Size Effect of Boron Nitride Nanosheets on Dielectric Properties of BNNSs/P(VDF-HFP) Composite Films
-
摘要: 通过球磨法制备了两种不同片径大小的氮化硼纳米片(BNNSs),并采用溶液刮膜的方式制备了BNNSs与聚偏氟乙烯-六氟丙烯(P(VDF-HFP))的复合薄膜BNNSs/P(VDF-HFP)。通过介质耐压测试仪与宽频电介质谱仪测试了复合薄膜的击穿强度和介电常数,揭示了BNNSs的片径大小对复合薄膜介电性能的影响。结果表明,大片径纳米片的晶格结构更完善且在P(VDF-HFP)中的取向度更高,在复合薄膜中能形成更完善的绝缘网络,从而能有效阻止复合薄膜发生电导及电力学击穿。与小片径纳米片复合薄膜相比,大片径纳米片复合薄膜具有更高的击穿强度。Abstract: Boron nitride nanosheets (BNNSs) is an insulating material with high breakdown strength (800 kV/mm), which is an ideal candidate for the enhancement of breakdown strength of polymer-based composites. Generally, the lateral size of BNNSs has a significant influence on thermal conductivity and mechanical properties of composites. Thus, it is worthy to further study the size effect of BNNSs on dielectric properties of composites. In this study, edge-hydroxylated BNNSs with large lateral size (l-BNNSs) and small lateral size (s-BNNSs) were respectively added into poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) to prepare BNNSs/P(VDF-HFP) composite films. The breakdown strength and dielectric constant of the composite films are tested by dielectric strength tester and broadband dielectric spectrometer to reveal the size effect of BNNSs on dielectric properties of polymer-based film capacitors. Due to the better crystal lattice of l-BNNSs and higher degree of in-plane orientation compared with s-BNNSs, the insulating network of l-BNNSs/P(VDF-HFP) composite film is more compact and perfect, which can effectively prevent the occurrence of conduction and electrical breakdown in composite films. When the mass fraction of BNNSs is 10%, P(VDF-HFP)/l-BNNSs composite films reach the highest breakdown strength (644 kV/mm). Compared with s-BNNSs/P(VDF-HFP) composite films, the breakdown strength of l-BNNSs/P(VDF-HFP) composite films has an increase of 7.65%.
-
Key words:
- boron nitride nanosheet /
- breakdown strength /
- energy density
-
图 7 (a)s-BNNSs/P(VDF-HFP)和(b)l-BNNSs/P(VDF-HFP)复合薄膜的
$ {\varepsilon }_{\mathrm{r}} $ 和介电损耗;复合薄膜的(c)$ {\varepsilon }_{\mathrm{r}} $ 和介电损耗以及(d)$ {U}_{\mathrm{e}} $ 的总结和对比Figure 7. Dielectric constant and dielectric loss of (a) s-BNNSs/P(VDF-HFP) and (b) l-BNNSs/P(VDF-HFP) composite films; Summary and comparison of (c) dielectric constant and dielectric loss and (d)
$ {U}_{\mathrm{e}} $ of composite films -
[1] DEMI L, RAMALLI A, GIANNINI G, et al. In vitro and in vivo tissue harmonic images obtained with parallel transmit beamforming by means of orthogonal frequency division multiplexing [J]. IEEE Trans Ultrason Ferroelectr Freq Control,2015,62(1):230-235. doi: 10.1109/TUFFC.2014.006599 [2] YAQOOB U, UDDIN A S M I, CHUNG G S. The effect of reduced graphene oxide on the dielectric and ferroelectric properties of PVDF/BaTiO3 nanocomposites [J]. RSC Advances,2016,6(36):30747-30754. doi: 10.1039/C6RA03155B [3] LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites [J]. Nature,2015,523(7562):576-579. doi: 10.1038/nature14647 [4] WANG Y, CUI J, YUAN Q, et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites [J]. Adv Mater,2015,27(42):6658-6663. doi: 10.1002/adma.201503186 [5] LI Q, ZHANG G, LIU F, et al. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets [J]. Energy and Environmental Science,2015,8(3):922-931. [6] HAO Y N, WANG X H, O'BRIEN S, et al. Flexible BaTiO3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density [J]. Journal of Materials Chemistry C,2015,3(37):9740-9747. doi: 10.1039/C5TC01903F [7] LUO B, WANG X, WANG Y, et al. Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss [J]. J Mater Chem A,2014,2(2):510-519. doi: 10.1039/C3TA14107A [8] YAQOOB U, CHUNG G S. Effect of surface treated MWCNTs and BaTiO3 nanoparticles on the dielectric properties of a P(VDF-TrFE) matrix [J]. Journal of Alloys and Compounds,2017,695:1231-1236. doi: 10.1016/j.jallcom.2016.10.250 [9] FAN B H, ZHA J W, WANG D R, et al. Experimental study and theoretical prediction of dielectric permittivity in BaTiO3/polyimide nanocomposite films [J]. Applied Physics Letters,2012,100(9):092903. doi: 10.1063/1.3691198 [10] FAN B H, ZHA J W, WANG D R, et al. Preparation and dielectric behaviors of thermoplastic and thermosetting polymer nanocomposite films containing BaTiO3 nanoparticles with different diameters [J]. Composites Science and Technology,2013,80:66-72. doi: 10.1016/j.compscitech.2013.02.021 [11] LIU F, LI Q, CUI J, et al. High-energy-density dielectric polymer nanocomposites with trilayered architecture [J]. Advanced Functional Materials,2017,27(20):1606292. doi: 10.1002/adfm.201606292 [12] DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics [J]. Nat Nanotechnol,2010,5(10):722-726. doi: 10.1038/nnano.2010.172 [13] CAI Z, WANG X, LUO B, et al. Dielectric response and breakdown behavior of polymer-ceramic nanocomposites: The effect of nanoparticle distribution [J]. Composites Science and Technology,2017,145:105-113. doi: 10.1016/j.compscitech.2017.03.039 [14] CAI Z, WANG X, LUO B, et al. Nanocomposites with enhanced dielectric permittivity and breakdown strength by microstructure design of nanofillers [J]. Composites Science and Technology,2017,151:109-114. doi: 10.1016/j.compscitech.2017.08.015 [15] NEUSEL C, SCHNEIDER G A. Size-dependence of the dielectric breakdown strength from nano- to millimeter scale [J]. Journal of the Mechanics and Physics of Solids,2014,63:201-213. doi: 10.1016/j.jmps.2013.09.009 [16] GUO N, DIBENEDETTO S A, TEWARI P, et al. Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide polyolefin nanocomposites: Experiment and theory [J]. Chemistry of Materials,2010,22(4):1567-1578. doi: 10.1021/cm902852h [17] BI M, HAO Y, ZHANG J, et al. Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites [J]. Nanoscale,2017,9(42):16386-16395. doi: 10.1039/C7NR05212J [18] CAO H Y, GUO Z X, XIANG H, et al. Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons [J]. Physics Letters A,2012,376(4):525-528. doi: 10.1016/j.physleta.2011.11.016 [19] XU X, PEREIRA L F, WANG Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene [J]. Nat Commun,2014,5:3689. doi: 10.1038/ncomms4689 [20] ZHU Z, LI C, SONGFENG E, et al. Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets [J]. Composites Science and Technology,2019,170:93-100. doi: 10.1016/j.compscitech.2018.11.035 [21] PENG L, XU Z, LIU Z, et al. Ultrahigh thermal conductive yet superflexible graphene films [J]. Adv Mater,2017,29(27):1700589. doi: 10.1002/adma.201700589 [22] CHOI J T, KIM D H, RYU K S, et al. Functionalized graphene sheet/polyurethane nanocomposites: Effect of particle size on physical properties [J]. Macromolecular Research,2011,19(8):809-814. doi: 10.1007/s13233-011-0801-4 [23] WU L, WU K, LIU D, et al. Largely enhanced energy storage density of poly(vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets [J]. Journal of Materials Chemistry A,2018,6(17):7573-7584. doi: 10.1039/C8TA01294F [24] SUN J F, WANG M Z, ZHAO Y C, et al. Synthesis of titanium nitride powders by reactive ball milling of titanium and urea [J]. Journal of Alloys and Compounds,2009,482(1-2):L29-L31. doi: 10.1016/j.jallcom.2009.04.043 [25] SUN Y, BOGGS S A, RAMPRASAD R. The intrinsic electrical breakdown strength of insulators from first principles [J]. Applied Physics Letters,2012,101(13):132906. doi: 10.1063/1.4755841 [26] SHI Y, HAMSEN C, JIA X, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition [J]. Nano Lett,2010,10(10):4134-4139. doi: 10.1021/nl1023707 [27] LIN Y, WILLIAMS T V, XU T B, et al. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: Critical role of water [J]. The Journal of Physical Chemistry C,2011,115(6):2679-2685. doi: 10.1021/jp110985w [28] LEE D, LEE B, PARK K H, et al. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling [J]. Nano Lett,2015,15(2):1238-1244. doi: 10.1021/nl504397h [29] WU L, LUO N, XIE Z, et al. Improved breakdown strength of poly(vinylidene Fluoride)-based composites by using all ball-milled hexagonal boron nitride sheets without centrifugation [J]. Composites Science and Technology,2020,190:108046. doi: 10.1016/j.compscitech.2020.108046 [30] WU L, WU K, LEI C, et al. Surface modifications of boron nitride nanosheets for poly(vinylidene fluoride) based film capacitors: Advantages of edge-hydroxylation [J]. Journal of Materials Chemistry A,2019,7(13):7664-7674. doi: 10.1039/C9TA00616H [31] SHEN Z H, WANG J J, LIN Y, et al. High-throughput phase-field design of high-energy-density polymer nanocomposites [J]. Adv Mater,2018,30(2):1704380. doi: 10.1002/adma.201704380 [32] SHAOHUI L, JIWEI Z, JINWEN W, et al. Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers [J]. ACS Appl Mater Interfaces,2014,6(3):1533-1540. doi: 10.1021/am4042096 -