Preparation and Epidermal Sensing Properties of Hybrid Cross-Linked Network Hydrogel
-
摘要: 以丙烯酰胺(AAm)单体和甲基丙烯酰氧乙基三甲基氯化铵(DMC)阳离子单体为共聚单体,添加一定量阴离子聚电解质聚丙烯酸钠(PAAS),制备具有杂化交联网络的离子导电水凝胶P(AAm-DMC)-PAAS。采用万能试验机和电化学工作站对其力学性能和应变敏感性能进行测试。结果表明,水凝胶最大应力可达(88.4±4.7) kPa,最大应变为(1030.8±71.7)%。由于PAAS和DMC能电离出丰富的游离离子,水凝胶无需额外添加导电填料即可保持较高的离子电导率(0.684 S/m)和应变变化的快速响应,灵敏因子约为2.409(0~70%应变范围内)。制备的水凝胶可作为可穿戴应变传感器监测人体运动,还可以组装成表皮电极对人体电生理信号进行准确检测。Abstract: Ionic conductive hydrogels exhibit good electrical conductivity, excellent tensile properties and high biocompatibility, which is of great significance in the fields of flexible electronic equipment, human-machine interface and health monitoring. By using acrylamide (AAm) monomer and methyl acryloxyethyl trimethylammonium chloride (DMC) cationic monomer as copolymers and adding a certain amount of anionic polyelectrolyte sodium polyacrylate (PAAS), ionic conductive hydrogels with hybrid crosslinking network(P(AAm-DMC)-PAAS) are prepared. The mechanical properties of hydrogel can be effectively regulated by changing the density of chemical crosslinking and ionic crosslinking in hydrogel networks. The experimental results show that the maximum stress of the hydrogel can reach (88.4±4.7) kPa and the maximum strain is (1030.8±71.7)%. Because PAAS and DMC can ionize abundant free ions, P(AAm-DMC)-PAAS hydrogel can maintain high ionic conductivity and rapid response to strain without additional conductive filler, with conductivity up to 0.684 S/m and sensitivity factor GF about 2.409(0—70% strain range). The hydrogel can be used as a wearable strain sensor to monitor arm bending, finger bending, knee bending and other human movements through changes in relative resistance. The hydrogel can also be assembled into epidermal electrodes, which can accurately detect human physiological signals. Therefore, the P(AAm-DMC)-PAAS has the potential as a multifunctional sensor, which is expected to broaden its application in flexible electronic equipment, intelligent medical and other fields.
-
图 3 (a) 水凝胶在不同应变下的单次循环拉伸;(b) 不同应变单次循环拉伸的滞后能;(c) 在400%应变下的10次循环拉伸;(d) 400%应变下的10次循环拉伸的滞后能
Figure 3. (a) Single cyclic stretching of hydrogel under different strains; (b) Hysteresis energy of single cyclic stretching under different strains; (c) 10 cycles of tension under 400% strain; (d) Hysteresis energy of 10 cycles of tension under 400% strain
图 4 (a)水凝胶相对电阻随应变的变化;(b)循环拉伸100次的相对电阻变化;(c)输入应变与输出信号之间的关系;(d)小应变拉伸与(e)大应变拉伸相对电阻变化;(f)不同拉伸速率下水凝胶传感器的相对电阻变化
Figure 4. (a) Change of hydrogel relative resistance versus strain range; (b) 100 cycles of tensile relative resistance change; (c) Relationship between input stress and output signal; Changes in the relative resistance of (d) small strain stretching and (e) large strain stretching; (f) Changes in relative resistance of hydrogel sensors at different tensile rates
图 6 (a) 心电检测示意图;使用(b)水凝胶表皮电极和(c)Ag/AgCl商用电极测量的心电图;(d)左手握拳肌电信号检测示意图;使用(e)Ag/AgCl商用电极和(f)水凝胶表皮电极测量的肌电信号
Figure 6. (a) Schematic diagram of ECG detection; Electrocardiogram measured with (b) hydrogel epidermal electrode and (c) Ag/AgCl commercial electrodes; (d) EMG detection schematic diagram of left hand clenched fist; Electromyographic signals measured using (e) Ag/AgCl commercial electrodes and (f) hydrogel skin electrodes
-
[1] DENG J, YUK H, WU J J, VARELA C E, CHEN X Y, ROCHE E T, GUO C F, ZHAO X H. Electrical bioadhesive interface for bioelectronics [J]. Nature Materials,2021,20(2):229-236. doi: 10.1038/s41563-020-00814-2 [2] YU H C, HAO X P, ZHANG C W, ZHENG S Y, DU M, LIANG S M, WU Z L, ZHENG Q. Engineering tough metallosupramolecular hydrogel films with kirigami structures for compliant soft electronics [J]. Small,2021,17(41):2103836. doi: 10.1002/smll.202103836 [3] ZHOU L J, PEI X J, FANG K, ZHANG R, FU J. Super tough, ultra-stretchable, and fast recoverable double network hydrogels physically crosslinked by triple non-covalent interactions [J]. Polymer,2020,192:122319. doi: 10.1016/j.polymer.2020.122319 [4] 张鋆, 刘忆旋, 杜晓慧, 杨辉. 基于高黏附可拉伸高分子材料的人机交互界面 [J]. 高等学校化学学报,2021,42(4):1093-1113.ZHANG Y, LIU Y X, DU X H, YANG H. Human-computer interface based on high adhesion stretchable polymer material [J]. Chemical Journal of Chinese Universities,2021,42(4):1093-1113. [5] ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels [J]. Science,2017,356(6337):eaaf3627. doi: 10.1126/science.aaf3627 [6] SUN J Y, ZHAO X H, ILLEPERUMA W R K, OH K H, MOONEY D J, VLASSAK J, SUO Z G. Highly stretchable and tough hydrogels [J]. Nature,2012,489(7414):133-136. doi: 10.1038/nature11409 [7] AHMED E M. Hydrogel: Preparation, characterization, and applications: A review [J]. Journal of Advanced Research,2015,6(2):105-121. doi: 10.1016/j.jare.2013.07.006 [8] 童艳萍, 肖艳. 双重动态化学键交联水凝胶的制备及性能 [J]. 功能高分子学报,2020,33(3):305-312.TONG Y P, XIAO Y. Preparation and properties of double dynamic chemical bond crosslinked hydrogels [J]. Journal of Functional Polymers,2020,33(3):305-312. [9] PAN L, CAI P, MEI L, CHENG Y, ZHENG Y, WANG M, WANG T, JIANG Y, JI B H, LI D H, CHEN X D. A compliant ionic adhesive electrode with ultralow bioelectronic impedance [J]. Adv Mater,2020,32(38):e2003723. doi: 10.1002/adma.202003723 [10] YANG H, JI S B, CHATURVEDI I, XIA H R, WANG T, CHENG G, PAN L, WANG C J, QI D P, ONG Y S, CHEN X D. Adhesive biocomposite electrodes on sweaty skin for long-term continuous electrophysiological monitoring [J]. Acs Materials Letters,2020,2(5):478-484. doi: 10.1021/acsmaterialslett.0c00085 [11] JI S B, WAN C J, WANG T, LI Q S, CHEN G, WANG J W, LIU Z Y, YANG H, LIU X J, CHEN X D. Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring [J]. Advanced Materials,2020,32(26):2001496. doi: 10.1002/adma.202001496 [12] CAI P Q, WAN C J, PAN L, MATSUHISA N J, HE K, CUI Z Q, ZHANG W, LI C C, WANG J W, WANG M, JIANG Y, CHEN G, CHEN X D. Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures [J]. Nature Communications,2020,11(1):2183. doi: 10.1038/s41467-020-15990-7 [13] GAO G R, YANG F J, ZHOU F H, HE J, LU W, XIAO P, YAN H Z, PAN C F, CHEN T, WANG Z L. Bioinspired self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates [J]. Advanced Materials,2020,32(50):2004290. doi: 10.1002/adma.202004290 [14] ZHANG Q, LIU X, DUAN L J, GAO G H. Nucleotide-driven skin-attachable hydrogels toward visual human-machine interfaces [J]. Journal of Materials Chemistry A,2020,8(8):4515-4523. doi: 10.1039/C9TA14224J [15] SU G H, CAO J, ZHANG X Q, ZHANG Y L, YIN S Y, JIA L Y, GUO Q Q, ZHANG X X, ZHANG J H, ZHOU T. Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human-machine interface [J]. Journal of Materials Chemistry A,2020,8(4):2074-2082. doi: 10.1039/C9TA08111A [16] CHEN L, WANG Z L, ZHAN Z H, XIE M Z, DUAN G H, CHEN P, CHEN Y Q, DUAN H G. 3D printed super-anti-freezing self-adhesive human-machine interface [J]. Materials Today Physics,2021,19:100404. doi: 10.1016/j.mtphys.2021.100404 [17] 董点点, 张静雯, 唐杰, 王军, 杨宽, 马忠雷, 张文博, 陈咏梅, 马建中. 基于天然高分子的导电材料制备及其在柔性传感器件中的应用 [J]. 高分子学报,2020,51(8):864-879.DONG D D, ZHANG J W, TANG J, WANG J, YANG K, MA Z L, ZHANG W B, CHEN Y M, MA J Z. Fabrication of conductive materials based on natural polymer and its application in flexible sensor [J]. Acta Polymerica Sinica,2020,51(8):864-879. [18] 蔡雅倩, 张家怀, 刘方哲, 李海潮, 石建平, 关爽. Hofmeister效应辅助的蛋白质基水凝胶应变传感器 [J]. 高等学校化学学报,2021,42(8):2609-2616.CAI Y Q, ZHANG J H, LIU F Z, LI H C, SHI J P, GUAN S. Hofmeister effect assisted protein-based hydrogel strain sensor [J]. Chemical Journal of Chinese Universities,2021,42(8):2609-2616. [19] WANG G, ZHANG Q, WANG Q, ZHOU L B, GAO G H. Bio-based hydrogel transducer for measuring human motion with stable adhesion and ultrahigh toughness [J]. ACS Appl Mater Interfaces,2021,13(20):24173-24182. doi: 10.1021/acsami.1c05098 [20] XIA S, ZHANG Q, SONG S X, DUAN L J, GAO G H. Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors [J]. Chemistry of Materials,2019,31(22):9522-9531. doi: 10.1021/acs.chemmater.9b03919 [21] 姬少博, 陈晓东. 柔性电子学中的表界面化学 [J]. 高等学校化学学报,2021,42(4):1074-1092.JI S B, CHEN X D. Surface and interface chemistry in flexible electronics [J]. Chemical Journal of Chinese Universities,2021,42(4):1074-1092. [22] HOU K X, ZHAO S P, WANG D P, ZHAO P H, LI C H, ZOU J L. A puncture-resistant and self-healing conductive gel for multifunctional electronic skin [J]. Advanced Functional Materials,2021,31(49):2107006. doi: 10.1002/adfm.202107006 [23] ZHU Q L, DU C, DAI Y H, DAAB M, MATEJDESM, BREU J, HONG W, ZHENG Q, WU Z L. Light-steered locomotion of muscle-like hydrogel by self-coordinated shape change and friction modulation [J]. Nature Communications,2020,11(1):5166. doi: 10.1038/s41467-020-18801-1 [24] YING Z R, WANG Q, XIE J, LI B, LIN X M, HUI S J. Novel electrically-conductive electro-responsive hydrogels for smart actuators with a carbon-nanotube-enriched three-dimensional conductive network and a physical-phase-type three-dimensional interpenetrating network [J]. Journal of Materials Chemistry C,2020,8(12):4192-4205. doi: 10.1039/C9TC04428K [25] GAN D, HUANG Z, WANG X, JIANG L L, WANG C M, ZHU M Y, REN F Z, FANG M M, WANG K F, XIE C M, LU X. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics [J]. Advanced Functional Materials,2019,30(5):1907678. [26] 吴银秋, 傅涛, 高洪鑫, 曹峥, 成骏峰, 刘春林, 陶国良, 吴盾. PAM/CS/GO水凝胶的制备及其吸湿行为 [J]. 功能高分子学报,2021,34(4):394-400.WU Y Q, FU T, GAO H X, CAO Z, CHENG J F, LIU C L, TAO G L, WU D. Preparation and hygroscopic behavior of PAM/CS/GO hydrogels [J]. Journal of Functional Polymers,2021,34(4):394-400. [27] FENG Y B, LIU H, ZHU W H, GUAN L, YANG X T, ZVYAGAIN A V, ZHAO Y, SHEN C, YANG B, LIN Q. Muscle-inspired mxene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays [J]. Advanced Functional Materials,2021,31(46):2105264. doi: 10.1002/adfm.202105264 [28] 卢晓霞, 李鹏云, 李佳敏, 何卫东. 聚丙烯酰胺-g-聚苯胺的导电水凝胶的制备及性能研究 [J]. 高分子学报,2016(11):1563-1571. doi: 10.11777/j.issn1000-3304.2016.16086LU X X, LI P Y, LI J M, HE W D. Preparation and properties of polyacrylamide-g-polyaniline conductive hydrogel [J]. Acta Polymerica Sinica,2016(11):1563-1571. doi: 10.11777/j.issn1000-3304.2016.16086 [29] 王杰, 李莹, 邵亮, 白阳, 马忠雷, 马建中. 聚乙烯醇/聚吡咯复合导电水凝胶应变传感器的制备及性能 [J]. 高等学校化学学报,2021,42(3):929-936.WANG J, LI Y, SHAO L, BAI Y, MA Z L, MA J Z. Preparation and performance of polyvinyl alcohol/polypyrrole composite conductive hydrogel strain sensor [J]. Chemical Journal of Chinese Universities,2021,42(3):929-936. [30] LI X, HE L, LI Y, CHAO M Y, LI M K, WAN P B, ZHANG L Q. Healable, degradable, and conductive mxene nanocomposite hydrogel for multifunctional epidermal sensors [J]. ACS Nano,2021,15(4):7765-7773. doi: 10.1021/acsnano.1c01751 [31] SU G H, YIN S Y, GUO Y H, ZHAO F, GUO Q Q, ZHANG X X, ZHOU T, YU G H. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications [J]. Materials Horizons,2021,8(6):1795-1804. doi: 10.1039/D1MH00085C [32] 李雪雨, 朱玉宏, 温艳蓉, 贾红兵. 基于导电水凝胶的柔性应变传感器研究进展 [J]. 橡塑技术与装备,2021,47(2):10-16.LI X Y, ZHU Y H, WEN Y R, JIA H B. Research progress of flexible strain sensor based on conductive hydrogel [J]. Rubber & Plastic Technology and Equipment,2021,47(2):10-16. [33] 李仁爱, 张凯丽, 陈广学. 一种高透明、可拉伸导电水凝胶的制备及其在电容传感器中的应用 [J]. 影像科学与光化学,2019,37(4):267-273.LI R A, ZHANG K L, CHEN G X. Preparation of a high transparent, stretchable conductive hydrogel and its application in capacitance sensor [J]. Image Science and Photochemistry,2019,37(4):267-273. [34] NIU Y, LIU H, HE R, LUO M Q, SHU M G, XU F. Environmentally compatible wearable electronics based on ionically conductive organohydrogels for health monitoring with thermal compatibility, anti-dehydration, and underwater adhesion [J]. Small,2021,17(24):2101151. doi: 10.1002/smll.202101151 [35] DI X, LI J, YANG M, ZHAO Q, WU G L, SUN P C. Bioinspired, nucleobase-driven, highly resilient, and fast-responsive antifreeze ionic conductive hydrogels for durable pressure and strain sensors [J]. Journal of Materials Chemistry A,2021,9(36):20703-20713. doi: 10.1039/D1TA05262D -