高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温形状记忆聚合物研究进展

杨增辉 张耀明 张新瑞 王廷梅 王齐华

杨增辉, 张耀明, 张新瑞, 等. 高温形状记忆聚合物研究进展[J]. 功能高分子学报,2022,35(4):1-14 doi: 10.14133/j.cnki.1008-9357.20211020001
引用本文: 杨增辉, 张耀明, 张新瑞, 等. 高温形状记忆聚合物研究进展[J]. 功能高分子学报,2022,35(4):1-14 doi: 10.14133/j.cnki.1008-9357.20211020001
YANG Zenghui, ZHANG Yaoming, ZHANG Xinrui, WANG Tingmei, WANG Qihua. Research Progress of High Temperature Shape Memory Polymers[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20211020001
Citation: YANG Zenghui, ZHANG Yaoming, ZHANG Xinrui, WANG Tingmei, WANG Qihua. Research Progress of High Temperature Shape Memory Polymers[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20211020001

高温形状记忆聚合物研究进展

doi: 10.14133/j.cnki.1008-9357.20211020001
基金项目: 国家自然科学基金(No.51935012,52005481);中国科学院前沿科学重点研究项目(QYZDB-SSW-SLH056) ; 甘肃省自然科学基金(No.20 JR5 RA567)
详细信息
    作者简介:

    杨增辉(1990—),男,甘肃兰州人,博士,副研究员,主要研究方向为高温形状记忆聚合物。E-mail:yangzh@licp.cas.cn

    通讯作者:

    王齐华,wangqh@licp.cas.cn

  • 中图分类号: O63

Research Progress of High Temperature Shape Memory Polymers

  • 摘要: 形状记忆聚合物因质量轻、形变量大、性能可控、结构设计性强等优点,其相关的基础前沿研究和潜在的应用开发一直是研究者不断探索的焦点。为满足复杂环境领域(高低温、强辐射、真空等)对形状记忆聚合物的应用需求,近年来研究者开展了高温形状记忆聚合物的研究,并取得了阶段性的研究成果。该文总结归纳了近年来高温形状记忆聚合物的最新研究进展,并对其类型、机制、调控方法及典型应用进行了阐释和分析,最后对高温形状记忆聚合物的未来发展趋势及挑战进行了总结和展望。

     

  • 图  1  含有石墨烯(0.5%质量分数)的聚酰亚胺复合材料的形状记忆循环曲线[11]

    Figure  1.  Shape memory of cycle polyimide graphene nanocomposite(w(Graphene))=0.5%)[11]

    图  2  聚酰亚胺的 (a) 分子结构与(b) 结构模拟;(c) 聚酰亚胺链间相互作用示意图[12]

    Figure  2.  (a) Molecular structures and (b) structure simulation analysis of polyimides; (c) Schematic diagram of interactions between polyimide chains[12]

    图  3  (a) 热塑性形状记忆聚酰亚胺的合成过程; (b) 连续形状记忆循环曲线; (c) 热固性聚酰亚胺的形状回复示意图[8]

    Figure  3.  (a) Synthesis process of thermoplastic shape memory polyimide; (b) Continuous shape memory cyclic curve; (c) Schemaic diagram of shape recovery of thermosetting polymides[8]

    图  4  热塑性和热固性聚酰亚胺在形状记忆循环过程中大分子链结构变化示意图[8]

    Figure  4.  Macromolecular chain structure changes of thermoplastic and thermosetting polyimides during the shape memory cycle process[8]

    a−Thermoplastic polyimides with physical interactions as fixed phase; b−Thermosetting polyimides with covalent crosslinking points as fixed phase

    图  5  (a) 聚酰亚胺形状记忆性能演示;(b) 聚酰亚胺连续形状记忆循环曲线;(c) 聚酰亚胺的三重形状记忆曲线[15]

    Figure  5.  (a) Demo of dual-shape memory performance of polyimide; (b) Consecutive dual-shape memory cyclic curves of polyimide; (c) Triple-shape memory curves of polyimide [15]

    图  6  (a) PI1和PI2在室温下的二维WAXD图形(在经历3个形状记忆循环周期之前(1,3)和之后(2,4),箭头表示拉伸方向);(b, c) 在3个形状记忆周期中(b) PI1和(c) PI2沿方位角的衍射强度变化趋势;(d) PI2在形状记忆循环中结构演变的示意图[17]

    Figure  6.  (a) 2D-WAXD patterns at room temperature of PI1 and PI2 ((1, 3) before and (2, 4) after the three shape memory cycles. Arrow indicates the stretching direction); (b, c) Intensity traces around the azimuth for the reflections of (b) PI1 and (c) PI2 during the three shape memory cycles; (d) Schematic diagrams of structure evolution pathways of PI2 during shape memory cycles[17]

    图  7  (a) 嵌入Au/Ag杂化金属网格的无色形状记忆聚酰亚胺的制备示意图;(b) 初始二维平面的器件; (c,d) 形状固定后的三维圆柱器件;(e) 固定形状的三维波浪形器件[27]

    Figure  7.  (a) Schematic diagram of the preparation of the hybrid (Au/Ag) metal grid embedded in colorless shape memory polyimide; (b) Initial 2D planar device; (c,d) 3D cylindrical device after the shape is fixed; (e) 3D waved device with fixed shape[27]

    图  8  (a) M-SPEEK的磺化和中和反应示意图;(b) Na-SPEEK连续4个形状记忆循环(样品在270 °C (Tc=250 °C)拉伸,1~4表示循环次数);(c) ZnSPEEK/NaOl(30)连续3个三重形状记忆循环(Tc1=220 °C, Tc2=256 °C) [32,33]

    Figure  8.  (a) Schematic of sulfonation and neutralization reactions for preparing M-SPEEK; (b) Four consecutive shape memory cycles for Na-SPEEK (The samples were stretched at 270 °C (Tc=250 °C). The numbers denote the cycle number); (c) Three consecutive triple shape memory cycles for ZnSPEEK/NaOl(30) (Tc1=220 °C, Tc2=256 °C) [32,33]

    图  9  全芳香族液晶聚酯的合成及其三重形状记忆和再加工性能[37]

    Figure  9.  Synthesis of all-aromatic liquid crystal polyester and its triple-shape memory and reprocessing properties [37]

    图  10  (a)实践20号地球同步卫星全图;(b)安装在东甲板的SMPC-FSAS;(c) SMPC-FSAS结构;(d1~d2) SMPC-FSAS在空间的解锁过程;(e1-e4) SMPC-FSAS在空间的展开过程[46]

    Figure  10.  (a) Overall image of the Practical 20 geostationary satellite; (b) SMPC-FSAS installed on the east deck; (c) SMPC-FSAS structure; (d1, d2) The unlocking process of SMPC-FSAS in space; (e1—e4) The deploying process of SMPC-FSAS in space[46]

  • [1] ZHAO Q, QI H, XIE T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding [J]. Progress in Polymer Science,2015,49-50:79-120. doi: 10.1016/j.progpolymsci.2015.04.001
    [2] BEHL M, RAZZAQ M, LENDLEIN A. Multifunctional shape-memory polymers [J]. Advanced Materials,2010,22(31):3388-3410. doi: 10.1002/adma.200904447
    [3] LIU Y, DU H, LIU L, et al. Shape memory polymers and their composites in aerospace applications: A review [J]. Smart Materials and Structures,2014,23(2):023001. doi: 10.1088/0964-1726/23/2/023001
    [4] HAGER M D, BODE S, WEBER C, et al. Shape memory polymers: Past, present and future developments [J]. Progress in Polymer Science,2015,49-50:3-33. doi: 10.1016/j.progpolymsci.2015.04.002
    [5] HUANG W, DING Z, WANG C, et al. Shape memory materials [J]. Materials Today,2010,13(7-8):54-61. doi: 10.1016/S1369-7021(10)70128-0
    [6] 孔思予, 杨冲冲, 郑震, 等. 具有自修复和形状记忆功能的聚氨酯光敏树脂 [J]. 功能高分子学报,2021,34(4):369-378.

    KONG S Y, YANG C C, ZHENG Z, et al. Photosensitive polyurethane resin with self-Healing and shape-memory functions [J]. Journal of Functional Polymers,2021,34(4):369-378.
    [7] 郑宁, 谢涛. 热适性形状记忆聚合物[J]. 高分子学报, 2017 (11): 1715-1724.

    ZHENG N, XIE T. Thermadapt shape memory polymer [J]. Acta Polymerica Sinica, 2017(11): 1715-1724.
    [8] XIAO X, KONG D, QIU X, et al. Shape-memory polymers with adjustable high glass transition temperatures [J]. Macromolecules,2015,5(1):1-12.
    [9] PILATE F, TONCHEVA A, DUBOIS P, et al. Shape-memory polymers for multiple applications in the materials world [J]. Eur Polym J,2016,80:268-294. doi: 10.1016/j.eurpolymj.2016.05.004
    [10] GOUZMAN I, GROSSMAN E, VERKER R, et al. Advances in polyimide-based materials for space applications [J]. Advanced Materials,2019,31(18):1807738. doi: 10.1002/adma.201807738
    [11] YOONESSI M, SHI Y, SCHEIMAN D, et al. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects [J]. ACS Nano,2012,6(9):7644-7655. doi: 10.1021/nn302871y
    [12] WANG Q H, BAI Y K, CHEN Y, et al. High performance shape memory polyimides based on π-π interactions [J]. Journal of Materials Chemistry A,2015,3(1):352-359. doi: 10.1039/C4TA05058D
    [13] HU J, ZHU Y, HUANG H, et al. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications [J]. Progress in Polymer Science,2012,37(12):1720-1763. doi: 10.1016/j.progpolymsci.2012.06.001
    [14] MA S, WANG S, JIN S, et al. Construction of high-performance, high-temperature shape memory polyimides bearing pyridine and trifluoromethyl group [J]. Polymer,2020,210:122972.
    [15] YANG Z H, CHEN Y, WANG Q H, et al. High performance multiple-shape memory behaviors of poly(benzoxazole-co-imide)s [J]. Polymer,2016,88:19-28. doi: 10.1016/j.polymer.2016.02.001
    [16] YANG Z H, WANG Q H, WANG T M. Tunable triple-shape memory binary mixtures with high transition temperature and robust mechanical properties [J]. Macromolecular Chemistry and Physics,2016,217(11):1305-1313. doi: 10.1002/macp.201500539
    [17] YANG Z H, SONG F Z, WANG Q H, et al. Shape memory induced structural evolution of high performance copolyimides [J]. Journal of Polymer Science Part A:Polymer Chemistry,2016,54(24):3858-3867. doi: 10.1002/pola.28356
    [18] KOERNER H, STRONG R, SMITH M, et al. Polymer design for high temperature shape memory: Low crosslink density polyimides [J]. Polymer,2013,54(1):391-402. doi: 10.1016/j.polymer.2012.11.007
    [19] YAO J N, ZHANG Z, WANG C B, et al. Multi-shape memory effect of polyimides with extremely high strain [J]. RSC Advances,2017,7(84):53492-53496. doi: 10.1039/C7RA11399D
    [20] WANG D, TAN L. Origami-inspired fabrication: Self-folding or self-unfolding of cross-linked-polyimide objects in extremely hot ambience [J]. ACS Macro Letters,2019,8(5):546-552. doi: 10.1021/acsmacrolett.9b00198
    [21] LI X, YANG Y Y, ZHANG Y M, et al. Dual-method molding of 4D shape memory polyimide ink [J]. Materials and Design,2020,191:108606.
    [22] YANG Z H, DUAN C T, SUN Y, et al. Utilizing polyhexahydrotriazine (PHT) to cross-link polyimide oligomers for high-temperature shape memory polymer [J]. Industrial & Engineering Chemistry Research,2019,58(24):10599-10608.
    [23] YANG Z H, ZHANG Y M, LI S, et al. Fully closed-loop recyclable thermosetting shape memory polyimide [J]. ACS Sustainable Chemistry and Engineering,2020,8(51):18869-18878.
    [24] HUANG X, ZHANG F, LIU Y, et al. Flexible and colorless shape memory polyimide films with high visible light transmittance and high transition temperature [J]. Smart Materials and Structures,2019,28(5):055031. doi: 10.1088/1361-665X/ab115f
    [25] LAN Z, CHEN X, ZHANG X, et al. Transparent, high glass-transition temperature, shape memory hybrid polyimides based on polyhedral oligomeric silsesquioxane [J]. Polymers,2019,11(6):1058. doi: 10.3390/polym11061058
    [26] XIAO X, QIU X, KONG D, et al. Optically transparent high temperature shape memory polymer [J]. Soft Matter,2016,12(11):2894-2900. doi: 10.1039/C5SM02703A
    [27] HUANG X, ZHANG F, LIU Y, et al. Active and deformable organic electronic devices based on conductive shape memory polyimide [J]. ACS Applied Materials and Interfaces,2020,12(20):23236-23243.
    [28] YANG Z H, WANG Q H, BAI Y K, et al. AO-resistant shape memory polyimide/silica composites with excellent thermal stability and mechanical properties [J]. RSC Advances,2015,5(89):72971-72980. doi: 10.1039/C5RA12293G
    [29] GAO H, XIE F, LIU Y, et al. Effects of γ-radiation on the performances of optically transparent shape memory polyimides with a low glass transition temperature [J]. Polymer Degradation and Stability,2018,156:245-251. doi: 10.1016/j.polymdegradstab.2018.09.014
    [30] XIAO X L, KONG D Y, QIU X Y, et al. Shape memory polymers with high and low temperature resistant properties [J]. Scientific Reports,2015,5:14137. doi: 10.1038/srep14137
    [31] WU X, HUANG W, DING Z, et al. Characterization of the thermoresponsive shape-memory effect in poly(ether ether ketone) (PEEK) [J]. Journal of Applied Polymer Science,2014,131(3):39844.
    [32] SHI Y, WEISS R. Sulfonated poly(ether ether ketone) ionomers and their high temperature shape memory behavior [J]. Macromolecules,2014,47(5):1732-1740. doi: 10.1021/ma500119k
    [33] SHI Y, YOONESSI M, WEISS R. High temperature shape memory polymers [J]. Macromolecules,2013,46(10):4160-4167. doi: 10.1021/ma302670p
    [34] SHUMAKER J, MCCLUNGA J, BAUR J. Synthesis of high temperature polyaspartimide-urea based shape memory polymers [J]. Polymer,2012,53(21):4637-4642. doi: 10.1016/j.polymer.2012.08.021
    [35] GUAN Q B, PICKEN S, SHEKO S S, et al. High-temperature shape memory behavior of novel all-aromatic (AB) n-multiblock copoly(ester imide)s [J]. Macromolecules,2017,50(10):3903-3910. doi: 10.1021/acs.macromol.7b00569
    [36] LI M, GUAN Q, DINGEMANS T. High-temperature shape memory behavior of semicrystalline polyamide thermosets [J]. ACS Applied Materials and Interfaces,2018,10(22):19106-19115.
    [37] TANG Y, YUAN L, LIANG G, et al. Reprocessable triple-shape-memory liquid crystalline polyester amide with ultrahigh thermal resistance [J]. Industrial and Engineering Chemistry Research,2020,59(31):14015-14024.
    [38] FENG X, LI G. High-temperature shape memory photopolymer with intrinsic flame retardancy and record-high recovery stress [J]. Applied Materials Today,2021,23:101056. doi: 10.1016/j.apmt.2021.101056
    [39] YAN G M, WANG H, LI D S, et al. Design of recyclable, fast-responsive and high temperature shape memory semi-aromatic polyamide [J]. Polymer,2021,216:123427. doi: 10.1016/j.polymer.2021.123427
    [40] LIU Y, ZHAO J, ZHAO L, et al. High Performance shape memory epoxy/carbon nanotube nanocomposites [J]. ACS Applied Materials and Interfaces,2016,8(1):311-320.
    [41] LIU Y, GUO Y, ZHAO J, et al. Carbon fiber reinforced shape memory epoxy composites with superior mechanical performances [J]. Composites Science and Technology,2019,177:49-56. doi: 10.1016/j.compscitech.2019.04.014
    [42] LUO L, ZHANG F H, LENG J S. Multi-performance shape memory epoxy resins and their composites with narrow transition temperature range [J]. Composites Science and Technology,2021,213:108899.
    [43] TAYLOR R, ABRAHAMSON E, BARRETT R, et al. Passive deployment of an EMC boom using radiant energy in thermal vacuum. 48 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conferenceed. 2007: 2269
    [44] 冷劲松, 兰鑫, 刘彦菊, 等. 形状记忆聚合物复合材料及其在空间可展开结构中的应用[J]. 宇航学报, 2010, 31(4): 950-956.

    LENG J S, LAN X, LIU Y J, et al. Shape memory polymer composites and their applications inspace deployable dtructures [J]. Journal of Astronautics. 2010, 31(4): 950-956.
    [45] 李丰丰, 刘彦菊, 冷劲松. 形状记忆聚合物及其复合材料在航天领域的应用进展[J]. 2020, 41(6): 697-706.

    LI F F, LIU Y J, LENG J S. Application progress of shape memory polymers and their composites in aerospace field [J]. Journal of Astronautics. 2020, 41(6): 697-706.
    [46] LAN X, LIU L, ZHANG F, et al. World’s first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites [J]. Science China Technological Sciences,2020,63(8):1436-1451. doi: 10.1007/s11431-020-1681-0
    [47] YAO J, LI T, MA S, et al. Highly thermally stable and flexible conductive film electrodes based on photo-responsive shape memory polyimide [J]. Smart Materials and Structures,2020,29(11):115040. doi: 10.1088/1361-665X/abb572
    [48] HUANG X, ZHANG F, LENG J. Metal mesh embedded in colorless shape memory polyimide for flexible transparent electric-heater and actuators [J]. Applied Materials Today,2020,21:100797. doi: 10.1016/j.apmt.2020.100797
    [49] KONG D, LI J, GUO A, et al. High temperature electromagnetic shielding shape memory polymer composite [J]. Chemical Engineering Journal,2021,408:127365. doi: 10.1016/j.cej.2020.127365
  • 加载中
图(10)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  51
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 录用日期:  2022-01-10
  • 网络出版日期:  2022-01-17

目录

    /

    返回文章
    返回