Preparation and Broadband Optical Limiting Performance of Reduced Graphene Oxide Covalently Functionalized with Poly(N-vinylcarbazole)
-
摘要: 用表面带负电荷的还原氧化石墨烯(RGO)作为阴离子聚合引发剂,在RGO表面使N-乙烯基咔唑(NVK)原位聚合,生成可溶性聚乙烯基咔唑(PVK)共价功能化的RGO非线性光学材料(RGO-PVK)。采用红外光谱、X光电子能谱和紫外-可见吸收光谱等对RGO-PVK进行了表征。将RGO-PVK嵌埋在非光学活性的聚甲基丙烯酸甲酯(PMMA)中制备了具有良好光学性能的RGO-PVK/PMMA薄膜,并利用开孔Z扫描技术研究了RGO、RGO-PVK、退火处理的RGO-PVK薄膜在532、1 064 nm激光辐照下的非线性光学(NLO)和光限幅(OL)性能。结果表明:与RGO相比,PVK在RGO表面的共价键合显著增强了材料的宽带NLO性能和OL效应。与没有经过退火处理的RGO-PVK/PMMA薄膜相比,退火后的RGO-PVK/PMMA薄膜展现出更加优良的NLO性能。在532、1 064 nm的激光激发时其非线性吸收系数(βeff)分别为306.17 cm/GW和350.32 cm/GW;相应的光限幅阈值分别为0.37和0.31 GW/cm2。Abstract: Graphene shows ultrafast carrier relaxation dynamics and ultra-broadband resonate nonlinear optical (NLO) response due to their extended p-conjugate system and the linear dispersion relation holding for their electronic band structure. In comparison with graphene, functionalized graphene derivatives would be expected to show more excellent NLO and optical limiting (OL) performance. By using as-synthesized graphene carbanions as initiator in the anionic polymerization, poly(N-vinylcarbazole)-covalently functionalized reduced graphene oxide (RGO) derivative (RGO-PVK) was in situ synthesized. The RGO-PVK was characterized by infrared spectroscopy, X-ray electron spectroscopy and UV-Vis absorption spectroscopy. This soluble material was embedded into an optically nonactive transparent poly(methylmeth-lacrylate) (PMMA) matrix to produce the PMMA-based RGO-PVK film for NOL and OL applications. The nonlinear optical and optical limiting properties of RGO, RGO-PVK, and annealed RGO-PVK films under 532 and 1 064 nm laser irradiation were also investigated using the open-aperture Z-scan technique.The results obtained by nonlinear fitting of the data show that in contrast to RGO, the covalent grafting of PVK chains to the RGO surface significantly improved NLO and broadband OL performance of the resultant material. Upon excitation with laser light, the achieved nonlinear coefficient (βeff) and OL threshold of the annealed RGO-PVK/PMMA film are 306.17 cm/GW and 0.37 GW/cm2 at 532 nm, and 350.32 cm/GW and 0.31 GW/cm2 at 1 064 nm. These findings would make it suitable for protecting the human eyes, optical sensors and optoelectronic devices from the laser beams in the visible and near-infrared spectral region.
-
图 7 (a~d)在532、1 064 nm,6 ns脉冲激光辐射下样品在DMF中的开孔Z扫描曲线(实线是理论拟合结果);(e~f)样品在532、1 064 nm激光辐射下时,归一化透过率(空心点)和散射信号(实心点)随入射激光强度变化的关系曲线
Figure 7. (a—d) Typical open-aperture Z-scan data with normalized transmittance as a function of the sample position Z for samples in DMF under the excitation of 6 ns pulses at 532 and 1 064 nm. (The solid lines are the theoretical fitting results); (e—f) The normalized transmittance (open symbol) and scattering response (solid symbol) as a function of input laser intensity for samples at 532 and 1 064 nm
表 1 样品的线性和非线性参数
Table 1. Linear and NLO data for the samples
Laser Input pulse energy/μJ Sample T0/% α0/cm−1 Βeff/(cm·GW−1) Imχ(3) ×10−12/esu 532 nm
10 Hz
6 ns100 RGO in DMF 82.01 1.98 11.65 4.01 RGO-PVK in DMF 72.79 2.18 44.29 15.24 532 nm
2 Hz,
6 ns100 RGO/PMMA 65.96 34.97 88.61 30.54 Annealed RGO/PMMA 68.56 32.26 125.02 43.08 RGO-PVK/PMMA 51.73 51.49 235.80 81.27 Annealed
RGO-PVK/PMMA56.94 46.93 306.17 105.52 1 064 nm
10 Hz
6 ns150 RGO in DMF 82.27 1.95 9.80 6.75 RGO-PVK in DMF 77.19 2.59 50.88 35.04 1 064 nm
2 Hz
6 ns200 RGO/PMMA 75.97 23.17 196.62 135.45 Annealed
RGO/PMMA76.27 23.23 209.19 144.10 RGO-PVK/PMMA 62.57 36.63 336.11 231.53 Annealed
RGO-PVK/PMMA65.02 35.87 350.32 241.32 T0 : linear transmittance; α0 : linear absorption coefficient; βeff : nonlinear coefficient; Imχ(3) :imaginary third-order susceptibility -
[1] CHEN Y, ZHANG B, LIU G, ZHUANG X D, KANG ET. Graphene and its derivatives: Switching on and off [J]. Chemical Society Review, 2012, 41(13): 4688-4707. [2] CHEN Y, BAI T, DONG NN, FAN F, ZHANG SF, ZHUANG X D, SUN J, ZHANG B, ZHANG X Y, WANG J, BLAU W J. Graphene and its derivatives for laser protection [J]. Progress in Materials Science, 2016, 84: 118-157. [3] CHEN Y, LIU G, WANG C, ZHANG W B, LI R W, WANG L X. Polymer memristor for information storage and neuromorphic applications [J]. Materials Horizons,2014,1(5):489-506. doi: 10.1039/C4MH00067F [4] PAN Z, GU H L, WU M T, LI Y X, CHEN Y. Graphene-based functional materials for organic solar cells [J]. Optical Materials Express, 2012, 2(6): 814-824. [5] 李聪琦, 程红霞, 潘月琴, 白婷, 陈彧. 聚苯胺共价修饰的氧化石墨烯的合成及其光限幅性能[J]. 功能高分子学报, 2015, 28(1).LI C Q, CHENG H X, PAN Y Q, BAI T, CHEN Yu. Synthesis and Optical Limiting Performance of Graphene Oxide Covalently Functionalized with Polyaniline[J]. Journal of Functional Polymers, 2015, 28(1). [6] TARCAN R, TODOR-BOER O, PETROVAI I, LEORDEAN C, ASTILEAN S, BOTIZ I. Reduced graphene oxide today [J]. Journal of Materials Chemistry C,2020,8(4):1198-1224. doi: 10.1039/C9TC04916A [7] WANG Y L, CHEN Y A, LACEY S D, XU L S, XIE H, LI T, DANNER V A, HU L B. Reduced graphene oxide film with record-high conductivity and mobility [J]. Materials Today,2018,21(2):186-192. doi: 10.1016/j.mattod.2017.10.008 [8] RAMOS-FERNANDEZ G, MUNOZ M, GARCIA-QUESADA J C, RODRIGUEZ-PASTOR I, MARTIN-GULLON I. Role of graphene oxide surface chemistry on the improvement of the interlaminar mechanical properties of resin infusion processed epoxy-carbon fiber composites [J]. Polymer Composites,2018,39:E2116-E2124. doi: 10.1002/pc.24478 [9] ZHUANG X D, CHEN Y, LIU G, LI P P, ZHU C X, KANG E T, NEOH K G, ZAHNG B, ZHU J H, LI Y X. Conjugated polymer functionalized graphene oxide: Synthesis and nonvolatile rewritable memory effect [J]. Advanced Materials, 2010, 22(15): 1731-1735. [10] YANG C, GONG J Y, ZENG P, YANG X L, LIANG R Q, OU Q R, ZHANG S Y. Fast room-temperature reduction of graphene oxide by methane/argon plasma for flexible electronics [J]. Applied Surface Science,2018,452:481-486. doi: 10.1016/j.apsusc.2018.04.272 [11] LABUNOV V A, TABULINA L V, KOMISSAROV I V, MIKHNAVETS L A, TKACH A N. Reduction of graphene from graphene oxide in different media [J]. Materials Physics and Mechanics,2019,41(1):1-7. [12] XIE X X, ZHOU Y P, HUANG K M. Advances in microwave-assisted production of reduced graphene oxide[J]. Frontiers in Chemistry, 2019, 7: 355. [13] WANG C I, PERIASAMY A P, CHANG H T. Photoluminescent C-dots@RGO probe for sensitive and selective detection of acetylcholine [J]. Analytical Chemistry,2013,85(6):3263-3270. doi: 10.1021/ac303613d [14] DISSANAYAKE D M A S, CIFUENTES M P, HUMPHREY M G. Optical limiting properties of reduced graphene oxide covalently functionalized by coordination complexes [J]. Coordination Chemistry Reviews,2018,375:489-513. doi: 10.1016/j.ccr.2018.05.003 [15] SARAVANAN M, GIRISUN T C S. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures [J]. Applied Surface Science,2017,392:904-911. doi: 10.1016/j.apsusc.2016.09.109 [16] HAO Y, WANG L W, ZHU B H, ZHANG Y M, GU Y Z. Regulation and enhancement of the nonlinear optical properties of reduced graphene oxide through Au nanospheres and Au@CdS core-shells [J]. Optics Express,2021,29(6):9454-9464. doi: 10.1364/OE.422584 [17] GIRISUN T C S, SARAVANAN M, SOMA V R. Wavelength-dependent nonlinear optical absorption and broadband optical limiting in Au-Fe2O3-RGO nanocomposites [J]. ACS Applied Nano Materials,2018,1(11):6337-6348. doi: 10.1021/acsanm.8b01544 [18] DU Y L, DONG N N, ZHANG M H, ZHU K, NA R Q, ZHANG S L, SUN N W, WANG G B, WANG J. Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting [J]. Physical Chemistry Chemical Physics, 2017, 19: 2252-2260. [19] LIU Z W, DONG N N, JIANG P, WANG K X, WANG J, CHEN Y. Reduced graphene oxide chemically modified with aggregation induced emission polymer for solid state optical limiter [J]. Chemistry:A European Journal,2018,24:19317-19322. doi: 10.1002/chem.201804224 [20] ZHANG Z H, ZHU B H, LI P, LI P C, WANG G X, GU Y Z. Synthesis and third-order nonlinear optical properties of α-MnS and α-MnS/rGO composites [J]. Optical Materials,2019,92:156-162. doi: 10.1016/j.optmat.2019.04.016 [21] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society,1958,80(6):1339. doi: 10.1021/ja01539a017 [22] ZHU Y W, CAI W W, PINER R D, VELAMAKANNI A, RUOFF R S. Transparent self-assembled films of reduced graphene oxide platelets [J]. Applied Physics Letters,2009,95(10):103104. doi: 10.1063/1.3212862 [23] ZHANG K, MAO L, ZHANG L L, CHAN H S O, ZHAO X S, WU J S. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes [J]. Journal of Materials Chemistry,2011,21(20):7302-7307. doi: 10.1039/c1jm00007a [24] LI P P, NIU L J, CHEN Y, WANG J, LIU Y, ZHANG J J, BLAU W J. In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes [J]. Nanotechnology,2011,22(1):015204. doi: 10.1088/0957-4484/22/1/015204 [25] WAINWRIGHT M, GRIFFITHS J, GUTHRIC J T, GUTHRIE A P, GATES D E, MURRAY. Copolymers of N-vinylcarbazole with monomers containing carboxylic acid groups or carboxylic anhydride groups [J]. Journal of Applied Polymer Science,2010,44(7):1187-1193. [26] CAO C A, ZHUANG X, SU Y Z, ZHANG Y, ZHANNG F, WU D Q, FENG X L. 2 D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction [J]. Polymer Chemistry,2014,5(6):2057-2064. doi: 10.1039/C3PY01581E -