高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电驱动碳黑/液态金属/液晶弹性体复合薄膜

周正峰 王猛

周正峰, 王 猛. 电驱动碳黑/液态金属/液晶弹性体复合薄膜[J]. 功能高分子学报,2022,35(4):357-364 doi: 10.14133/j.cnki.1008-9357.20211021001
引用本文: 周正峰, 王 猛. 电驱动碳黑/液态金属/液晶弹性体复合薄膜[J]. 功能高分子学报,2022,35(4):357-364 doi: 10.14133/j.cnki.1008-9357.20211021001
ZHOU Zhengfeng, WANG Meng. Electro-Driven Carbon Black/Liquid Metal/Liquid Crystal Elastomer Composite Film[J]. Journal of Functional Polymers, 2022, 35(4): 357-364. doi: 10.14133/j.cnki.1008-9357.20211021001
Citation: ZHOU Zhengfeng, WANG Meng. Electro-Driven Carbon Black/Liquid Metal/Liquid Crystal Elastomer Composite Film[J]. Journal of Functional Polymers, 2022, 35(4): 357-364. doi: 10.14133/j.cnki.1008-9357.20211021001

电驱动碳黑/液态金属/液晶弹性体复合薄膜

doi: 10.14133/j.cnki.1008-9357.20211021001
基金项目: 国家自然科学基金项目(51903048, 52173109)
详细信息
    作者简介:

    周正峰(1997—),男,硕士生,主要研究方向为液晶高分子材料。E-mail:3232226441@qq.com

    通讯作者:

    王 猛,E-mail:wangm@seu.edu.cn

  • 中图分类号: O63

Electro-Driven Carbon Black/Liquid Metal/Liquid Crystal Elastomer Composite Film

  • 摘要: 利用导电填料碳黑(CB)嵌入液态金属/液晶弹性体(LM/LCE)复合薄膜中,通过二次交联法制备了类似于“三明治”结构的电刺激响应碳黑/液态金属/液晶弹性体(CB/LM/LCE)复合薄膜。通过傅里叶红外光谱、差示扫描量热、广角X射线衍射、扫描电子显微镜、万能拉伸试验仪和电驱动响应机制等对LM/LCE和CB/LM/LCE复合薄膜分别进行表征和分析。研究结果表明,LM/LCE和CB/LM/LCE复合薄膜具有优异的力学性能和电驱动收缩可逆形变性能,在80 V电压驱动下,可实现高效电热转换,最大收缩率达到45%;在负载50 g重物的情况下,依然可以实现可逆电致收缩形变,最大收缩率为42%。

     

  • 图  1  (a)RM257、EDDET、PETMP和DPA的化学结构式;(b)LM/LCE和(c)CB/LM/LCE复合薄膜的制备流程图

    Figure  1.  (a)Chemical structures of RM257, EDDET,PETMP and DPA; Preparation procedures of (b)LM/LCE and (c) CB/LM/LCE composite film

    图  2  样品的红外谱图

    Figure  2.  FT-IR spectra of samples

    图  3  LM/LCE薄膜的DSC曲线

    Figure  3.  DSC curves of LM/LCE film

    图  4  LM/LCE复合薄膜(a)升温和(b)降温过程的WAXS图;(c, d, e) LM/LCE复合薄膜的2D-WAXS图

    Figure  4.  WAXS patterns of the LM/LCE film on (a) heating and (b) cooling; (c, d, e) 2D-WAXS patterns of the LM/LCE film

    图  5  (a)LM/LCE薄膜在不同w(LM)下的应力-应变曲线;(b)纯LCE和LM/LCE薄膜的应力-应变曲线

    Figure  5.  (a) Stress-strain curves of LM/LCE film with different liquid metals mass fractions; (b) Stress-strain curves of pure LCE film and LM/LCE film

    图  6  (a)LCE-LCE和(b)LM/LCE-LM/LCE双层薄膜的SEM截面形貌;CB/LM/LCE复合薄膜的(c)上层膜和(d)下层膜的SEM表面形貌;(e)CB/LM/LCE复合薄膜的SEM截面形貌;(f)中间CB层的SEM图

    Figure  6.  SEM images of cross-sectional areas of (a)LCE-LCE film and (b) LM/LCE-LM/LCE film; SEM imges of (c) upper surface and (d) lower surface of the CB/LM/LCE film; SEM images of (e) CB/LM/LCE composite film cross-section and (f) CB layer

    图  7  CB/LM/LCE复合薄膜在80 V电压下的形变

    Figure  7.  Shrinking deformation of CB/LM/LCE composite film powered by an 80 V direct current supply

    图  8  CB/LM/LCE复合薄膜(a)表面温度和(b)电驱动应变与时间关系

    Figure  8.  Time vs (a) temperature and (b) electric drive strain diagram of the CB/LM/LCE composite film

    图  9  CB/LM/LCE复合薄膜负载50 g重物在80 V电驱动前后的照片

    Figure  9.  Photos of the CB/LM/LCE composite film driven with a load of 50 g at 80 V voltage before and after

  • [1] 戴俊燕, 刘伟昌, 连彦青, 刘德山. 液晶聚合物网络研究进展 [J]. 功能高分子学报,2000,13(3):349-357. doi: 10.3969/j.issn.1008-9357.2000.03.023

    DAI J Y, LIU W C, LIAN Y Q, LIU D S. Research progress of liquid crystal polymer networks [J]. Journal of Functional Polymers,2000,13(3):349-357. doi: 10.3969/j.issn.1008-9357.2000.03.023
    [2] WANG Y C, DANG A L, ZHANG Z F, YIN R, GAO Y C, FENG L, YANG S. Repeatable and reprogrammable shape morphing from photoresponsive gold nanorod/liquid crystal elastomers [J]. Advanced Materials,2020,32(46):2004270. doi: 10.1002/adma.202004270
    [3] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体 [J]. 化学进展,2020,32(10):1452-1461.

    WANG M, MA D Y, WANG C J. Near-infrared light responsive liquid crystal elastomers [J]. Progress in Chemistry,2020,32(10):1452-1461.
    [4] ZHU J C, HAN T, GUO Y, WANG P, XIE H L, MENG Z G, YU Z Q, TANG B Z. Design and synthesis of luminescent liquid crystalline polymers with "Jacketing" effect and luminescent patterning applications [J]. Macromolecules,2019,52(10):3668-3679. doi: 10.1021/acs.macromol.9b00221
    [5] WANG M, SAYED S M, GUO L X, LIN B P, ZHANG X Q, SUN Y, YANG H. Multi-stimuli responsive carbon nanotube incorporated polysiloxane azobenzene liquid crystalline elastomer composites [J]. Macromolecules,2016,49(2):663-671. doi: 10.1021/acs.macromol.5b02388
    [6] HE Q G, WANG Z J, WANG Y, SONG Z Q, CAI S Q. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator [J]. ACS Applied Materials & Interfaces,2020,12(31):35464-35474.
    [7] TAO L, LI M L, YANG K P, GUAN Y, WANG P, SHEN Z H, XIE H L. Color-tunable and stimulus-responsive luminescent liquid crystalline polymers fabricated by hydrogen bonding [J]. ACS Applied Materials & Interfaces,2019,11(16):15051-15059.
    [8] LV J A, LIU Y Y, WEI J, CHEN E Q, QIN L, YU Y L. Photocontrol of fluid slugs in liquid crystal polymer microactuators [J]. Nature,2016,537(7619):179-182. doi: 10.1038/nature19344
    [9] LIU L, LIU M H, DENG L L, LIN B P, YANG H. Near-infrared chromophore functionalized soft actuator with ultrafast photoresponsive speed and superior mechanical property [J]. Journal of the American Chemical Society,2017,139(33):11333-11336. doi: 10.1021/jacs.7b06410
    [10] 卿鑫, 吕久安, 俞燕蕾. 光致形变液晶高分子 [J]. 高分子学报,2017(11):1679-1705. doi: 10.11777/j.issn1000-3304.2017.17196

    QING X, LYU J A, YU Y L. Photodeformation liquid crystal polymer [J]. Acta Polymerica Sinica,2017(11):1679-1705. doi: 10.11777/j.issn1000-3304.2017.17196
    [11] WANG C J, SIM K, CHEN J, KIM H, RAO Z Y, LI Y H, CHEN W Q, SONG J Z, VERDUZCO R, YU C J. Soft ultrathin electronics innervated adaptive fully soft robots [J]. Advanced Materials,2018,30(13):1706695. doi: 10.1002/adma.201706695
    [12] QIAN X J, CHEN Q M, YANG Y, XU Y S, LI Z, WANG Z H, WU Y H, WEI Y, JI Y. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots [J]. Advanced Materials,2018,30(29):1801103. doi: 10.1002/adma.201801103
    [13] KAISER A, WINKLER M, KRAUSE S, FINKELMANN H, SCHMIDT A M. Magnetoactive liquid crystal elastomer nanocomposites [J]. Journal of Materials Chemistry,2009,19(4):538-543. doi: 10.1039/B813120C
    [14] HERRERA-POSADA S, MORA-NAVARRO C, ORTIZ-BERMUDEZ P, TORRES-LUGO M, MCELHINNY K M, EVANS P G, CALCAGNO B O, ACEVEDO A. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates [J]. Materials Science & Engineering C: Materials for Biological Applications,2016,65:369-378.
    [15] LIU H R, TIAN H M, SHAO J Y, WANG Z J, LI X M, WANG C H, CHEN X L. An electrically actuated soft artificial muscle based on a high-performance flexible electrothermal film and liquid-crystal elastomer [J]. ACS Applied Materials & Interfaces,2020,12(50):56338-56349.
    [16] WANG Y, WANG Z J, HE Q G, IYER P, CAI S Q. Electrically controlled soft actuators with multiple and reprogrammable actuation modes [J]. Advanced Intelligent Systems,2020,2(6):1900177. doi: 10.1002/aisy.201900177
    [17] WANG M, CHENG Z W, ZUO B, CHEN X M, HUANG S, YANG H. Liquid crystal elastomer electric locomotives [J]. ACS Macro Letters,2020,9(6):860-865. doi: 10.1021/acsmacrolett.0c00333
    [18] XIAO Y Y, JIANG Z C, TONG X, ZHAO Y. Biomimetic locomotion of electrically powered "Janus" soft robots using a liquid crystal polymer [J]. Advanced Materials,2019,31(36):1903452. doi: 10.1002/adma.201903452
    [19] HE Q G, WANG Z J, WANG Y, MINORI A, TOLLEY M T, CAI S Q. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation [J]. Science Advances,2019,5(10):eaax5746. doi: 10.1126/sciadv.aax5746
    [20] BOOTHBY J M, GAGNON J C, MCDOWELL E, VAN VOLKENBURG T, CURRANO L, XIA Z Y. An untethered soft robot based on liquid crystal elastomers[J]. Soft Robotics, 2022, 9(1): 154-162.
    [21] HU Y, LIU J Q, CHANG L F, YANG L L, XU A F, QI K, LU P, WU G, CHEN W, WU Y C. Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite [J]. Advanced Functional Materials,2017,27(44):1704388. doi: 10.1002/adfm.201704388
    [22] LEHMANN W, SKUPIN H, TOLKSDORF C, GEBHARD E, ZENTEL R, KRUGER P, LOSCHE M, KREMER F. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers [J]. Nature,2001,410(6827):447-450. doi: 10.1038/35068522
    [23] CHAMBERS M, FINKELMANN H, REMSKAR M, SANCHEZ-FERRER A, ZALAR B, ZUMER S. Liquid crystal elastomer-nanoparticle systems for actuation [J]. Journal of Materials Chemistry,2009,19(11):1524-1531. doi: 10.1039/B812423J
    [24] GRECO F, DOMENICI V, DESII A, SINIBALDI E, ZUPANCIC B, ZALAR B, MAZZOLAI B, MATTOLI V. Liquid single crystal elastomer/conducting polymer bilayer composite actuator: modelling and experiments [J]. Soft Matter,2013,9(47):11405-11416. doi: 10.1039/c3sm51153g
    [25] YUK H, LU B Y, LIN S, QU K, XU J K, LUO J H, ZHAO X H. 3D printing of conducting polymers [J]. Nature Communications,2020,11(1):1604. doi: 10.1038/s41467-020-15316-7
    [26] CHAMBERS M, ZALAR B, REMSKAR M, ZUMER S, FINKELMANN H. Actuation of liquid crystal elastomers reprocessed with carbon nanoparticles [J]. Applied Physics Letters,2006,89(24):243116. doi: 10.1063/1.2404952
    [27] SHAHINPOOR M. Electrically-activated artificial muscles made with liquid crystal elastomers [J]. Smart Structures and Materials,2000,3987:187-192.
    [28] SCHUHLADEN S, PRELLER F, RIX R, PETSCH S, ZENTEL R, ZAPPE H. Iris-like tunable aperture employing liquid-crystal elastomers [J]. Advanced Materials,2014,26(42):7247-7251. doi: 10.1002/adma.201402878
    [29] PETSCH S, KHATRI B, SCHUHLADEN S, KOBELE L, RIX R, ZENTEL R, ZAPPE H. Muscular MEMS-the engineering of liquid crystal elastomer actuators [J]. Smart Material Structures,2016,25(8):085010. doi: 10.1088/0964-1726/25/8/085010
    [30] YUAN C, ROACH D J, DUNN C K, MU Q Y, KUANG X, YAKACKI C M, WANG T J, YU K, QI H J. 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers [J]. Soft Matter,2017,13(33):5558-5568. doi: 10.1039/C7SM00759K
    [31] FORD M J, AMBULO C P, KENT T A, MARKVICKA E J, PAN C F, MALEN J, WARE T H, MAJIDI C. A multifunctional shape morphing elastomer with liquid metal inclusions [J]. Proceedings of the National Academy of Sciences,2019,116(43):21428-21444.
    [32] FORD M J, PALANISWAMY M, AMBULO C P, WARE T H, MAJIDI C. Size of liquid metal particles influences actuation properties of a liquid crystal elastomer composite [J]. Soft Matter,2020,16(25):5878-5885. doi: 10.1039/D0SM00278J
    [33] LU H F, WANG M, CHEN X M, LIN B P, YANG H. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property [J]. Journal of the American Chemical Society,2019,141(36):14364-14369. doi: 10.1021/jacs.9b06757
    [34] 王宇航, 魏倩, 耿子傲, 贾光勇, 冯云涛. 液晶弹性体的研究进展 [J]. 山东化工,2020,49(7):61-63. doi: 10.3969/j.issn.1008-021X.2020.07.021

    WANG Y H, WEI Q, GEN Z A, JIA G Y, FENG Y T. Research progress of liquid crystal elastomers [J]. Shandong Chemical Industry,2020,49(7):61-63. doi: 10.3969/j.issn.1008-021X.2020.07.021
  • 加载中
图(9)
计量
  • 文章访问数:  502
  • HTML全文浏览量:  127
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 录用日期:  2021-12-06
  • 网络出版日期:  2021-12-14
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回