高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能高分子材料在锌负极保护中的应用

张馨壬 曲昌镇 苏延霞 张秀海 刘兴蕊 邱玉倩 王洪强 徐飞

张馨壬, 曲昌镇, 苏延霞, 张秀海, 刘兴蕊, 邱玉倩, 王洪强, 徐 飞. 功能高分子材料在锌负极保护中的应用[J]. 功能高分子学报,2022,35(6):493-508 doi: 10.14133/j.cnki.1008-9357.20220103001
引用本文: 张馨壬, 曲昌镇, 苏延霞, 张秀海, 刘兴蕊, 邱玉倩, 王洪强, 徐 飞. 功能高分子材料在锌负极保护中的应用[J]. 功能高分子学报,2022,35(6):493-508 doi: 10.14133/j.cnki.1008-9357.20220103001
ZHANG Xinren, QU Changzhen, SU Yanxia, ZHANG Xiuhai, LIU Xingrui, QIU Yuqian, WANG Hongqiang, XU Fei. Recent Progress of Functional Polymers for Zinc Anodes Protection[J]. Journal of Functional Polymers, 2022, 35(6): 493-508. doi: 10.14133/j.cnki.1008-9357.20220103001
Citation: ZHANG Xinren, QU Changzhen, SU Yanxia, ZHANG Xiuhai, LIU Xingrui, QIU Yuqian, WANG Hongqiang, XU Fei. Recent Progress of Functional Polymers for Zinc Anodes Protection[J]. Journal of Functional Polymers, 2022, 35(6): 493-508. doi: 10.14133/j.cnki.1008-9357.20220103001

功能高分子材料在锌负极保护中的应用

doi: 10.14133/j.cnki.1008-9357.20220103001
基金项目: 国家自然科学基金(51972270); 陕西省自然科学基金(2020JZ-07);陕西省重点研发项目(2019TSLGY07-03);凝固技术国家重点实验室研究基金资助项目(2021-TS-03)
详细信息
    作者简介:

    张馨壬(1996—),女,陕西咸阳人,博士生,主要研究方向为锌离子电池。E-mail:xrzhang1996@foxmail.com

    通讯作者:

    张秀海,E-mail:xhzhang@nwpu.edu.cn

    徐 飞,E-mail:feixu@nwpu.edu.cn

  • 中图分类号: O63

Recent Progress of Functional Polymers for Zinc Anodes Protection

  • 摘要: 水系锌离子电池因安全性高、成本低廉、环境友好等优点,在大规模储能等领域展现出广阔的应用前景。然而,锌负极与电解液界面处存在严重的枝晶生长和副反应等问题,严重制约了其实际应用。功能高分子材料具有丰富可调的功能基团、快速传导锌离子的能力、优异的柔韧性、良好的成膜与黏附性等优势,是应用于锌负极保护的一类重要材料。本文综述了功能高分子材料应用于锌负极保护的最新研究进展,并对其未来的发展进行了展望。

     

  • 图  1  AZIBs装置示意图

    Figure  1.  Schematic illustration of AZIBs

    图  2  功能高分子材料在锌负极保护中的应用

    Figure  2.  Applications of functional polymers in Zn anode protection

    图  3  锌负极存在锌枝晶生长、析氢反应以及腐蚀与钝化等问题示意图

    Figure  3.  Schematic diagram of problems existing in zinc anode, including Zn dendrite growth, hydrogen evolution reaction, corrosion and passivation

    图  4  (a)锌和PVB@Zn电极在剥离/沉积过程中形貌演变示意图;(b)锌(上)和PVB@Zn(下)电极的原位光学显微镜图像;(c)CE曲线;(d)锌和PVB@Zn组装的对称电池在电流密度0.5 mA/ cm2和面积容量0.5 mA·h/cm2条件下的长循环性能图[44];(e)PI保护层防腐机理,PI结构示意图以及对称电池在电流密度4 mA/cm2和面积容量2 mA·h/cm2条件下的循环性能图;(f)PI的静电势以及循环后锌电极的俄歇电子能谱[46]

    Figure  4.  (a) Schematic illustration of morphology evolution during stripping/plating processes of bare Zn and PVB@Zn; (b) In situ optical microscope images of bare Zn (up) and PVB@Zn (down); (c) CE curves; (d) Cycling stability of Zn plating/stripping in both bare Zn and PVB@Zn symmetric cells at current density of 0.5 mA/cm2 and area capacity of 0.5 mA·h/cm2[44]; (e) Schematic of the anti-corrosion mechanism by a PI layer, structure of polyimide and cycling performance of symmetric cells at current density of 4 mA/cm2 and area capacity of 2 mA·h/cm2; (f) Electrostatic potential of the PI and Zn LMM Auger spectra of PI-Zn after cycling[46]

    图  5  (a)α-PVDF和β-PVDF涂层合成工艺示意图;(b)α-PVDF@Zn、β-PVDF@Zn和裸锌组装的对称电池在电流密度0.25 mA/cm2和面积容量0.05 mA·h/cm2条件下的长循环性能曲线[45];(c)裸锌和PS涂层锌负极表面的结构和副反应示意图;(d)裸锌和PS涂层锌在ZnSO4水溶液中的接触角分析;(e)裸锌和PS涂层锌组装的对称电池在电流密度0.5 mA/cm2和面积容量0.25 mA·h/cm2条件下的长循环示意图[35]

    Figure  5.  (a) Schematic illustration of α-PVDF and β-PVDF coating synthesis processes; (b) Long-term profiles of α-PVDF@Zn, β-PVDF@Zn and bare Zn symmetrical cells at 0.25 mA/cm2 and area capacity 0.05 mA·h/cm2[45]; (c) Schematic illustration of the structure and side reactions on the surface of bare Zn and PS-coated Zn anodes; (d) Contact angle analysis of the aqueous ZnSO4 electrolyte on bare Zn and PS-coated Zn; (e) Charge-discharge profiles of symmetric cells based on bare Zn and PS-coated Zn anodes at 0.5 mA/cm2 and 0.25 mA·h/cm2[35]

    图  6  (a)锌的可逆利用示意图;(b)NH4V4O10//Zn-PG, NH4V4O10//Zn全电池在0.1 A/g条件下的循环性能图;(c)锌和PG涂层锌组装的对称电池在电流密度5 mA/cm2和面积容量10.2 mA·h/cm2条件下的循环示意图[37]

    Figure  6.  (a) Schematic diagrams of the reversible Zn utilization; (b) Cycling performance of NH4V4O10//Zn-PG, NH4V4O10//Zn full cells at 0.1 A/g; (c) Cycling performance of Zn and Zn-PG symmetric cells at current density of 5 mA/cm2 and area capacity of 10.2 mA·h/cm2[37]

    图  7  (a)锌沉积示意图;(b)在−150 mV过电位下,裸锌和PA涂层的锌负极的计时电流曲线;(c)在电流密度0.5 mA/cm2条件下,裸锌和PA涂层的锌负极的线性极化曲线;(d)锌和PA涂层锌所组装的对称电池在电流密度10 mA/cm2和10 mA·h/cm2条件下的长循环性能图(前75圈)[41]

    Figure  7.  (a) Schematic diagrams for Zn deposition; (b) Chronoamperograms of bare Zn and PA coated Zn at a −150 mV overpotential; (c) Linear polarization curves showing the corrosion on bare Zn and PA coated Zn at current density of 0.5 mA/cm2; (d) Cycling performance of Zn and PA coated Zn symmetrical cells at current density of 10 mA/cm2 and area capacity of 10 mA·h/cm2 (the first 75 cycles)[41]

    图  8  (a)COFs结构和形成“DIP”系列COFs的组成;(b)DIP-D涂层和裸锌组装的对称电池在电流密度1 mA/cm2和面积容量1 mA·h/cm2条件下的循环性能图;(c)MnO2//Zn, MnO2//DIP-D-Zn全电池在2 A/g条件下的循环性能图[47]

    Figure  8.  (a) Structures of COFs and of components to form COFs of the DIP series; (b) Cycling performance of symmetric plating/stripping tests on DIP-D-coated and bare Zn at current density of 1 mA/cm2 and area capacity of 1 mA·h/cm2; (c) Cycling performance of MnO2//Zn, MnO2//DIP-D-Zn full cells at 2 A/g[47]

    图  9  (a)FCOF@Zn薄膜的物理化学结构对枝晶的抑制;(b)锌负极的择优取向示意图(上),裸钛(左下)和FCOF薄膜(右下)在(002)平面极点图;(c)沉积后的FCOF膜和裸钛表面的广角X射线散射结果;(d)FCOF@Zn与裸锌表面沉积机理比较;(e)FCOF@Zn和裸锌组装的对称电池在电流密度40 mA/cm2和面积容量1 mA·h/cm2条件下的长循环示意图;(f)MnO2//Zn, MnO2//FCOF@Zn全电池在电流密度4 mA/cm2条件下的循环性能图[49]

    Figure  9.  (a) The physicochemical structure of the FCOF film, showing suppression of dendrites; (b) Schematic illustration of preferred orientations of Zn crystal plane, (002) plane pole figures of the Zn deposits on bare Ti (left) and underneath FCOF film (right); (c) The wide-angle X-ray scattering results of Zn deposits underneath FCOF film and on bare Ti; (d) Mechanism comparison of the deposition processes for FCOF@Zn and bare Zn surfaces; (e) Cycling performances of symmetric plating/stripping tests on FCOF@Zn and bare Zn at current density of 40 mA/cm2 and area capacity of 1 mA·h/cm2; (f) MnO2//Zn, MnO2//FCOF@Zn full cells cyclic performances at current density of 4 mA/cm2[49]

    图  10  (a)Nafion-Zn-X复合材料的有机-无机界面以及Nafion、Nafion-Zn-X保护层中的离子运输机制;(b)Zn-Nafion-Zn-X膜的SO42−渗透率;(c)Zn2+在水中或不同含水量Nafion中的脱溶能值;(d)电流密度0.2 mA/cm2和面积容量2 mA·h/cm2条件下Zn,Zn@Nafion,Zn@Nafion-Zn-X电极的CE性能图;(e)Zn@Nafion-Zn-X对称电池在电流密度1 mA/cm2和面积容量10 mA·h/cm2条件下的循环性能图[56];(f)无机-有机MLD铝酸盐涂层在循环过程中对锌金属负极的影响示意图;(g)不同涂层厚度的Zn电极在电流密度1 mA/cm2和面积容量1 mA·h/cm2条件下的循环性能图[38]

    Figure  10.  (a) Proposed organic-inorganic interface of Nafion-Zn-X composites and ion transport mechanisms in Nafion and Nafion-Zn-X protective layers; (b) SO42− permeability of Zn-Nafion-Zn-X membranes; (c) Desolvation energy values of Zn2+ in water or in Nafion with various contents of H2O; (d) CE performances of Zn, Zn@Nafion, Zn@Nafion-Zn-X anode at current density of 0.2 mA/cm2 and area capacity 2 mA·h/cm2; (e) Cycling performance of Zn@Nafion-Zn-X symmetrical cells at current density of 1 mA/cm2 and area capacity 10 mA·h/cm2[56]; (f) Schematic illustration showing the effect of inorganic-organic MLD alucone coating on Zn metal anodes when cycling; (g) Cycling performance of symmetrical Zn cells with various thickness at current density of 1 mA/cm2 and area capacity of 1 mA·h/cm2[38]

    图  11  (a)界面涂层及保护的原理;(b)B―O键动态变化过程;(c)离子浓度和电流密度分布的理论模拟计算;(d)电流密度0.5 mA/cm2和面积容量0.5 mA·h/cm2下的库仑效率;(e)对称电池在电流密度10 mA/cm2和面积容量0 mA·h/cm2条件下的循环性能图;(f)Zn//MnO2电池在1 C下的长循环性能[57]

    Figure  11.  (a) Schematic diagram of interface coating and protective mechanism; (b) B−O bond dynamic change process; (c) Theoretical simulation of distribution of ion concentration and current density; (d) CE curves at current density of 0.5 mA/cm2 and area capacity 0.5 mA·h/cm2; (e) Cycling performance of different Zn metal anodes at current density of 10 mA/cm2 and area capacity 10 mA·h/cm2; (f) Long cyclic performances of the Zn//MnO2 cells at 1 C[57]

    图  12  不同功能高分子锌负极保护层的参数比较

    Figure  12.  The comparison of parameters of different functional polymers Zn anode protective coating

    表  1  功能高分子材料应用于锌金属负极保护中的电化学性能

    Table  1.   The electrochemical performance of functional polymers in Zn metal anodes protection

    MaterialCurrent density/
    (mA·cm−2)
    Capacity/
    (mA·h·cm−2)
    Thickness of
    coating layer
    ElectrolyteThickness of
    zinc/μm
    Cyclic life/hCEDODCPC/
    (A·h·cm−2)
    Reference
    PA-Zn 10 10 40 μm 2 mol/L ZnSO4 20 150 95.12% 85% 0.75 [41]
    PVB@Zn 0.5 0.5 1 μm 1 mol/L ZnSO4 / 2200 99.4% / 0.55 [44]
    Zn@PBI 10 1 10 μm 1 mol/L ZnSO4 / 300 / / 1.5 [48]
    PAM/PVP-Zn 0.2 0.1 14.74 μm 3 mol/L Zn(CF3SO3)2 / 2220 98.4% / 0.222 [42]
    AEC-Zn 8.85 8.85 5 μm 2 mol/L ZnSO4 25 250 99.4% 60% 1.10625 [43]
    β-PVDF 0.25 0.05 200 nm 2 mol/L ZnSO4 / 2000 96.5% / 0.25 [45]
    PS-coated Zn 0.5 0.25 6.5 nm 1 mol/L ZnSO4 100 1200 / / 0.3 [35]
    DIP-D-Zn 1 1 50~70 nm 2 mol/L ZnSO4 / 400 99.95% / 0.2 [47]
    FCOF@Zn 40 1 100 nm 2 mol/L ZnSO4 / 750 97.2% / 15 [49]
    PI-Zn 4 2 570 nm 2 mol/L ZnSO4 / 300 99.5% 85% 0.6 [46]
    PEO-Polymer Glue 5 10.5 150 μm 2 mol/L ZnSO4 20 1000 99.6% 90% 2.5 [37]
    Nafion-Zn-X 1 10 100 μm 2 mol/L ZnSO4 300 1000 97% / 0.5 [56]
    Alucone@Zn 3 1 12 nm 3 mol/L Zn(CF3SO3)2 200 780 98.6% / 1.17 [38]
    PDMS/TiO2-x 10 10 / 3 mol/L ZnSO4 / 300 99.4% / 1.5 [57]
    下载: 导出CSV
  • [1] BLANC L E, KUNDU D, NAZAR L F. Scientific challenges for the implementation of Zn-ion batteries [J]. Joule,2020,4(4):771-799. doi: 10.1016/j.joule.2020.03.002
    [2] ZHENG J X, ZHAO Q, TANG T, YIN J F, QUILTY C D, RENDEROS G D, LIU X T, DENG Y, WANG L, BOCK D C, JAYE C, ZHANG D H, TAKEUCHI E S, TAKEUCHI K J, MARSCHILOK A C, ARCHER L A. Reversible epitaxial electrodeposition of metals in battery anodes [J]. Science,2020,366(6465):645-648.
    [3] WANG Z, HUANG J, GUO Z, DONG X, LIU Y, WANG Y, XIA Y. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes [J]. Joule,2019,3(5):1289-1300. doi: 10.1016/j.joule.2019.02.012
    [4] ZHANG X, CHEN C, GAO S, LUO X, MO Y, CAO B, CHEN Y. Graphene as regulating zinc deposition layer for long-life zinc ion hybrid supercapacitors [J]. Journal of Energy Storage,2021,42:103037. doi: 10.1016/j.est.2021.103037
    [5] 庄容, 许潇洒, 曲昌镇, 徐顺奇, 于涛, 王洪强, 徐飞. 多孔聚合物在锂金属负极保护中的研究进展 [J]. 化学学报,2021,79(4):378-387. doi: 10.6023/A20100462

    ZHUANG R, XU X S, QU C Z, XU S Q, YU T, WANG H Q, XU F. Recent progress of porous polymers for lithium metal anodes protection [J]. Acta Chimica Sinica,2021,79(4):378-387. doi: 10.6023/A20100462
    [6] CAO L, LI D, POLLARD T, DENG T, ZHANG B, YANG C, CHEN L, VATAMANU J, HU E, HOURWITZ M J, MA L, DING M, LI Q, HOU S, GASKELL K, FOURKAS J T, YANG X Q, XU K, BORODIN O, WANG C. Fluorinated interphase enables reversible aqueous zinc battery chemistries [J]. Nature Nanotechnology,2021,16(8):902-910. doi: 10.1038/s41565-021-00905-4
    [7] CAO L, LI D, HU E, XU J, DENG T, MA L, WANG Y, YANG X Q, WANG C. Solvation structure design for aqueous Zn metal matteries [J]. Journal of the American Chemical Society,2020,142(51):21404-21409. doi: 10.1021/jacs.0c09794
    [8] CHEN C, LIANG Q, MO Y, ZHANG X, LUO X, WU J, HU P, CHEN Y. Uniform Zn deposition achieved by conductive carbon additive for Zn anode in zinc-ion hybrid supercapacitors [J]. Energy Technology,2021,9(8):2100297. doi: 10.1002/ente.202100297
    [9] DU M, MIAO Z, LI H, SANG Y, LIU H, WANG S. Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries [J]. Journal of Materials Chemistry A,2021,9(35):19245-19281. doi: 10.1039/D1TA03620C
    [10] WU B, ZHANG G, YAN M, XIONG T, HE P, HE L, XU X, MAI L. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery [J]. Small,2018,14(13):1703850. doi: 10.1002/smll.201703850
    [11] LI Y, HUANG Z, KALAMBATE P K, ZHONG Y, HUANG Z, XIE M, SHEN Y, HUANG Y. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery [J]. Nano Energy,2019,60:752-759. doi: 10.1016/j.nanoen.2019.04.009
    [12] WANG Y, WANG C, NI Z, GU Y, WANG B, GUO Z, WANG Z, BIN D, MA J, WANG Y. Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries [J]. Advanced Materials,2020,32:e2000338. doi: 10.1002/adma.202000338
    [13] LI X, XIE X, LV R, NA B, WANG B, HE Y. Nanostructured polypyrrole composite aerogels for a rechargeable flexible aqueous Zn-ion battery with high rate capabilities [J]. Energy Technology,2019,7(5):1801092. doi: 10.1002/ente.201801092
    [14] ZHANG H, ZHONG L, XIE J, YANG F, LIU X, LU X. A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries [J]. Advanced Materials,2021,33(34):e2101857. doi: 10.1002/adma.202101857
    [15] ZHANG H, FANG Y, YANG F, LIU X, LU X. Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage [J]. Energy & Environmental Science,2020,13(8):2515-2523.
    [16] WU X, XU Y, ZHANG C, LEONARD D P, MARKIR A, LU J, JI X. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte [J]. Journal of the American Chemical Society,2019,141(15):6338-6344. doi: 10.1021/jacs.9b00617
    [17] YANG H, CHANG Z, QIAO Y, DENG H, MU X, HE P, ZHOU H. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries [J]. Angew Chem Int Ed Engl,2020,59(24):9377-9381. doi: 10.1002/anie.202001844
    [18] QIN R, WANG Y, ZHANG M, WANG Y, DING S, SONG A, YI H, YANG L, SONG Y, CUI Y, LIU J, WANG Z, LI S, ZHAO Q, PAN F. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries [J]. Nano Energy,2021,80:105478. doi: 10.1016/j.nanoen.2020.105478
    [19] ZHOU M, GUO S, LI J, LUO X, LIU Z, ZHANG T, CAO X, LONG M, LU B, PAN A, FANG G, ZHOU J, LIANG S. Surface-preferred crystal plane for a stable and reversible zinc anode [J]. Advanced Materials,2021,33(21):e2100187. doi: 10.1002/adma.202100187
    [20] LI Q, WANG Y, MO F, WANG D, LIANG G, ZHAO Y, YANG Q, HUANG Z, ZHI C. Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure [J]. Advanced Energy Materials,2021,11(14):2003931. doi: 10.1002/aenm.202003931
    [21] MA L, CHEN S, LI N, LIU Z, TANG Z, ZAPIEN J A, CHEN S, FAN J, ZHI C. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries [J]. Advanced Materials,2020,32(14):e1908121. doi: 10.1002/adma.201908121
    [22] CUI Y, ZHAO Q, WU X, WANG Z, QIN R, WANG Y, LIU M, SONG Y, QIAN G, SONG Z, YANG L, PAN F. Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode [J]. Energy Storage Materials,2020,27:1-8. doi: 10.1016/j.ensm.2020.01.003
    [23] YI Z, CHEN G, HOU F, WANG L, LIANG J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries [J]. Advanced Energy Materials,2020,11(1):2003065.
    [24] LI S, FU J, MIAO G, WANG S, ZHAO W, WU Z, ZHANG Y, YANG X. Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface [J]. Advanced Materials,2021,33(21):e2008424. doi: 10.1002/adma.202008424
    [25] HOU Z, GAO Y, TAN H, ZHANG B. Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation [J]. Nature Communications,2021,12(1):3083. doi: 10.1038/s41467-021-23352-0
    [26] ZHANG G, ZHANG X, LIU H, LI J, CHEN Y, DUAN H. 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries [J]. Advanced Energy Materials,2021,11(19):2003927. doi: 10.1002/aenm.202003927
    [27] YANG Y, LIU C, LV Z, YANG H, ZHANG Y, YE M, CHEN L, ZHAO J, LI C C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes [J]. Advanced Materials,2021,33(11):e2007388. doi: 10.1002/adma.202007388
    [28] HAN D, CUI C, ZHANG K, WANG Z, GAO J, GUO Y, ZHANG Z, WU S, YIN L, WENG Z, KANG F, YANG Q H. A non-flammable hydrous organic electrolyte for sustainable zinc batteries[J]. Nature Sustainability, 2022, 5: 205-213.
    [29] CAO Z, ZHU X, GAO S, XU D, WANG Z, YE Z, WANG L, CHEN B, LI L, YE M, SHEN J. Ultrastable zinc anode by simultaneously manipulating solvation sheath and inducing oriented deposition with PEG stability promoter [J]. Small,2022,18(6):e2103345.
    [30] ZENG X, MAO J, HAO J, LIU J, LIU S, WANG Z, WANG Y, ZHANG S, ZHENG T, LIU J, RAO P, GUO Z. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions [J]. Advanced Materials,2021,33(11):e2007416. doi: 10.1002/adma.202007416
    [31] YUAN L, HAO J, KAO C C, WU C, LIU H K, DOU S X, QIAO S Z. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries [J]. Energy & Environmental Science,2021,14(11):5669-5689.
    [32] MA L, SCHROEDER M A, POLLARD T P, BORODIN O, DING M S, SUN R, CAO L, HO J, BAKER D R, WANG C, XU K. Critical factors dictating reversibility of the zinc metal anode [J]. Energy & Environmental Materials,2020,3(4):516-521.
    [33] MA L, SCHROEDER M A, BORODIN O, POLLARD T P, DING M S, WANG C, XU K. Realizing high zinc reversibility in rechargeable batteries [J]. Nature Energy,2020,5(10):743-749. doi: 10.1038/s41560-020-0674-x
    [34] HOU Z, GAO Y, ZHOU R, ZHANG B. Unraveling the rate-dependent stability of metal anodes and its implication in designing cycling protocol [J]. Advanced Functional Materials,2021:2107584.
    [35] ZOU P, NYKYPANCHUK D, DOERK G, XIN H L. Hydrophobic molecule monolayer brush-tethered zinc anodes for aqueous zinc batteries [J]. ACS Applied Materials & Interfaces,2021:60092-60098.
    [36] HUANG C, ZHAO X, LIU S, HAO Y, TANG Q, HU A, LIU Z, CHEN X. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions [J]. Advanced Materials,2021,33(38):e2100445. doi: 10.1002/adma.202100445
    [37] JIAO Y, LI F, JIN X, LEI Q, LI L, WANG L, YE T, HE E, WANG J, CHEN H, LU J, GAO R, LI Q, JIANG C, LI J, HE G, LIAO M, ZHANG H, PARKIN I P, PENG H, ZHANG Y. Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-ion batteries [J]. Advanced Functional Materials,2021,31(49):2107652.
    [38] HE H, LIU J. Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes [J]. Journal of Materials Chemistry A,2020,8(42):22100-22110. doi: 10.1039/D0TA07232J
    [39] ZHENG J, DENG Y, YIN J, TANG T, GARCIA-MENDEZ R, ZHAO Q, ARCHER L A. Textured electrodes: Manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation [J]. Advanced Materials,2022,34(1):2106867.
    [40] DU Y, LIU C, LIU Y, HAN Q, CHI X, LIU Y. Carbon fiber micron film guided uniform plating/stripping of metals: A universal approach for highly stable metal batteries [J]. Electrochimica Acta,2020,339:135867. doi: 10.1016/j.electacta.2020.135867
    [41] ZHAO Z, ZHAO J, HU Z, LI J, LI J, ZHANG Y, WANG C, CUI G. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase [J]. Energy & Environmental Science,2019,12(6):1938-1949.
    [42] LI Z, DENG W, LI C, WANG W, ZHOU Z, LI Y, YUAN X, HU J, ZHANG M, ZHU J, TANG W, WANG X, LI R. Uniformizing the electric field distribution and ion migration during zinc plating/stripping via a binary polymer blend artificial interphase [J]. Journal of Materials Chemistry A,2020,8(34):17725-17731. doi: 10.1039/D0TA05253A
    [43] ZHAO R, YANG Y, LIU G, ZHU R, LONG Q. Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes [J]. Advanced Functional Materials,2020,31:2001867.
    [44] HAO J, LI X, ZHANG S, YANG F, ZENG X, ZHANG S, BO G, WANG C, GUO Z. Designing dendrite-free Zinc anodes for advanced aqueous zinc batteries [J]. Advanced Functional Materials,2020,30(30):2001263. doi: 10.1002/adfm.202001263
    [45] HIEU L T, SO S, KIM I T, HUR J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life [J]. Chemical Engineering Journal,2021,411:128584. doi: 10.1016/j.cej.2021.128584
    [46] ZHU M, HU J, LU Q, DONG H, KARNAUSHENKO D D, BECKER C, KARNAUSHENKO D, LI Y, TANG H, QU Z, GE J, SCHMIDT O G. A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery [J]. Advanced Materials,2021,33(8):e2007497. doi: 10.1002/adma.202007497
    [47] PARK J H, KWAK M J, HWANG C, KANG K N, LIU N, JANG J H, GRZYBOWSKI B A. Self-assembling films of covalent organic frameworks enable long-term, efficient cycling of zinc-ion batteries [J]. Advanced Materials,2021,33(34):e2101726. doi: 10.1002/adma.202101726
    [48] JIAN Q, WAN Y, SUN J, WU M, ZHAO T. A dendrite-free zinc anode for rechargeable aqueous batteries [J]. Journal of Materials Chemistry A,2020,8:20175-20184. doi: 10.1039/D0TA07348B
    [49] ZHAO Z, WANG R, PENG C, CHEN W, WU T, HU B, WENG W, YAO Y, ZENG J, CHEN Z, LIU P, LIU Y, LI G, GUO J, LU H, GUO Z. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries [J]. Nature Communications,2021,12(1):6606. doi: 10.1038/s41467-021-26947-9
    [50] 徐飞, 杨书浩, 刘千惠, 李贺军, 魏秉庆, 王洪强. 共轭纳米孔聚合物在锂硫电池中的应用 [J]. 功能高分子学报,2018,31(4):285-298. doi: 10.14133/j.cnki.1008-9357.20180114001

    XU F, YANG S H, LIU Q H, LI H J, WEI B Q, WANG H Q. Application of conjugated nanoporous polymers for lithium-sulfur batteries [J]. Journal of Functional Polymers,2018,31(4):285-298. doi: 10.14133/j.cnki.1008-9357.20180114001
    [51] 徐飞. 多孔聚合物的纳米形貌设计与多功能集成研究进展 [J]. 功能高分子学报,2019,32(3):255-258. doi: 10.14133/j.cnki.1008-9357.20190314001

    XU F. Advances in the nanomorphology design and multifunction integration for porous polymers [J]. Journal of Functional Polymers,2019,32(3):255-258. doi: 10.14133/j.cnki.1008-9357.20190314001
    [52] 邱玉倩, 刘千惠, 韩浩杰, 于涛, 王洪强, 徐飞. 三嗪超交联聚苯乙烯基多孔聚合物的设计与制备 [J]. 功能高分子学报,2020,33(6):554-562. doi: 10.14133/j.cnki.1008-9357.20200520001

    QIU Y Q, LIU Q H, HAN H J, YU T, WANG H Q, XU F. Design and preparation of polystyrene-based porous polymers with triazine crosslinker [J]. Journal of Functional Polymers,2020,33(6):554-562. doi: 10.14133/j.cnki.1008-9357.20200520001
    [53] XU F, YANG S, CHEN X, LIU Q, LI H, WANG H, WEI B, JIANG D. Energy-storage covalent organic frameworks: Improving performance via engineering polysulfide chains on walls [J]. Chemical Science,2019,10(23):6001-6006. doi: 10.1039/C8SC04518F
    [54] CHANG Z, QIAO Y, DENG H, YANG H, HE P, ZHOU H. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery [J]. Joule,2020,4(8):1776-1789. doi: 10.1016/j.joule.2020.06.011
    [55] CHANG Z, QIAO Y, YANG H, DENG H, ZHU X, HE P, ZHOU H. Beyond the concentrated electrolyte: further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries [J]. Energy & Environmental Science,2020,13(11):4122-4131.
    [56] CUI Y, ZHAO Q, WU X, CHEN X, YANG J, WANG Y, QIN R, DING S, SONG Y, WU J, YANG K, WANG Z, MEI Z, SONG Z, WU H, JIANG Z, QIAN G, YANG L, PAN F. An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes [J]. Angewandte Chemie International Edition,2020,59(38):16594-16601. doi: 10.1002/anie.202005472
    [57] GUO Z, FAN L, ZHAO C, CHEN A, LIU N, ZHANG Y, ZHANG N. Dynamic and self-adapting interface coating for stable Zn metal anode [J]. Advanced Materials,2022,34(2):2105133.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  166
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-03
  • 录用日期:  2022-03-24
  • 网络出版日期:  2022-07-08
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回