高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯基咔唑共价接枝还原氧化石墨烯的制备及其宽带光限幅性能

沈希彬 白婷 车强 陈彧

沈希彬, 白婷, 车强, 陈彧. 聚乙烯基咔唑共价接枝还原氧化石墨烯的制备及其宽带光限幅性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20211025001
引用本文: 沈希彬, 白婷, 车强, 陈彧. 聚乙烯基咔唑共价接枝还原氧化石墨烯的制备及其宽带光限幅性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20211025001
SHEN Xibin, BAI Ting, CHE Qiang, CHEN Yu. Preparation and Broadband Optical Limiting Performance of Reduced Graphene Oxide Covalently Functionalized with Poly(N-vinylcarbazole)[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20211025001
Citation: SHEN Xibin, BAI Ting, CHE Qiang, CHEN Yu. Preparation and Broadband Optical Limiting Performance of Reduced Graphene Oxide Covalently Functionalized with Poly(N-vinylcarbazole)[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20211025001

聚乙烯基咔唑共价接枝还原氧化石墨烯的制备及其宽带光限幅性能

doi: 10.14133/j.cnki.1008-9357.20211025001
基金项目: 国家自然科学基金 (61378072)
详细信息
    作者简介:

    沈希彬(1997—)男,山东淄博人,硕士研究生,从事激光防护材料的研究。E-mail: 1131722625@qq.com

  • 中图分类号: O437

Preparation and Broadband Optical Limiting Performance of Reduced Graphene Oxide Covalently Functionalized with Poly(N-vinylcarbazole)

  • 摘要: 用表面带负电荷的还原氧化石墨烯(RGO)作为阴离子聚合引发剂,在RGO表面使N-乙烯基咔唑(NVK)原位聚合,生成可溶性聚乙烯基咔唑(PVK)共价功能化的RGO非线性光学材料(RGO-PVK)。采用红外光谱、X光电子能谱和紫外-可见吸收光谱等对RGO-PVK进行了表征。将RGO-PVK嵌埋在非光学活性的聚甲基丙烯酸甲酯(PMMA)中制备了具有良好光学性能的RGO-PVK/PMMA薄膜,并利用开孔Z扫描技术研究了RGO、RGO-PVK、退火处理的RGO-PVK薄膜在532、1 064 nm激光辐照下的非线性光学(NLO)和光限幅(OL)性能。结果表明:与RGO相比,PVK在RGO表面的共价键合显著增强了材料的宽带NLO性能和OL效应。与没有经过退火处理的RGO-PVK/PMMA薄膜相比,退火后的RGO-PVK/PMMA薄膜展现出更加优良的NLO性能。在532、1 064 nm的激光激发时其非线性吸收系数(βeff)分别为306.17 cm/GW和350.32 cm/GW;相应的光限幅阈值分别为0.37和0.31 GW/cm2

     

  • 图  1  RGO-PVK的合成

    Figure  1.  Synthesis of RGO-PVK

    图  2  (a) RGO和RGO-PVK的全扫描XPS全谱;(b) RGO-PVK的C1 s 核能级XPS光谱

    Figure  2.  (a) Wide scan XPS spectra of RGO and RGO-PVK; (b) C1 s core-level XPS spectrum of RGO-PVK

    图  3  样品的红外光谱图

    Figure  3.  FT-IR spectra of samples

    图  4  样品的热重分析曲线

    Figure  4.  TGA curves of the samples

    图  5  (a)RGO-PVK和PVK的紫外-可见吸收光谱;(b)RGO-PVK的DMF溶液暴露在日光下不同天数时的紫外可见吸收光谱

    Figure  5.  (a)UV-Vis absorption spectra of RGO-PVK and PVK;(b) UV-Vis absorption spectrum of RGO-PVK before and after exposure to ambient light

    图  6  样品的SEM照片

    Figure  6.  SEM images of the samples

    (a)−GO; (b)−RGO; (c)−RGO-PVK before annealing; (d)−annealed RGO-PVK

    图  7  (a~d)在532、1 064 nm,6 ns脉冲激光辐射下样品在DMF中的开孔Z扫描曲线(实线是理论拟合结果);(e~f)样品在532、1 064 nm激光辐射下时,归一化透过率(空心点)和散射信号(实心点)随入射激光强度变化的关系曲线

    Figure  7.  (a—d) Typical open-aperture Z-scan data with normalized transmittance as a function of the sample position Z for samples in DMF under the excitation of 6 ns pulses at 532 and 1 064 nm. (The solid lines are the theoretical fitting results); (e—f) The normalized transmittance (open symbol) and scattering response (solid symbol) as a function of input laser intensity for samples at 532 and 1 064 nm

    图  8  基于PMMA的薄膜样品在532、1 064 nm,6 ns脉冲激光辐射下的典型开孔Z扫描数据

    Figure  8.  Typical open-aperture Z-scan data for the PMMA-based films excited under 6 ns pulses at 532、1 064 nm

    图  9  (a,b)532、1 064 nm下各PMMA薄膜样品归一化透过率作为入射激光强度的函数曲线;(c,d)PMMA样品的βeff作为激光脉冲能量的函数曲线

    Figure  9.  (a,b) Normalized transmittance as a function of input laser intensity for samples at 532、1 064 nm. (c,d) βeff as a function of the excitation pulse energy for these PMMA-based films

    表  1  样品的线性和非线性参数

    Table  1.   Linear and NLO data for the samples

    LaserInput pulse energy/μJSampleT0/%α0/cm−1Βeff/(cm·GW−1)Imχ(3) ×10−12/esu
    532 nm
    10 Hz
    6 ns
    100 RGO in DMF 82.01 1.98 11.65 4.01
    RGO-PVK in DMF 72.79 2.18 44.29 15.24
    532 nm
    2 Hz,
    6 ns
    100 RGO/PMMA 65.96 34.97 88.61 30.54
    Annealed RGO/PMMA 68.56 32.26 125.02 43.08
    RGO-PVK/PMMA 51.73 51.49 235.80 81.27
    Annealed
    RGO-PVK/PMMA
    56.94 46.93 306.17
    105.52
    1 064 nm
    10 Hz
    6 ns
    150 RGO in DMF 82.27 1.95 9.80 6.75
    RGO-PVK in DMF 77.19 2.59 50.88 35.04
    1 064 nm
    2 Hz
    6 ns
    200 RGO/PMMA 75.97 23.17 196.62 135.45
    Annealed
    RGO/PMMA
    76.27 23.23 209.19 144.10
    RGO-PVK/PMMA 62.57 36.63 336.11 231.53
    Annealed
    RGO-PVK/PMMA
    65.02 35.87 350.32 241.32
    T0 : linear transmittance; α0 : linear absorption coefficient; βeff : nonlinear coefficient; Imχ(3) :imaginary third-order susceptibility
    下载: 导出CSV
  • [1] CHEN Y, ZHANG B, LIU G, ZHUANG X D, KANG ET. Graphene and its derivatives: Switching on and off [J]. Chemical Society Review, 2012, 41(13): 4688-4707.
    [2] CHEN Y, BAI T, DONG NN, FAN F, ZHANG SF, ZHUANG X D, SUN J, ZHANG B, ZHANG X Y, WANG J, BLAU W J. Graphene and its derivatives for laser protection [J]. Progress in Materials Science, 2016, 84: 118-157.
    [3] CHEN Y, LIU G, WANG C, ZHANG W B, LI R W, WANG L X. Polymer memristor for information storage and neuromorphic applications [J]. Materials Horizons,2014,1(5):489-506. doi: 10.1039/C4MH00067F
    [4] PAN Z, GU H L, WU M T, LI Y X, CHEN Y. Graphene-based functional materials for organic solar cells [J]. Optical Materials Express, 2012, 2(6): 814-824.
    [5] 李聪琦, 程红霞, 潘月琴, 白婷, 陈彧. 聚苯胺共价修饰的氧化石墨烯的合成及其光限幅性能[J]. 功能高分子学报, 2015, 28(1).

    LI C Q, CHENG H X, PAN Y Q, BAI T, CHEN Yu. Synthesis and Optical Limiting Performance of Graphene Oxide Covalently Functionalized with Polyaniline[J]. Journal of Functional Polymers, 2015, 28(1).
    [6] TARCAN R, TODOR-BOER O, PETROVAI I, LEORDEAN C, ASTILEAN S, BOTIZ I. Reduced graphene oxide today [J]. Journal of Materials Chemistry C,2020,8(4):1198-1224. doi: 10.1039/C9TC04916A
    [7] WANG Y L, CHEN Y A, LACEY S D, XU L S, XIE H, LI T, DANNER V A, HU L B. Reduced graphene oxide film with record-high conductivity and mobility [J]. Materials Today,2018,21(2):186-192. doi: 10.1016/j.mattod.2017.10.008
    [8] RAMOS-FERNANDEZ G, MUNOZ M, GARCIA-QUESADA J C, RODRIGUEZ-PASTOR I, MARTIN-GULLON I. Role of graphene oxide surface chemistry on the improvement of the interlaminar mechanical properties of resin infusion processed epoxy-carbon fiber composites [J]. Polymer Composites,2018,39:E2116-E2124. doi: 10.1002/pc.24478
    [9] ZHUANG X D, CHEN Y, LIU G, LI P P, ZHU C X, KANG E T, NEOH K G, ZAHNG B, ZHU J H, LI Y X. Conjugated polymer functionalized graphene oxide: Synthesis and nonvolatile rewritable memory effect [J]. Advanced Materials, 2010, 22(15): 1731-1735.
    [10] YANG C, GONG J Y, ZENG P, YANG X L, LIANG R Q, OU Q R, ZHANG S Y. Fast room-temperature reduction of graphene oxide by methane/argon plasma for flexible electronics [J]. Applied Surface Science,2018,452:481-486. doi: 10.1016/j.apsusc.2018.04.272
    [11] LABUNOV V A, TABULINA L V, KOMISSAROV I V, MIKHNAVETS L A, TKACH A N. Reduction of graphene from graphene oxide in different media [J]. Materials Physics and Mechanics,2019,41(1):1-7.
    [12] XIE X X, ZHOU Y P, HUANG K M. Advances in microwave-assisted production of reduced graphene oxide[J]. Frontiers in Chemistry, 2019, 7: 355.
    [13] WANG C I, PERIASAMY A P, CHANG H T. Photoluminescent C-dots@RGO probe for sensitive and selective detection of acetylcholine [J]. Analytical Chemistry,2013,85(6):3263-3270. doi: 10.1021/ac303613d
    [14] DISSANAYAKE D M A S, CIFUENTES M P, HUMPHREY M G. Optical limiting properties of reduced graphene oxide covalently functionalized by coordination complexes [J]. Coordination Chemistry Reviews,2018,375:489-513. doi: 10.1016/j.ccr.2018.05.003
    [15] SARAVANAN M, GIRISUN T C S. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures [J]. Applied Surface Science,2017,392:904-911. doi: 10.1016/j.apsusc.2016.09.109
    [16] HAO Y, WANG L W, ZHU B H, ZHANG Y M, GU Y Z. Regulation and enhancement of the nonlinear optical properties of reduced graphene oxide through Au nanospheres and Au@CdS core-shells [J]. Optics Express,2021,29(6):9454-9464. doi: 10.1364/OE.422584
    [17] GIRISUN T C S, SARAVANAN M, SOMA V R. Wavelength-dependent nonlinear optical absorption and broadband optical limiting in Au-Fe2O3-RGO nanocomposites [J]. ACS Applied Nano Materials,2018,1(11):6337-6348. doi: 10.1021/acsanm.8b01544
    [18] DU Y L, DONG N N, ZHANG M H, ZHU K, NA R Q, ZHANG S L, SUN N W, WANG G B, WANG J. Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting [J]. Physical Chemistry Chemical Physics, 2017, 19: 2252-2260.
    [19] LIU Z W, DONG N N, JIANG P, WANG K X, WANG J, CHEN Y. Reduced graphene oxide chemically modified with aggregation induced emission polymer for solid state optical limiter [J]. Chemistry:A European Journal,2018,24:19317-19322. doi: 10.1002/chem.201804224
    [20] ZHANG Z H, ZHU B H, LI P, LI P C, WANG G X, GU Y Z. Synthesis and third-order nonlinear optical properties of α-MnS and α-MnS/rGO composites [J]. Optical Materials,2019,92:156-162. doi: 10.1016/j.optmat.2019.04.016
    [21] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society,1958,80(6):1339. doi: 10.1021/ja01539a017
    [22] ZHU Y W, CAI W W, PINER R D, VELAMAKANNI A, RUOFF R S. Transparent self-assembled films of reduced graphene oxide platelets [J]. Applied Physics Letters,2009,95(10):103104. doi: 10.1063/1.3212862
    [23] ZHANG K, MAO L, ZHANG L L, CHAN H S O, ZHAO X S, WU J S. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes [J]. Journal of Materials Chemistry,2011,21(20):7302-7307. doi: 10.1039/c1jm00007a
    [24] LI P P, NIU L J, CHEN Y, WANG J, LIU Y, ZHANG J J, BLAU W J. In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes [J]. Nanotechnology,2011,22(1):015204. doi: 10.1088/0957-4484/22/1/015204
    [25] WAINWRIGHT M, GRIFFITHS J, GUTHRIC J T, GUTHRIE A P, GATES D E, MURRAY. Copolymers of N-vinylcarbazole with monomers containing carboxylic acid groups or carboxylic anhydride groups [J]. Journal of Applied Polymer Science,2010,44(7):1187-1193.
    [26] CAO C A, ZHUANG X, SU Y Z, ZHANG Y, ZHANNG F, WU D Q, FENG X L. 2 D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction [J]. Polymer Chemistry,2014,5(6):2057-2064. doi: 10.1039/C3PY01581E
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 录用日期:  2022-02-28
  • 网络出版日期:  2022-03-09

目录

    /

    返回文章
    返回