Electro-Driven Carbon Black/Liquid Metal/Liquid Crystal Elastomer Composite Film
-
摘要: 利用导电填料碳黑(CB)嵌入液态金属/液晶弹性体(LM/LCE)复合薄膜中,通过二次交联法制备了类似于“三明治”结构的电刺激响应碳黑/液态金属/液晶弹性体(CB/LM/LCE)复合薄膜。通过傅里叶红外光谱、差示扫描量热、广角X射线衍射、扫描电子显微镜、万能拉伸试验仪和电驱动响应机制等对LM/LCE和CB/LM/LCE复合薄膜分别进行表征和分析。研究结果表明,LM/LCE和CB/LM/LCE复合薄膜具有优异的力学性能和电驱动收缩可逆形变性能,在80 V电压驱动下,可实现高效电热转换,最大收缩率达到45%;在负载50 g重物的情况下,依然可以实现可逆电致收缩形变,最大收缩率为42%。Abstract: Electro-driven liquid crystal elastomer (LCE) materials have broad application prospects in soft actuators, artificial muscles and micro-robots. Traditional electro-driven LCE materials are mostly prepared by doping conductive materials (carbon nanotubes, graphene, carbon black, etc.) into the polymer materials. In order to improve the conductivity, it is often necessary to increase the amount of conductive fillers, which leads to the poor mechanical properties and unsatisfactory actuation effect. To solve this problem, the liquid metal/liquid crystal elastomer (LM/LCE) composite film is prepared, then carbon black conductive filler is embedded between two LM/LCE films to obtain an electro-driven carbon black/liquid metal/liquid crystal elastomer (CB/LM/LCE) composite film with a "sandwich" structure. The composite materials are characterized and analyzed by Fourier infrared spectroscopy, differential scanning calorimetry, wide angle X-ray diffraction, scanning electron microscope, universal tensile testing instrument, etc. The results show that the LM/LCE film has excellent mechanical properties. After further embedding carbon black conductive filler between two LM/LCE films, the CB/LM/LCE composite film can perform a reversible electro-driven shrinking deformation with efficient electrothermal conversion effect. Powered by an 80 V direct current supply, the CB/LM/LCE composite film can perform a reversible shape deformation and the surface temperature increases from 30 ℃ to 124 ℃ in 240 s. The shrinkage rate of the CB/LM/LCE composite film reaches 18% in 130 s and the deformation shrinkage increases rapidly in the next 70 s. At 200 s, the maximum shrinkage rate can reach 45%. With a load of 50 g mass, the CB/LM/LCE composite film can still perform a remarkable reversible deformation with a maximum shrinkage rate of 42%.
-
Key words:
- electro-driven /
- carbon black /
- liquid metal /
- liquid crystal elastomer /
- soft actuator
-
图 6 (a)LCE-LCE和(b)LM/LCE-LM/LCE双层薄膜的SEM截面形貌;CB/LM/LCE复合薄膜的(c)上层膜和(d)下层膜的SEM表面形貌;(e)CB/LM/LCE复合薄膜的SEM截面形貌;(f)中间CB层的SEM图
Figure 6. SEM images of cross-sectional areas of (a)LCE-LCE film and (b) LM/LCE-LM/LCE film; SEM imges of (c) upper surface and (d) lower surface of the CB/LM/LCE film; SEM images of (e) CB/LM/LCE composite film cross-section and (f) CB layer
-
[1] 戴俊燕, 刘伟昌, 连彦青, 刘德山. 液晶聚合物网络研究进展 [J]. 功能高分子学报,2000,13(3):349-357. doi: 10.3969/j.issn.1008-9357.2000.03.023DAI J Y, LIU W C, LIAN Y Q, LIU D S. Research progress of liquid crystal polymer networks [J]. Journal of Functional Polymers,2000,13(3):349-357. doi: 10.3969/j.issn.1008-9357.2000.03.023 [2] WANG Y C, DANG A L, ZHANG Z F, YIN R, GAO Y C, FENG L, YANG S. Repeatable and reprogrammable shape morphing from photoresponsive gold nanorod/liquid crystal elastomers [J]. Advanced Materials,2020,32(46):2004270. doi: 10.1002/adma.202004270 [3] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体 [J]. 化学进展,2020,32(10):1452-1461.WANG M, MA D Y, WANG C J. Near-infrared light responsive liquid crystal elastomers [J]. Progress in Chemistry,2020,32(10):1452-1461. [4] ZHU J C, HAN T, GUO Y, WANG P, XIE H L, MENG Z G, YU Z Q, TANG B Z. Design and synthesis of luminescent liquid crystalline polymers with "Jacketing" effect and luminescent patterning applications [J]. Macromolecules,2019,52(10):3668-3679. doi: 10.1021/acs.macromol.9b00221 [5] WANG M, SAYED S M, GUO L X, LIN B P, ZHANG X Q, SUN Y, YANG H. Multi-stimuli responsive carbon nanotube incorporated polysiloxane azobenzene liquid crystalline elastomer composites [J]. Macromolecules,2016,49(2):663-671. doi: 10.1021/acs.macromol.5b02388 [6] HE Q G, WANG Z J, WANG Y, SONG Z Q, CAI S Q. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator [J]. ACS Applied Materials & Interfaces,2020,12(31):35464-35474. [7] TAO L, LI M L, YANG K P, GUAN Y, WANG P, SHEN Z H, XIE H L. Color-tunable and stimulus-responsive luminescent liquid crystalline polymers fabricated by hydrogen bonding [J]. ACS Applied Materials & Interfaces,2019,11(16):15051-15059. [8] LV J A, LIU Y Y, WEI J, CHEN E Q, QIN L, YU Y L. Photocontrol of fluid slugs in liquid crystal polymer microactuators [J]. Nature,2016,537(7619):179-182. doi: 10.1038/nature19344 [9] LIU L, LIU M H, DENG L L, LIN B P, YANG H. Near-infrared chromophore functionalized soft actuator with ultrafast photoresponsive speed and superior mechanical property [J]. Journal of the American Chemical Society,2017,139(33):11333-11336. doi: 10.1021/jacs.7b06410 [10] 卿鑫, 吕久安, 俞燕蕾. 光致形变液晶高分子 [J]. 高分子学报,2017(11):1679-1705. doi: 10.11777/j.issn1000-3304.2017.17196QING X, LYU J A, YU Y L. Photodeformation liquid crystal polymer [J]. Acta Polymerica Sinica,2017(11):1679-1705. doi: 10.11777/j.issn1000-3304.2017.17196 [11] WANG C J, SIM K, CHEN J, KIM H, RAO Z Y, LI Y H, CHEN W Q, SONG J Z, VERDUZCO R, YU C J. Soft ultrathin electronics innervated adaptive fully soft robots [J]. Advanced Materials,2018,30(13):1706695. doi: 10.1002/adma.201706695 [12] QIAN X J, CHEN Q M, YANG Y, XU Y S, LI Z, WANG Z H, WU Y H, WEI Y, JI Y. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots [J]. Advanced Materials,2018,30(29):1801103. doi: 10.1002/adma.201801103 [13] KAISER A, WINKLER M, KRAUSE S, FINKELMANN H, SCHMIDT A M. Magnetoactive liquid crystal elastomer nanocomposites [J]. Journal of Materials Chemistry,2009,19(4):538-543. doi: 10.1039/B813120C [14] HERRERA-POSADA S, MORA-NAVARRO C, ORTIZ-BERMUDEZ P, TORRES-LUGO M, MCELHINNY K M, EVANS P G, CALCAGNO B O, ACEVEDO A. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates [J]. Materials Science & Engineering C: Materials for Biological Applications,2016,65:369-378. [15] LIU H R, TIAN H M, SHAO J Y, WANG Z J, LI X M, WANG C H, CHEN X L. An electrically actuated soft artificial muscle based on a high-performance flexible electrothermal film and liquid-crystal elastomer [J]. ACS Applied Materials & Interfaces,2020,12(50):56338-56349. [16] WANG Y, WANG Z J, HE Q G, IYER P, CAI S Q. Electrically controlled soft actuators with multiple and reprogrammable actuation modes [J]. Advanced Intelligent Systems,2020,2(6):1900177. doi: 10.1002/aisy.201900177 [17] WANG M, CHENG Z W, ZUO B, CHEN X M, HUANG S, YANG H. Liquid crystal elastomer electric locomotives [J]. ACS Macro Letters,2020,9(6):860-865. doi: 10.1021/acsmacrolett.0c00333 [18] XIAO Y Y, JIANG Z C, TONG X, ZHAO Y. Biomimetic locomotion of electrically powered "Janus" soft robots using a liquid crystal polymer [J]. Advanced Materials,2019,31(36):1903452. doi: 10.1002/adma.201903452 [19] HE Q G, WANG Z J, WANG Y, MINORI A, TOLLEY M T, CAI S Q. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation [J]. Science Advances,2019,5(10):eaax5746. doi: 10.1126/sciadv.aax5746 [20] BOOTHBY J M, GAGNON J C, MCDOWELL E, VAN VOLKENBURG T, CURRANO L, XIA Z Y. An untethered soft robot based on liquid crystal elastomers[J]. Soft Robotics, 2022, 9(1): 154-162. [21] HU Y, LIU J Q, CHANG L F, YANG L L, XU A F, QI K, LU P, WU G, CHEN W, WU Y C. Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite [J]. Advanced Functional Materials,2017,27(44):1704388. doi: 10.1002/adfm.201704388 [22] LEHMANN W, SKUPIN H, TOLKSDORF C, GEBHARD E, ZENTEL R, KRUGER P, LOSCHE M, KREMER F. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers [J]. Nature,2001,410(6827):447-450. doi: 10.1038/35068522 [23] CHAMBERS M, FINKELMANN H, REMSKAR M, SANCHEZ-FERRER A, ZALAR B, ZUMER S. Liquid crystal elastomer-nanoparticle systems for actuation [J]. Journal of Materials Chemistry,2009,19(11):1524-1531. doi: 10.1039/B812423J [24] GRECO F, DOMENICI V, DESII A, SINIBALDI E, ZUPANCIC B, ZALAR B, MAZZOLAI B, MATTOLI V. Liquid single crystal elastomer/conducting polymer bilayer composite actuator: modelling and experiments [J]. Soft Matter,2013,9(47):11405-11416. doi: 10.1039/c3sm51153g [25] YUK H, LU B Y, LIN S, QU K, XU J K, LUO J H, ZHAO X H. 3D printing of conducting polymers [J]. Nature Communications,2020,11(1):1604. doi: 10.1038/s41467-020-15316-7 [26] CHAMBERS M, ZALAR B, REMSKAR M, ZUMER S, FINKELMANN H. Actuation of liquid crystal elastomers reprocessed with carbon nanoparticles [J]. Applied Physics Letters,2006,89(24):243116. doi: 10.1063/1.2404952 [27] SHAHINPOOR M. Electrically-activated artificial muscles made with liquid crystal elastomers [J]. Smart Structures and Materials,2000,3987:187-192. [28] SCHUHLADEN S, PRELLER F, RIX R, PETSCH S, ZENTEL R, ZAPPE H. Iris-like tunable aperture employing liquid-crystal elastomers [J]. Advanced Materials,2014,26(42):7247-7251. doi: 10.1002/adma.201402878 [29] PETSCH S, KHATRI B, SCHUHLADEN S, KOBELE L, RIX R, ZENTEL R, ZAPPE H. Muscular MEMS-the engineering of liquid crystal elastomer actuators [J]. Smart Material Structures,2016,25(8):085010. doi: 10.1088/0964-1726/25/8/085010 [30] YUAN C, ROACH D J, DUNN C K, MU Q Y, KUANG X, YAKACKI C M, WANG T J, YU K, QI H J. 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers [J]. Soft Matter,2017,13(33):5558-5568. doi: 10.1039/C7SM00759K [31] FORD M J, AMBULO C P, KENT T A, MARKVICKA E J, PAN C F, MALEN J, WARE T H, MAJIDI C. A multifunctional shape morphing elastomer with liquid metal inclusions [J]. Proceedings of the National Academy of Sciences,2019,116(43):21428-21444. [32] FORD M J, PALANISWAMY M, AMBULO C P, WARE T H, MAJIDI C. Size of liquid metal particles influences actuation properties of a liquid crystal elastomer composite [J]. Soft Matter,2020,16(25):5878-5885. doi: 10.1039/D0SM00278J [33] LU H F, WANG M, CHEN X M, LIN B P, YANG H. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property [J]. Journal of the American Chemical Society,2019,141(36):14364-14369. doi: 10.1021/jacs.9b06757 [34] 王宇航, 魏倩, 耿子傲, 贾光勇, 冯云涛. 液晶弹性体的研究进展 [J]. 山东化工,2020,49(7):61-63. doi: 10.3969/j.issn.1008-021X.2020.07.021WANG Y H, WEI Q, GEN Z A, JIA G Y, FENG Y T. Research progress of liquid crystal elastomers [J]. Shandong Chemical Industry,2020,49(7):61-63. doi: 10.3969/j.issn.1008-021X.2020.07.021 -