高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化硼纳米片尺寸对BNNSs/P(VDF-HFP)复合薄膜介电性能的影响

吴玲玉 蔡凡一 罗念 周柏杰 陈枫

吴玲玉, 蔡凡一, 罗 念, 等. 氮化硼纳米片尺寸对BNNSs/P(VDF-HFP)复合薄膜介电性能的影响[J]. 功能高分子学报,2022,35(4):1-9 doi: 10.14133/j.cnki.1008-9357.20211101001
引用本文: 吴玲玉, 蔡凡一, 罗 念, 等. 氮化硼纳米片尺寸对BNNSs/P(VDF-HFP)复合薄膜介电性能的影响[J]. 功能高分子学报,2022,35(4):1-9 doi: 10.14133/j.cnki.1008-9357.20211101001
WU Lingyu, CAI Fanyi, LUO Nian, ZHOU Baijie, CHEN Feng. Size Effect of Boron Nitride Nanosheets on Dielectric Properties of BNNSs/P(VDF-HFP) Composite Films[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20211101001
Citation: WU Lingyu, CAI Fanyi, LUO Nian, ZHOU Baijie, CHEN Feng. Size Effect of Boron Nitride Nanosheets on Dielectric Properties of BNNSs/P(VDF-HFP) Composite Films[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20211101001

氮化硼纳米片尺寸对BNNSs/P(VDF-HFP)复合薄膜介电性能的影响

doi: 10.14133/j.cnki.1008-9357.20211101001
基金项目: 国家电网有限公司总部管理科技项目(项目编号:524606180122)
详细信息
    作者简介:

    吴玲玉(1993—),四川成都人,博士,主要研究方向为高分子材料结构与性能。E-mail:wly940812@163.com

    通讯作者:

    陈 枫,E-mail:fengchen@scu.edu.cn

  • 中图分类号: TB332

Size Effect of Boron Nitride Nanosheets on Dielectric Properties of BNNSs/P(VDF-HFP) Composite Films

  • 摘要: 通过球磨法制备了两种不同片径大小的氮化硼纳米片(BNNSs),并采用溶液刮膜的方式制备了BNNSs与聚偏氟乙烯-六氟丙烯(P(VDF-HFP))的复合薄膜BNNSs/P(VDF-HFP)。通过介质耐压测试仪与宽频电介质谱仪测试了复合薄膜的击穿强度和介电常数,揭示了BNNSs的片径大小对复合薄膜介电性能的影响。结果表明,大片径纳米片的晶格结构更完善且在P(VDF-HFP)中的取向度更高,在复合薄膜中能形成更完善的绝缘网络,从而能有效阻止复合薄膜发生电导及电力学击穿。与小片径纳米片复合薄膜相比,大片径纳米片复合薄膜具有更高的击穿强度。

     

  • 图  1  (a)s-BNNSs和(b)l-BNNSs的SEM图;根据SEM图统计得到的(c)s-BNNSs和(d)l-BNNSs的片径大小统计图

    Figure  1.  SEM images of (a) s-BNNSs and (b) l-BNNSs; Statistical analysis of the lateral size of a set of (c) s-BNNSs and (d) l-BNNSs based on the result of SEM image

    图  2  样品的(a)TGA曲线;(b)FT-IR谱图和(c)XPS谱图;(d)s-BNNSs和(e)l-BNNSs的B1s分谱

    Figure  2.  (a) TGA curves, (b) FT-IR spectra and (c) XPS wide spectra of samples; B1s core level of (d) s-BNNSs and (e) l-BNNSs

    图  3  BNNSs/P(VDF-HFP)复合薄膜的$ {E}_{\mathrm{b}} $与填料含量的关系

    Figure  3.  Breakdown strength of BNNSs/P(VDF-HFP) composite films as functions of BNNSs content

    图  4  s-BNNSs和l-BNNSs的UV光谱转变曲线(曲线拟合得到的直线在hv轴上的截距即为$ {E}_{\rm{g}} $

    Figure  4.  Transformation curves of UV spectra of s-BNNSs and l-BNNSs (The axis intercept in the image is $ {E}_{\rm{g}} $)

    图  5  (a)BNNSs及(b)BNNSs/P(VDF-HFP)复合薄膜的XRD谱图(虚线:l-BNNSs /P(VDF-HFP),实线:s-BNNSs/P(VDF-HFP))

    Figure  5.  XRD spectra of (a) BNNSs and (b) BNNSs/P(VDF-HFP) composite films (Dotted lines: l-BNNSs/P(VDF-HFP); solid lines: s-BNNSs/P(VDF-HFP))

    图  6  BNNSs/P(VDF-HFP)复合薄膜的SEM图(x(BNNSs)=10%)

    Figure  6.  SEM images of BNNSs/P(VDF-HFP) composite films (x(BNNSs)=10%)

    图  7  (a)s-BNNSs/P(VDF-HFP)和(b)l-BNNSs/P(VDF-HFP)复合薄膜的$ {\varepsilon }_{\mathrm{r}} $和介电损耗;复合薄膜的(c)$ {\varepsilon }_{\mathrm{r}} $和介电损耗以及(d)$ {U}_{\mathrm{e}} $的总结和对比

    Figure  7.  Dielectric constant and dielectric loss of (a) s-BNNSs/P(VDF-HFP) and (b) l-BNNSs/P(VDF-HFP) composite films; Summary and comparison of (c) dielectric constant and dielectric loss and (d) $ {U}_{\mathrm{e}} $ of composite films

  • [1] DEMI L, RAMALLI A, GIANNINI G, et al. In vitro and in vivo tissue harmonic images obtained with parallel transmit beamforming by means of orthogonal frequency division multiplexing [J]. IEEE Trans Ultrason Ferroelectr Freq Control,2015,62(1):230-235. doi: 10.1109/TUFFC.2014.006599
    [2] YAQOOB U, UDDIN A S M I, CHUNG G S. The effect of reduced graphene oxide on the dielectric and ferroelectric properties of PVDF/BaTiO3 nanocomposites [J]. RSC Advances,2016,6(36):30747-30754. doi: 10.1039/C6RA03155B
    [3] LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites [J]. Nature,2015,523(7562):576-579. doi: 10.1038/nature14647
    [4] WANG Y, CUI J, YUAN Q, et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites [J]. Adv Mater,2015,27(42):6658-6663. doi: 10.1002/adma.201503186
    [5] LI Q, ZHANG G, LIU F, et al. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets [J]. Energy and Environmental Science,2015,8(3):922-931.
    [6] HAO Y N, WANG X H, O'BRIEN S, et al. Flexible BaTiO3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density [J]. Journal of Materials Chemistry C,2015,3(37):9740-9747. doi: 10.1039/C5TC01903F
    [7] LUO B, WANG X, WANG Y, et al. Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss [J]. J Mater Chem A,2014,2(2):510-519. doi: 10.1039/C3TA14107A
    [8] YAQOOB U, CHUNG G S. Effect of surface treated MWCNTs and BaTiO3 nanoparticles on the dielectric properties of a P(VDF-TrFE) matrix [J]. Journal of Alloys and Compounds,2017,695:1231-1236. doi: 10.1016/j.jallcom.2016.10.250
    [9] FAN B H, ZHA J W, WANG D R, et al. Experimental study and theoretical prediction of dielectric permittivity in BaTiO3/polyimide nanocomposite films [J]. Applied Physics Letters,2012,100(9):092903. doi: 10.1063/1.3691198
    [10] FAN B H, ZHA J W, WANG D R, et al. Preparation and dielectric behaviors of thermoplastic and thermosetting polymer nanocomposite films containing BaTiO3 nanoparticles with different diameters [J]. Composites Science and Technology,2013,80:66-72. doi: 10.1016/j.compscitech.2013.02.021
    [11] LIU F, LI Q, CUI J, et al. High-energy-density dielectric polymer nanocomposites with trilayered architecture [J]. Advanced Functional Materials,2017,27(20):1606292. doi: 10.1002/adfm.201606292
    [12] DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics [J]. Nat Nanotechnol,2010,5(10):722-726. doi: 10.1038/nnano.2010.172
    [13] CAI Z, WANG X, LUO B, et al. Dielectric response and breakdown behavior of polymer-ceramic nanocomposites: The effect of nanoparticle distribution [J]. Composites Science and Technology,2017,145:105-113. doi: 10.1016/j.compscitech.2017.03.039
    [14] CAI Z, WANG X, LUO B, et al. Nanocomposites with enhanced dielectric permittivity and breakdown strength by microstructure design of nanofillers [J]. Composites Science and Technology,2017,151:109-114. doi: 10.1016/j.compscitech.2017.08.015
    [15] NEUSEL C, SCHNEIDER G A. Size-dependence of the dielectric breakdown strength from nano- to millimeter scale [J]. Journal of the Mechanics and Physics of Solids,2014,63:201-213. doi: 10.1016/j.jmps.2013.09.009
    [16] GUO N, DIBENEDETTO S A, TEWARI P, et al. Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide polyolefin nanocomposites: Experiment and theory [J]. Chemistry of Materials,2010,22(4):1567-1578. doi: 10.1021/cm902852h
    [17] BI M, HAO Y, ZHANG J, et al. Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites [J]. Nanoscale,2017,9(42):16386-16395. doi: 10.1039/C7NR05212J
    [18] CAO H Y, GUO Z X, XIANG H, et al. Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons [J]. Physics Letters A,2012,376(4):525-528. doi: 10.1016/j.physleta.2011.11.016
    [19] XU X, PEREIRA L F, WANG Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene [J]. Nat Commun,2014,5:3689. doi: 10.1038/ncomms4689
    [20] ZHU Z, LI C, SONGFENG E, et al. Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets [J]. Composites Science and Technology,2019,170:93-100. doi: 10.1016/j.compscitech.2018.11.035
    [21] PENG L, XU Z, LIU Z, et al. Ultrahigh thermal conductive yet superflexible graphene films [J]. Adv Mater,2017,29(27):1700589. doi: 10.1002/adma.201700589
    [22] CHOI J T, KIM D H, RYU K S, et al. Functionalized graphene sheet/polyurethane nanocomposites: Effect of particle size on physical properties [J]. Macromolecular Research,2011,19(8):809-814. doi: 10.1007/s13233-011-0801-4
    [23] WU L, WU K, LIU D, et al. Largely enhanced energy storage density of poly(vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets [J]. Journal of Materials Chemistry A,2018,6(17):7573-7584. doi: 10.1039/C8TA01294F
    [24] SUN J F, WANG M Z, ZHAO Y C, et al. Synthesis of titanium nitride powders by reactive ball milling of titanium and urea [J]. Journal of Alloys and Compounds,2009,482(1-2):L29-L31. doi: 10.1016/j.jallcom.2009.04.043
    [25] SUN Y, BOGGS S A, RAMPRASAD R. The intrinsic electrical breakdown strength of insulators from first principles [J]. Applied Physics Letters,2012,101(13):132906. doi: 10.1063/1.4755841
    [26] SHI Y, HAMSEN C, JIA X, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition [J]. Nano Lett,2010,10(10):4134-4139. doi: 10.1021/nl1023707
    [27] LIN Y, WILLIAMS T V, XU T B, et al. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: Critical role of water [J]. The Journal of Physical Chemistry C,2011,115(6):2679-2685. doi: 10.1021/jp110985w
    [28] LEE D, LEE B, PARK K H, et al. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling [J]. Nano Lett,2015,15(2):1238-1244. doi: 10.1021/nl504397h
    [29] WU L, LUO N, XIE Z, et al. Improved breakdown strength of poly(vinylidene Fluoride)-based composites by using all ball-milled hexagonal boron nitride sheets without centrifugation [J]. Composites Science and Technology,2020,190:108046. doi: 10.1016/j.compscitech.2020.108046
    [30] WU L, WU K, LEI C, et al. Surface modifications of boron nitride nanosheets for poly(vinylidene fluoride) based film capacitors: Advantages of edge-hydroxylation [J]. Journal of Materials Chemistry A,2019,7(13):7664-7674. doi: 10.1039/C9TA00616H
    [31] SHEN Z H, WANG J J, LIN Y, et al. High-throughput phase-field design of high-energy-density polymer nanocomposites [J]. Adv Mater,2018,30(2):1704380. doi: 10.1002/adma.201704380
    [32] SHAOHUI L, JIWEI Z, JINWEN W, et al. Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers [J]. ACS Appl Mater Interfaces,2014,6(3):1533-1540. doi: 10.1021/am4042096
  • 加载中
图(7)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  20
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 录用日期:  2021-12-28
  • 网络出版日期:  2022-01-05

目录

    /

    返回文章
    返回