Research Progress of High Temperature Shape Memory Polymers
-
摘要: 形状记忆聚合物因质量轻、形变量大、性能可控、结构设计性强等优点,其相关的基础前沿研究和潜在的应用开发一直是研究者不断探索的焦点。为满足复杂环境领域(高低温、强辐射、真空等)对形状记忆聚合物的应用需求,近年来研究者开展了高温形状记忆聚合物的研究,并取得了阶段性的研究成果。该文总结归纳了近年来高温形状记忆聚合物的最新研究进展,并对其类型、机制、调控方法及典型应用进行了阐释和分析,最后对高温形状记忆聚合物的未来发展趋势及挑战进行了总结和展望。Abstract: Shape memory polymers (SMPs) as a kind of smart material have aroused tremendous attention including related basic frontier research and potential application duo to its advantages of light weight, larger deformed ability, as well as tunable performance. During the past years, the bulk of the research has concentrated on SMPs with relatively low to medium shape transition temperature for applications in advanced biomedical and surgical materials, smart fabrics, actuators, and so on. SMPs also have wide potential application in severe environments (high temperature, strong radiation, vacuum etc.), such as in satellites, solar arrays and antennas, shape morphing surfaces, airplane wings and aerospace self-deployable structures, where high switching temperature, extraordinary mechanical strength and excellent thermal stability are required. Recently, to meet the application needs of shape memory polymers in harsh environment, scientists have synthesized and developed a number of high performance shape memory polymers including thermoplastic and thermoset polyimide, thermoset cyanate, thermoset polyaspartimide, sulfonated poly(ether ether ketone) and so forth, these materials have high switch temperature, excellent mechanical properties and environmental tolerance. This review will introduce the latest research progress of high-temperature shape memory polymers and also its mechanism, regulation methods and typical applications will be explained and analyzed. Finally, the future development trend and challenges of high-temperature shape memory polymers are summarized and prospected.
-
Key words:
- shape memory polymer /
- high transition temperature /
- polyimide /
- harsh environments
-
图 4 热塑性和热固性聚酰亚胺在形状记忆循环过程中大分子链结构变化示意图[8]
Figure 4. Macromolecular chain structure changes of thermoplastic and thermosetting polyimides during the shape memory cycle process[8]
a−Thermoplastic polyimides with physical interactions as fixed phase; b−Thermosetting polyimides with covalent crosslinking points as fixed phase
图 6 (a) PI1和PI2在室温下的二维WAXD图形(在经历3个形状记忆循环周期之前(1,3)和之后(2,4),箭头表示拉伸方向);(b, c) 在3个形状记忆周期中(b) PI1和(c) PI2沿方位角的衍射强度变化趋势;(d) PI2在形状记忆循环中结构演变的示意图[17]
Figure 6. (a) 2D-WAXD patterns at room temperature of PI1 and PI2 ((1, 3) before and (2, 4) after the three shape memory cycles. Arrow indicates the stretching direction); (b, c) Intensity traces around the azimuth for the reflections of (b) PI1 and (c) PI2 during the three shape memory cycles; (d) Schematic diagrams of structure evolution pathways of PI2 during shape memory cycles[17]
图 7 (a) 嵌入Au/Ag杂化金属网格的无色形状记忆聚酰亚胺的制备示意图;(b) 初始二维平面的器件; (c,d) 形状固定后的三维圆柱器件;(e) 固定形状的三维波浪形器件[27]
Figure 7. (a) Schematic diagram of the preparation of the hybrid (Au/Ag) metal grid embedded in colorless shape memory polyimide; (b) Initial 2D planar device; (c,d) 3D cylindrical device after the shape is fixed; (e) 3D waved device with fixed shape[27]
图 8 (a) M-SPEEK的磺化和中和反应示意图;(b) Na-SPEEK连续4个形状记忆循环(样品在270 °C (Tc=250 °C)拉伸,1~4表示循环次数);(c) ZnSPEEK/NaOl(30)连续3个三重形状记忆循环(Tc1=220 °C, Tc2=256 °C) [32,33]
Figure 8. (a) Schematic of sulfonation and neutralization reactions for preparing M-SPEEK; (b) Four consecutive shape memory cycles for Na-SPEEK (The samples were stretched at 270 °C (Tc=250 °C). The numbers denote the cycle number); (c) Three consecutive triple shape memory cycles for ZnSPEEK/NaOl(30) (Tc1=220 °C, Tc2=256 °C) [32,33]
图 10 (a)实践20号地球同步卫星全图;(b)安装在东甲板的SMPC-FSAS;(c) SMPC-FSAS结构;(d1~d2) SMPC-FSAS在空间的解锁过程;(e1-e4) SMPC-FSAS在空间的展开过程[46]
Figure 10. (a) Overall image of the Practical 20 geostationary satellite; (b) SMPC-FSAS installed on the east deck; (c) SMPC-FSAS structure; (d1, d2) The unlocking process of SMPC-FSAS in space; (e1—e4) The deploying process of SMPC-FSAS in space[46]
-
[1] ZHAO Q, QI H, XIE T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding [J]. Progress in Polymer Science,2015,49-50:79-120. doi: 10.1016/j.progpolymsci.2015.04.001 [2] BEHL M, RAZZAQ M, LENDLEIN A. Multifunctional shape-memory polymers [J]. Advanced Materials,2010,22(31):3388-3410. doi: 10.1002/adma.200904447 [3] LIU Y, DU H, LIU L, et al. Shape memory polymers and their composites in aerospace applications: A review [J]. Smart Materials and Structures,2014,23(2):023001. doi: 10.1088/0964-1726/23/2/023001 [4] HAGER M D, BODE S, WEBER C, et al. Shape memory polymers: Past, present and future developments [J]. Progress in Polymer Science,2015,49-50:3-33. doi: 10.1016/j.progpolymsci.2015.04.002 [5] HUANG W, DING Z, WANG C, et al. Shape memory materials [J]. Materials Today,2010,13(7-8):54-61. doi: 10.1016/S1369-7021(10)70128-0 [6] 孔思予, 杨冲冲, 郑震, 等. 具有自修复和形状记忆功能的聚氨酯光敏树脂 [J]. 功能高分子学报,2021,34(4):369-378.KONG S Y, YANG C C, ZHENG Z, et al. Photosensitive polyurethane resin with self-Healing and shape-memory functions [J]. Journal of Functional Polymers,2021,34(4):369-378. [7] 郑宁, 谢涛. 热适性形状记忆聚合物[J]. 高分子学报, 2017 (11): 1715-1724.ZHENG N, XIE T. Thermadapt shape memory polymer [J]. Acta Polymerica Sinica, 2017(11): 1715-1724. [8] XIAO X, KONG D, QIU X, et al. Shape-memory polymers with adjustable high glass transition temperatures [J]. Macromolecules,2015,5(1):1-12. [9] PILATE F, TONCHEVA A, DUBOIS P, et al. Shape-memory polymers for multiple applications in the materials world [J]. Eur Polym J,2016,80:268-294. doi: 10.1016/j.eurpolymj.2016.05.004 [10] GOUZMAN I, GROSSMAN E, VERKER R, et al. Advances in polyimide-based materials for space applications [J]. Advanced Materials,2019,31(18):1807738. doi: 10.1002/adma.201807738 [11] YOONESSI M, SHI Y, SCHEIMAN D, et al. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects [J]. ACS Nano,2012,6(9):7644-7655. doi: 10.1021/nn302871y [12] WANG Q H, BAI Y K, CHEN Y, et al. High performance shape memory polyimides based on π-π interactions [J]. Journal of Materials Chemistry A,2015,3(1):352-359. doi: 10.1039/C4TA05058D [13] HU J, ZHU Y, HUANG H, et al. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications [J]. Progress in Polymer Science,2012,37(12):1720-1763. doi: 10.1016/j.progpolymsci.2012.06.001 [14] MA S, WANG S, JIN S, et al. Construction of high-performance, high-temperature shape memory polyimides bearing pyridine and trifluoromethyl group [J]. Polymer,2020,210:122972. [15] YANG Z H, CHEN Y, WANG Q H, et al. High performance multiple-shape memory behaviors of poly(benzoxazole-co-imide)s [J]. Polymer,2016,88:19-28. doi: 10.1016/j.polymer.2016.02.001 [16] YANG Z H, WANG Q H, WANG T M. Tunable triple-shape memory binary mixtures with high transition temperature and robust mechanical properties [J]. Macromolecular Chemistry and Physics,2016,217(11):1305-1313. doi: 10.1002/macp.201500539 [17] YANG Z H, SONG F Z, WANG Q H, et al. Shape memory induced structural evolution of high performance copolyimides [J]. Journal of Polymer Science Part A:Polymer Chemistry,2016,54(24):3858-3867. doi: 10.1002/pola.28356 [18] KOERNER H, STRONG R, SMITH M, et al. Polymer design for high temperature shape memory: Low crosslink density polyimides [J]. Polymer,2013,54(1):391-402. doi: 10.1016/j.polymer.2012.11.007 [19] YAO J N, ZHANG Z, WANG C B, et al. Multi-shape memory effect of polyimides with extremely high strain [J]. RSC Advances,2017,7(84):53492-53496. doi: 10.1039/C7RA11399D [20] WANG D, TAN L. Origami-inspired fabrication: Self-folding or self-unfolding of cross-linked-polyimide objects in extremely hot ambience [J]. ACS Macro Letters,2019,8(5):546-552. doi: 10.1021/acsmacrolett.9b00198 [21] LI X, YANG Y Y, ZHANG Y M, et al. Dual-method molding of 4D shape memory polyimide ink [J]. Materials and Design,2020,191:108606. [22] YANG Z H, DUAN C T, SUN Y, et al. Utilizing polyhexahydrotriazine (PHT) to cross-link polyimide oligomers for high-temperature shape memory polymer [J]. Industrial & Engineering Chemistry Research,2019,58(24):10599-10608. [23] YANG Z H, ZHANG Y M, LI S, et al. Fully closed-loop recyclable thermosetting shape memory polyimide [J]. ACS Sustainable Chemistry and Engineering,2020,8(51):18869-18878. [24] HUANG X, ZHANG F, LIU Y, et al. Flexible and colorless shape memory polyimide films with high visible light transmittance and high transition temperature [J]. Smart Materials and Structures,2019,28(5):055031. doi: 10.1088/1361-665X/ab115f [25] LAN Z, CHEN X, ZHANG X, et al. Transparent, high glass-transition temperature, shape memory hybrid polyimides based on polyhedral oligomeric silsesquioxane [J]. Polymers,2019,11(6):1058. doi: 10.3390/polym11061058 [26] XIAO X, QIU X, KONG D, et al. Optically transparent high temperature shape memory polymer [J]. Soft Matter,2016,12(11):2894-2900. doi: 10.1039/C5SM02703A [27] HUANG X, ZHANG F, LIU Y, et al. Active and deformable organic electronic devices based on conductive shape memory polyimide [J]. ACS Applied Materials and Interfaces,2020,12(20):23236-23243. [28] YANG Z H, WANG Q H, BAI Y K, et al. AO-resistant shape memory polyimide/silica composites with excellent thermal stability and mechanical properties [J]. RSC Advances,2015,5(89):72971-72980. doi: 10.1039/C5RA12293G [29] GAO H, XIE F, LIU Y, et al. Effects of γ-radiation on the performances of optically transparent shape memory polyimides with a low glass transition temperature [J]. Polymer Degradation and Stability,2018,156:245-251. doi: 10.1016/j.polymdegradstab.2018.09.014 [30] XIAO X L, KONG D Y, QIU X Y, et al. Shape memory polymers with high and low temperature resistant properties [J]. Scientific Reports,2015,5:14137. doi: 10.1038/srep14137 [31] WU X, HUANG W, DING Z, et al. Characterization of the thermoresponsive shape-memory effect in poly(ether ether ketone) (PEEK) [J]. Journal of Applied Polymer Science,2014,131(3):39844. [32] SHI Y, WEISS R. Sulfonated poly(ether ether ketone) ionomers and their high temperature shape memory behavior [J]. Macromolecules,2014,47(5):1732-1740. doi: 10.1021/ma500119k [33] SHI Y, YOONESSI M, WEISS R. High temperature shape memory polymers [J]. Macromolecules,2013,46(10):4160-4167. doi: 10.1021/ma302670p [34] SHUMAKER J, MCCLUNGA J, BAUR J. Synthesis of high temperature polyaspartimide-urea based shape memory polymers [J]. Polymer,2012,53(21):4637-4642. doi: 10.1016/j.polymer.2012.08.021 [35] GUAN Q B, PICKEN S, SHEKO S S, et al. High-temperature shape memory behavior of novel all-aromatic (AB) n-multiblock copoly(ester imide)s [J]. Macromolecules,2017,50(10):3903-3910. doi: 10.1021/acs.macromol.7b00569 [36] LI M, GUAN Q, DINGEMANS T. High-temperature shape memory behavior of semicrystalline polyamide thermosets [J]. ACS Applied Materials and Interfaces,2018,10(22):19106-19115. [37] TANG Y, YUAN L, LIANG G, et al. Reprocessable triple-shape-memory liquid crystalline polyester amide with ultrahigh thermal resistance [J]. Industrial and Engineering Chemistry Research,2020,59(31):14015-14024. [38] FENG X, LI G. High-temperature shape memory photopolymer with intrinsic flame retardancy and record-high recovery stress [J]. Applied Materials Today,2021,23:101056. doi: 10.1016/j.apmt.2021.101056 [39] YAN G M, WANG H, LI D S, et al. Design of recyclable, fast-responsive and high temperature shape memory semi-aromatic polyamide [J]. Polymer,2021,216:123427. doi: 10.1016/j.polymer.2021.123427 [40] LIU Y, ZHAO J, ZHAO L, et al. High Performance shape memory epoxy/carbon nanotube nanocomposites [J]. ACS Applied Materials and Interfaces,2016,8(1):311-320. [41] LIU Y, GUO Y, ZHAO J, et al. Carbon fiber reinforced shape memory epoxy composites with superior mechanical performances [J]. Composites Science and Technology,2019,177:49-56. doi: 10.1016/j.compscitech.2019.04.014 [42] LUO L, ZHANG F H, LENG J S. Multi-performance shape memory epoxy resins and their composites with narrow transition temperature range [J]. Composites Science and Technology,2021,213:108899. [43] TAYLOR R, ABRAHAMSON E, BARRETT R, et al. Passive deployment of an EMC boom using radiant energy in thermal vacuum. 48 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conferenceed. 2007: 2269 [44] 冷劲松, 兰鑫, 刘彦菊, 等. 形状记忆聚合物复合材料及其在空间可展开结构中的应用[J]. 宇航学报, 2010, 31(4): 950-956.LENG J S, LAN X, LIU Y J, et al. Shape memory polymer composites and their applications inspace deployable dtructures [J]. Journal of Astronautics. 2010, 31(4): 950-956. [45] 李丰丰, 刘彦菊, 冷劲松. 形状记忆聚合物及其复合材料在航天领域的应用进展[J]. 2020, 41(6): 697-706.LI F F, LIU Y J, LENG J S. Application progress of shape memory polymers and their composites in aerospace field [J]. Journal of Astronautics. 2020, 41(6): 697-706. [46] LAN X, LIU L, ZHANG F, et al. World’s first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites [J]. Science China Technological Sciences,2020,63(8):1436-1451. doi: 10.1007/s11431-020-1681-0 [47] YAO J, LI T, MA S, et al. Highly thermally stable and flexible conductive film electrodes based on photo-responsive shape memory polyimide [J]. Smart Materials and Structures,2020,29(11):115040. doi: 10.1088/1361-665X/abb572 [48] HUANG X, ZHANG F, LENG J. Metal mesh embedded in colorless shape memory polyimide for flexible transparent electric-heater and actuators [J]. Applied Materials Today,2020,21:100797. doi: 10.1016/j.apmt.2020.100797 [49] KONG D, LI J, GUO A, et al. High temperature electromagnetic shielding shape memory polymer composite [J]. Chemical Engineering Journal,2021,408:127365. doi: 10.1016/j.cej.2020.127365 -