Ionic Hypercrosslinked Polymer for Rhodamine B Adsorption
-
摘要: 为了高效吸附废水中的可溶性有机染料,以4-苯胺基苯磺酸钠和苯为单体,二甲氧基甲烷为交联剂,在无水FeCl3催化下,经过付-克反应一步合成了磺酸钠离子(―SO3Na)修饰的超交联聚合物(HCP-SO3Na)。通过元素分析、红外光谱、N2吸/脱附分析、固态核磁共振波谱和热重分析对HCP-SO3Na的结构和热性能进行了表征。结果表明,HCP-SO3Na是一种比表面积大、热稳定性强的无定形微孔有机聚合物,比表面积为587 m2/g,微孔面积为411 m2/g。通过对阳离子染料罗丹明B (RhB)的吸附研究表明,―SO3Na基团的引入,可增加HCP对RhB的饱和吸附量,最大吸附量达431 mg/g,吸附符合准二级动力学模型和Langmuir 模型,且循环吸附5次之后,吸附性能无明显降低。Abstract: Hypercrosslinked polymer (HCP) is a class of microporous organic polymer connected by light elements (C, H, O, and N) through covalent bonds. In order to efficiently adsorb soluble organic dyes in water treatment, here, an ionic HCP (HCP-SO3Na) was prepared through an efficient Friedel-Crafts reaction from sodium 4-(phenylamino)benzenesulfonate and benzene in the presence of formaldehyde dimethyl acetal and anhydrous FeCl3. A series of characterizing techniques such as elemental analysis, infrared spectroscopy, N2 adsorption/desorption analysis, solid-state 13C nuclear magnetic resonance spectroscopy and thermogravimetric analysis were employed to characterize the structure and thermal property of the ionic polymer. It was found that HCP-SO3Na was an amorphous microporous polymer with large specific surface area and high thermostability. The specific surface area and micropore area were 587 m2/g and 411 m2/g, respectively. The adsorption of HCP-SO3Na for the organic dye of Rhodamine B demonstrated the ―SO3Na groups distributing uniformly in the polymer could increase the saturation capacity of HCP. The maximum adsorption capacity was up to 431 mg/g. The adsorption process conformed to kinetic pseudo-second-order model and Langmuir model. HCP-SO3Na can be easily recovered and reused five times without significant loss of activity.
-
Key words:
- hypercrosslinked polymer /
- ionic porous material /
- Rhodamine B /
- dye adsorption
-
表 1 HCP-SO3Na的元素组成
Table 1. Elemental composition of HCP-SO3Na
Sample w(C)/% w(H)/% w(N)/% w(S)/% HCP-SO3Na 66.8 5.4 1.6 2.5 HCP-SO3Na1) 67.9 5.0 2.0 2.8 1) After five cycles 表 2 HCP-SO3Na的比表面积和微孔参数
Table 2. Surface area and porosity of HCP-SO3Na
Sample SBET1)/(m2·g−1) SL2)/(m2·g−1) SMA3)/(m2·g−1) V4)/(cm3·g−1) VM5)/(cm3·g−1) HCP-SO3Na 587 647 411 0.47 0.17 HCP-SO3Na6) 574 642 385 0.41 0.16 1) Surface area calculated from nitrogen adsorption isotherms using BET equation; 2) Surface area calculated from nitrogen adsorption isotherms using Langmuir equation; 3) t-Plot micropore area; 4) Pore volume calculated from nitrogen isotherm at p/p0 = 0.99; 5) t-Plot micropore volume; 6) The recycled HCP-SO3Na 表 3 25 ℃下HCP-SO3Na吸附RhB的动力学参数
Table 3. Kinetic parameters for RhB adsorption onto HCP-SO3Na at 25 ℃
Sample Pseudo-first-order model Pseudo-second-order model qe/(mg·g−1) k1 R2 qe/(mg·g−1) k2 R2 HCP-SO3Na 31.76 0.0474 0.9602 98.72 0.0049 0.9998 表 4 25 ℃下HCP-SO3Na吸附RhB的吸附等温参数
Table 4. Adsorption isotherm parameters for RhB onto HCP-SO3Na at 25 ℃
Sample Langmuir Freundlich qmax/(mg·g−1) KL R2 KF n R2 HCP-SO3Na 431.03 3.467 0.9997 283.27 10.41 0.9446 -
[1] 方婧, 赵文娟, 张明浩, 方千荣. 一种新型酰胺功能化的共价有机框架用于选择性染料 [J]. 化学学报,2021,79(2):186-191. doi: 10.6023/A20100471FANG J, ZHAO W J, ZHANG M H, FANG Q R. A novel amide-functionalized covalent organic framework for selective dye adsorption [J]. Acta Chimica Sinica,2021,79(2):186-191. doi: 10.6023/A20100471 [2] AN Y, ZHENG H, YU Z, SUN Y, WANG Y, ZHAO C, DING W. Functioned hollow glass microsphere as a self-floating adsorbent: Rapid and high-efficient removal of anionic dye [J]. Journal of Hazardous Materials,2020,381:120971. doi: 10.1016/j.jhazmat.2019.120971 [3] KHAN F S A, MUBARAK N M, TAN Y H, KHALID M, KARRI R R, WALVEKAR R, ABDULLAH E C, NIZAMUDDIN S, MAZARI S A. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes [J]. Journal of Hazardous Materials,2021,413:125375. doi: 10.1016/j.jhazmat.2021.125375 [4] ZHU M X, LEE L, WANG H H, WANG Z. Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud [J]. Journal of Hazardous Materials,2007,149(3):735-741. doi: 10.1016/j.jhazmat.2007.04.037 [5] HASSAN M, CARR C M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents [J]. Chemosphere,2018,209:201-219. doi: 10.1016/j.chemosphere.2018.06.043 [6] SUBRAMANI S E, THINAKARAN N. Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan [J]. Process Safety and Environmental Protection,2017,106:1-10. doi: 10.1016/j.psep.2016.11.024 [7] ONG S, KENG P, LEE S, HUNG Y. Low cost adsorbents for sustainable dye containing-wastewater treatment [J]. Asian Journal of Chemistry,2014,26(7):1874-1881. [8] LIU X, TIAN J, LI Y, SUN N, MI S, XIE Y, CHEN Z. Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon [J]. Journal of Hazardous Materials,2019,373:397-407. doi: 10.1016/j.jhazmat.2019.03.103 [9] CHEN L, HAN Q, LI W, ZHOU Z, FANG Z, XU Z, WANG Z, QIAN X. Three-dimensional graphene-based adsorbents in sewage disposal: A review [J]. Environmental Science and Pollution Research,2018,25(26):25840-25861. doi: 10.1007/s11356-018-2767-7 [10] MOMINA, SHAHADAT M, ISAMIL S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review [J]. RSC Advances,2018,8(43):24571-24587. doi: 10.1039/C8RA04290J [11] WAMBA A G N, KOFA G P, KOUNGOU S N, THUE P S, LIMA E C, REIS G S D, KAYEM J G. Grafting of amine functional group on silicate based material as adsorbent for water purification: A short review [J]. Journal of Environmental Chemical Engineering,2018,6(2):3192-3203. doi: 10.1016/j.jece.2018.04.062 [12] CUI Y, ZHANG J, REN L, CHENG A, GAO E. A functional anionic metal-organic framework for selective adsorption and separation of organic dyes [J]. Polyhedron,2019,161:71-73. doi: 10.1016/j.poly.2018.12.036 [13] XU T, AN S H, PENG C J, HU J, LIU H. Construction of large-pore crystalline covalent organic framework as high-performance adsorbent for rhodamine B dye removal [J]. Industrial & Engineering Chemistry Research,2020,59(17):8315-8322. [14] 周婷, 龚祎凡, 郭佳. 共价有机骨架的设计、制备及应用 [J]. 功能高分子学报,2018,31(3):189-215.ZHOU T, GONG Y F, GUO J. Covalent organic frameworks: Design, synthesis and applications [J]. Journal of Functional Polymers,2018,31(3):189-215. [15] WANG S, ZHANG C, SHU Y, JIANG S, XIA Q, CHEN L, JIN S, HUSSAIN I, COOPER A I, TAN B. Layered microporous polymers by solvent knitting method [J]. Science Advances,2017,3(3):e1602610. doi: 10.1126/sciadv.1602610 [16] JIA Z, WANG K, TAN B, GU Y. Hollow hyper-cross-linked nanospheres with acid and base sites as efficient and water-stable catalysts for one-pot tandem reactions [J]. ACS Catalysis,2017,7(5):3693-3702. doi: 10.1021/acscatal.6b03631 [17] LI B, YANG X, XIA L, MAJEED M I, TAN B. Hollow microporous organic capsules [J]. Scientific Reports,2013,3:2128. doi: 10.1038/srep02128 [18] PALMA-CANDO A, SCHERF U. Electrogenerated thin films of microporous polymer networks with remarkably increased electrochemical response to nitroaromatic analytes [J]. ACS Applied Materials & Interfaces,2015,7(21):11127-11133. [19] 邱玉倩, 刘千惠, 韩浩杰, 于涛, 王洪强, 徐飞. 三嗪超交联聚苯乙烯基多孔聚合物的设计与制备 [J]. 功能高分子学报,2020,33(6):554-562.QIU Y Q, LIU Q H, HAN H J, YU T, WANG H Q, XU F. Design and preparation of polystyrene-based porous polymers with triazine crosslinker [J]. Journal of Functional Polymers,2020,33(6):554-562. [20] TAN L, TAN B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications [J]. Chemical Society Reviews,2017,46(11):3322-3356. doi: 10.1039/C6CS00851H [21] ZHANG C, ZHU P, TAN L, LIU J, TAN B, YANG X, XU H. Triptycene-based hyper-cross-linked polymer sponge for gas storage and water treatment [J]. Macromolecules,2015,48(23):8509-8514. doi: 10.1021/acs.macromol.5b02222 [22] LI Q, ZHAN Z, JIN S, TAN B. Wettable magnetic hypercrosslinked microporous nanoparticle as an efficient adsorbent for water treatment [J]. Chemical Engineering Journal,2017,326:109-116. doi: 10.1016/j.cej.2017.05.049 [23] DENG S, MO X, ZHENG S, JIN X, GAO Y, CAI S, FAN J, ZHANG W. Hydrolytically stable nanotubular cationic metal-organic framework for rapid and efficient removal of toxic oxo-anions and dyes from water [J]. Inorganic Chemistry,2019,58(4):2899-2909. doi: 10.1021/acs.inorgchem.9b00104 [24] FU W, DAI Y, TIAN J, HUANG C, LIU C, LIU K, YIN L, HUANG F, LU Y, SUN Y. In situ growth of hierarchical Al2O3 nanostructures onto TiO2 nanofibers surface: Super-hydrophilicity, efficient oil/water separation and dye-removal [J]. Nanotechnology,2018,29:345607. doi: 10.1088/1361-6528/aac9ab [25] NASCIMENTO R C S, SILVA A O S, MEILI L. Carbon-covered mesoporous silica and its application in rhodamine B adsorption [J]. Environmental Technology,2018,39(9):1123-1132. doi: 10.1080/09593330.2017.1321693 [26] YANG C, CHENG J, CHEN Y, HU Y. Enhanced adsorption performance of MoS2 nanosheet-coated MIL-101 hybrids for the removal of aqueous rhodamine B [J]. Journal of Colloid and Interface Science,2017,504:39-47. doi: 10.1016/j.jcis.2017.05.020 -