10.1002/chem.201900448
    [21] LUO Z, WANG X, CHEN D, CHANG Q, HUANG J. Ultrafast Li/fluorinated graphene primary batteries with high energy density and power density [J]. ACS Applied Materials & Interfaces,2021,13(16):18809-18820.
  • 加载中
图(9)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 网络出版日期:  2022-05-06

目录

    /

    返回文章
    返回