高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子型超交联聚合物吸附罗丹明B

王科伟 午赵霞 刘慧君 郭永 崔晓娜 任斐 贾治芳

王科伟, 午赵霞, 刘慧君, 郭 永, 崔晓娜, 任 斐, 贾治芳. 离子型超交联聚合物吸附罗丹明B[J]. 功能高分子学报,2022,35(5):461-467 doi: 10.14133/j.cnki.1008-9357.20211123001
引用本文: 王科伟, 午赵霞, 刘慧君, 郭 永, 崔晓娜, 任 斐, 贾治芳. 离子型超交联聚合物吸附罗丹明B[J]. 功能高分子学报,2022,35(5):461-467 doi: 10.14133/j.cnki.1008-9357.20211123001
WANG Kewei, WU Zhaoxia, LIU Huijun, GUO Yong, CUI Xiaona, REN Fei, JIA Zhifang. Ionic Hypercrosslinked Polymer for Rhodamine B Adsorption[J]. Journal of Functional Polymers, 2022, 35(5): 461-467. doi: 10.14133/j.cnki.1008-9357.20211123001
Citation: WANG Kewei, WU Zhaoxia, LIU Huijun, GUO Yong, CUI Xiaona, REN Fei, JIA Zhifang. Ionic Hypercrosslinked Polymer for Rhodamine B Adsorption[J]. Journal of Functional Polymers, 2022, 35(5): 461-467. doi: 10.14133/j.cnki.1008-9357.20211123001

离子型超交联聚合物吸附罗丹明B

doi: 10.14133/j.cnki.1008-9357.20211123001
基金项目: 国家自然科学基金面上项目(21975146); 山西省省筹资金资助回国留学人员科研项目(2020-134); 山西省应用基础研究计划青年项目(201801D221096); 大同市工业重点研发计划项目(2019028, 2018013)
详细信息
    作者简介:

    王科伟(1982—),男,博士,副教授,主要研究方向为有机多孔材料的设计及应用。E-mail:wangkewei@sxdtdx.edu.cn

    通讯作者:

    贾治芳,E-mail:jiazhifang@sxdtdx.edu.cn

  • 中图分类号: O631.5

Ionic Hypercrosslinked Polymer for Rhodamine B Adsorption

  • 摘要: 为了高效吸附废水中的可溶性有机染料,以4-苯胺基苯磺酸钠和苯为单体,二甲氧基甲烷为交联剂,在无水FeCl3催化下,经过付-克反应一步合成了磺酸钠离子(―SO3Na)修饰的超交联聚合物(HCP-SO3Na)。通过元素分析、红外光谱、N2吸/脱附分析、固态核磁共振波谱和热重分析对HCP-SO3Na的结构和热性能进行了表征。结果表明,HCP-SO3Na是一种比表面积大、热稳定性强的无定形微孔有机聚合物,比表面积为587 m2/g,微孔面积为411 m2/g。通过对阳离子染料罗丹明B (RhB)的吸附研究表明,―SO3Na基团的引入,可增加HCP对RhB的饱和吸附量,最大吸附量达431 mg/g,吸附符合准二级动力学模型和Langmuir 模型,且循环吸附5次之后,吸附性能无明显降低。

     

  • 图  1  HCP-SO3Na的合成

    Figure  1.  Synthesis of HCP-SO3Na

    图  2  (a) 4-苯胺基磺酸钠单体和HCP-SO3Na的FT-IR谱图; (b) HCP-SO3Na的13C-CP/MAS-NMR谱图

    Figure  2.  (a) FT-IR spectra of sodium 4-(phenylamino)benzenesulfonate and HCP-SO3Na; (b) Solid state 13C-CP/MAS-NMR spectrum of HCP-SO3Na

    图  3  HCP-SO3Na的(a)N2吸/脱附等温曲线,(b)孔径分布曲线和(c)TGA以及DTG曲线图

    Figure  3.  (a) N2 adsorption/desorption isotherms, (b) pore size distribution and (c) TGA and DTG curves of HCP-SO3Na

    图  4  不同时间HCP-SO3Na对RhB和MO及HCP-SO3H对RhB的吸附曲线

    Figure  4.  Adsorption curves of HCP-SO3Na for RhB and MO, and HCP-SO3H for RhB at different time

    图  5  HCP-SO3Na吸附RhB的(a)准一级动力学和(b)准二级动力学拟合曲线

    Figure  5.  Fitting lines of (a) pseudo-first-order model and (b) pseudo-second-order model of HCP-SO3Na for RhB

    图  6  HCP-SO3Na吸附RhB的(a) Langmuir等温方程式和(b) Freundlich等温方程式拟合曲线

    Figure  6.  Fitting lines of (a) Langmuir and (b) Freundlich isothermal equations of HCP-SO3Na for RhB

    图  7  HCP-SO3Na的吸附循环

    Figure  7.  Adsorption cycle of HCP-SO3Na

    表  1  HCP-SO3Na的元素组成

    Table  1.   Elemental composition of HCP-SO3Na

    Samplew(C)/%w(H)/%w(N)/%w(S)/%
    HCP-SO3Na66.85.41.62.5
    HCP-SO3Na1)67.95.02.02.8
    1) After five cycles
    下载: 导出CSV

    表  2  HCP-SO3Na的比表面积和微孔参数

    Table  2.   Surface area and porosity of HCP-SO3Na

    SampleSBET1)/(m2·g−1)SL2)/(m2·g−1)SMA3)/(m2·g−1)V4)/(cm3·g−1)VM5)/(cm3·g−1)
    HCP-SO3Na5876474110.470.17
    HCP-SO3Na6)5746423850.410.16
    1) Surface area calculated from nitrogen adsorption isotherms using BET equation; 2) Surface area calculated from nitrogen adsorption isotherms using Langmuir equation; 3) t-Plot micropore area; 4) Pore volume calculated from nitrogen isotherm at p/p0 = 0.99; 5) t-Plot micropore volume; 6) The recycled HCP-SO3Na
    下载: 导出CSV

    表  3  25 ℃下HCP-SO3Na吸附RhB的动力学参数

    Table  3.   Kinetic parameters for RhB adsorption onto HCP-SO3Na at 25 ℃

    SamplePseudo-first-order modelPseudo-second-order model
    qe/(mg·g−1)k1R2qe/(mg·g−1)k2R2
    HCP-SO3Na31.760.04740.960298.720.00490.9998
    下载: 导出CSV

    表  4  25 ℃下HCP-SO3Na吸附RhB的吸附等温参数

    Table  4.   Adsorption isotherm parameters for RhB onto HCP-SO3Na at 25 ℃

    SampleLangmuirFreundlich
    qmax/(mg·g−1)KLR2KFnR2
    HCP-SO3Na431.033.4670.9997283.2710.410.9446
    下载: 导出CSV
  • [1] 方婧, 赵文娟, 张明浩, 方千荣. 一种新型酰胺功能化的共价有机框架用于选择性染料 [J]. 化学学报,2021,79(2):186-191. doi: 10.6023/A20100471

    FANG J, ZHAO W J, ZHANG M H, FANG Q R. A novel amide-functionalized covalent organic framework for selective dye adsorption [J]. Acta Chimica Sinica,2021,79(2):186-191. doi: 10.6023/A20100471
    [2] AN Y, ZHENG H, YU Z, SUN Y, WANG Y, ZHAO C, DING W. Functioned hollow glass microsphere as a self-floating adsorbent: Rapid and high-efficient removal of anionic dye [J]. Journal of Hazardous Materials,2020,381:120971. doi: 10.1016/j.jhazmat.2019.120971
    [3] KHAN F S A, MUBARAK N M, TAN Y H, KHALID M, KARRI R R, WALVEKAR R, ABDULLAH E C, NIZAMUDDIN S, MAZARI S A. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes [J]. Journal of Hazardous Materials,2021,413:125375. doi: 10.1016/j.jhazmat.2021.125375
    [4] ZHU M X, LEE L, WANG H H, WANG Z. Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud [J]. Journal of Hazardous Materials,2007,149(3):735-741. doi: 10.1016/j.jhazmat.2007.04.037
    [5] HASSAN M, CARR C M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents [J]. Chemosphere,2018,209:201-219. doi: 10.1016/j.chemosphere.2018.06.043
    [6] SUBRAMANI S E, THINAKARAN N. Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan [J]. Process Safety and Environmental Protection,2017,106:1-10. doi: 10.1016/j.psep.2016.11.024
    [7] ONG S, KENG P, LEE S, HUNG Y. Low cost adsorbents for sustainable dye containing-wastewater treatment [J]. Asian Journal of Chemistry,2014,26(7):1874-1881.
    [8] LIU X, TIAN J, LI Y, SUN N, MI S, XIE Y, CHEN Z. Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon [J]. Journal of Hazardous Materials,2019,373:397-407. doi: 10.1016/j.jhazmat.2019.03.103
    [9] CHEN L, HAN Q, LI W, ZHOU Z, FANG Z, XU Z, WANG Z, QIAN X. Three-dimensional graphene-based adsorbents in sewage disposal: A review [J]. Environmental Science and Pollution Research,2018,25(26):25840-25861. doi: 10.1007/s11356-018-2767-7
    [10] MOMINA, SHAHADAT M, ISAMIL S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review [J]. RSC Advances,2018,8(43):24571-24587. doi: 10.1039/C8RA04290J
    [11] WAMBA A G N, KOFA G P, KOUNGOU S N, THUE P S, LIMA E C, REIS G S D, KAYEM J G. Grafting of amine functional group on silicate based material as adsorbent for water purification: A short review [J]. Journal of Environmental Chemical Engineering,2018,6(2):3192-3203. doi: 10.1016/j.jece.2018.04.062
    [12] CUI Y, ZHANG J, REN L, CHENG A, GAO E. A functional anionic metal-organic framework for selective adsorption and separation of organic dyes [J]. Polyhedron,2019,161:71-73. doi: 10.1016/j.poly.2018.12.036
    [13] XU T, AN S H, PENG C J, HU J, LIU H. Construction of large-pore crystalline covalent organic framework as high-performance adsorbent for rhodamine B dye removal [J]. Industrial & Engineering Chemistry Research,2020,59(17):8315-8322.
    [14] 周婷, 龚祎凡, 郭佳. 共价有机骨架的设计、制备及应用 [J]. 功能高分子学报,2018,31(3):189-215.

    ZHOU T, GONG Y F, GUO J. Covalent organic frameworks: Design, synthesis and applications [J]. Journal of Functional Polymers,2018,31(3):189-215.
    [15] WANG S, ZHANG C, SHU Y, JIANG S, XIA Q, CHEN L, JIN S, HUSSAIN I, COOPER A I, TAN B. Layered microporous polymers by solvent knitting method [J]. Science Advances,2017,3(3):e1602610. doi: 10.1126/sciadv.1602610
    [16] JIA Z, WANG K, TAN B, GU Y. Hollow hyper-cross-linked nanospheres with acid and base sites as efficient and water-stable catalysts for one-pot tandem reactions [J]. ACS Catalysis,2017,7(5):3693-3702. doi: 10.1021/acscatal.6b03631
    [17] LI B, YANG X, XIA L, MAJEED M I, TAN B. Hollow microporous organic capsules [J]. Scientific Reports,2013,3:2128. doi: 10.1038/srep02128
    [18] PALMA-CANDO A, SCHERF U. Electrogenerated thin films of microporous polymer networks with remarkably increased electrochemical response to nitroaromatic analytes [J]. ACS Applied Materials & Interfaces,2015,7(21):11127-11133.
    [19] 邱玉倩, 刘千惠, 韩浩杰, 于涛, 王洪强, 徐飞. 三嗪超交联聚苯乙烯基多孔聚合物的设计与制备 [J]. 功能高分子学报,2020,33(6):554-562.

    QIU Y Q, LIU Q H, HAN H J, YU T, WANG H Q, XU F. Design and preparation of polystyrene-based porous polymers with triazine crosslinker [J]. Journal of Functional Polymers,2020,33(6):554-562.
    [20] TAN L, TAN B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications [J]. Chemical Society Reviews,2017,46(11):3322-3356. doi: 10.1039/C6CS00851H
    [21] ZHANG C, ZHU P, TAN L, LIU J, TAN B, YANG X, XU H. Triptycene-based hyper-cross-linked polymer sponge for gas storage and water treatment [J]. Macromolecules,2015,48(23):8509-8514. doi: 10.1021/acs.macromol.5b02222
    [22] LI Q, ZHAN Z, JIN S, TAN B. Wettable magnetic hypercrosslinked microporous nanoparticle as an efficient adsorbent for water treatment [J]. Chemical Engineering Journal,2017,326:109-116. doi: 10.1016/j.cej.2017.05.049
    [23] DENG S, MO X, ZHENG S, JIN X, GAO Y, CAI S, FAN J, ZHANG W. Hydrolytically stable nanotubular cationic metal-organic framework for rapid and efficient removal of toxic oxo-anions and dyes from water [J]. Inorganic Chemistry,2019,58(4):2899-2909. doi: 10.1021/acs.inorgchem.9b00104
    [24] FU W, DAI Y, TIAN J, HUANG C, LIU C, LIU K, YIN L, HUANG F, LU Y, SUN Y. In situ growth of hierarchical Al2O3 nanostructures onto TiO2 nanofibers surface: Super-hydrophilicity, efficient oil/water separation and dye-removal [J]. Nanotechnology,2018,29:345607. doi: 10.1088/1361-6528/aac9ab
    [25] NASCIMENTO R C S, SILVA A O S, MEILI L. Carbon-covered mesoporous silica and its application in rhodamine B adsorption [J]. Environmental Technology,2018,39(9):1123-1132. doi: 10.1080/09593330.2017.1321693
    [26] YANG C, CHENG J, CHEN Y, HU Y. Enhanced adsorption performance of MoS2 nanosheet-coated MIL-101 hybrids for the removal of aqueous rhodamine B [J]. Journal of Colloid and Interface Science,2017,504:39-47. doi: 10.1016/j.jcis.2017.05.020
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  90
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 录用日期:  2022-04-27
  • 网络出版日期:  2022-05-07
  • 刊出日期:  2022-09-23

目录

    /

    返回文章
    返回