高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流动化学用于可逆失活自由基聚合的研究进展

周杨 全钦之 陈茂

周 杨, 全钦之, 陈 茂. 流动化学用于可逆失活自由基聚合的研究进展[J]. 功能高分子学报,2022,35(3):1-19 doi: 10.14133/j.cnki.1008-9357.20210919001
引用本文: 周 杨, 全钦之, 陈 茂. 流动化学用于可逆失活自由基聚合的研究进展[J]. 功能高分子学报,2022,35(3):1-19 doi: 10.14133/j.cnki.1008-9357.20210919001
ZHOU Yang, QUAN Qin zhi, CHEN Mao. Recent Developments of Reversible Deactivation Radical Polymerization in Flow Chemistry[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210919001
Citation: ZHOU Yang, QUAN Qin zhi, CHEN Mao. Recent Developments of Reversible Deactivation Radical Polymerization in Flow Chemistry[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210919001

流动化学用于可逆失活自由基聚合的研究进展

doi: 10.14133/j.cnki.1008-9357.20210919001
基金项目: 国家自然科学基金委(21971044)
详细信息
    作者简介:

    周杨:作者简介:周 杨(1996—),男,博士生 ,主要研究方向为流动化学中的活性自由基聚合。E-mail:19110440005@fudan.edu.cn

    通讯作者:

    陈 茂, E-mail:chenmao@fudan.edu.cn

  • 中图分类号: O631

Recent Developments of Reversible Deactivation Radical Polymerization in Flow Chemistry

  • 摘要: 可逆失活自由基聚合(RDRP)是高分子合成领域中应用最广的合成方法之一,能够实现对分子量、分子量分布、聚合物结构等的精确调控,大大促进了功能高分子的合成与发展。与传统反应瓶和反应釜相比,流动化学反应器具有比表面积大、传质传热高效等优点,不仅能够有效加快聚合反应速率、减少副反应,还能为光控可逆失活自由基聚合(photo-RDRP)提供均匀、充足的光照。此外,随着计算机科学的高速发展,电脑辅助的流动聚合已成为高分子合成领域的前沿技术之一。对此,本综述首先对流动化学在热引发和光引发RDRP中的应用进行了概述,然后从定制化合成、高通量合成和自优化合成三个方面对流动RDRP方法的最新研究进展进行了介绍,最后对流动聚合中尚存的问题进行了简单的总结与展望。

     

  • 图  1  (a)PSPMA-b-PPEGMA的快速流动合成[25];(b)串联流动反应器合成多嵌段聚合物[26]

    Figure  1.  (a) The rapid flow synthesis of PSPMA-b-PPEGMA[25]; (b) Multistage reactor concept for the synthesis of multiblock copolymers[26]

    图  2  硅胶填充柱流动反应器示意图[27]

    Figure  2.  Schematic illustration of the packed column flow reactor[27]

    图  3  (a)Photo-iniferter RDRP机理示意图;(b)Photo-RAFT机理示意图;(c)PET-RAFT机理示意图[48-51]

    Figure  3.  General mechanisms for (a) photo-iniferter RDRP, (b) photo-RAFT and (c) PET-RAFT[48-51]

    图  4  流动反应条件下的(a)聚合动力学实验和(b)“开/关”聚合实验;光照流动反应(c)装置A和(d)装置B的示意图[52]

    Figure  4.  (a) Polymerization kinetics experiment and (b) "on/off" experiment under flow reaction conditions; Schematic illustration of continuous-flow (c) setup A and (d) setup B for photo-CRP[52]

    图  5  (a)流动反应器中利用ZnTPP光催化剂实现耐氧型的PET-RAFT[57];(b)氧气存在下的PET-RAFT机理示意图[57];(c)在多个流动反应器串联的装置中合成嵌段共聚物的示意图[58];(d)连续流动反应器实物图[58]

    Figure  5.  (a) Oxygen tolerant PET-RAFT polymerization using ZnTPP photocatalyst in flow reactor[57]; (b) Proposed mechanism for PET-RAFT polymerization in the presence of oxygen[57]; (c) Schematic illustration of the photoflow reactor setup for the synthesis of block copolymers[58]; (d) Digital photo of continuous-flow reactor[58]

    图  6  (a)O-ATRP机理;(b)4种用于研究流动O-ATRP的有机光催化剂;(c)光照流动反应装置示意图及其合成优势[63]

    Figure  6.  (a) Proposed mechanism for O-ATRP; (b) Four kinds of organic photocatalysts used to study O-ATRP under flow conditions; (c) Schematic illustration and advantages of photoflow reactor[63]

    图  7  (a)电脑辅助的液滴式光照流动聚合装置;(b)基于单体扩散原理的液滴式光控聚合制备梯度共聚物[68]

    Figure  7.  (a) Computer-aided droplet-flow setup for photopolymerization; (b) Process for the synthesis of gradient copolymers via the droplet-flow photopolymerization based on the monomer diffusion[68]

    图  8  (a)结合photo-iniferter RDRP和PET-RAFT方法制备接枝共聚物示意图;(b)使用不同方法制备的一系列大分子结构[80]

    Figure  8.  (a) Schematic illustration of preparing graft copolymer by combining photo-iniferter RDRP and PET-RAFT polymerization; (b) A various of macromolecular architectures prepared using a divergent approach[80]

    图  9  (a)基于数学模型设计并合成任意聚合物分子量分布的一般过程;(b)基于数学模型设计并实验合成不同类型分布的聚合物。(左:双峰分布;中:数均分子量相近但分布宽度不同;右:互补但不对称)[91]

    Figure  9.  (a) General procedure for the design and synthesis of polymer MWDs based on mathematical models; (b) Polymer distributions designed using the mathematical model and experimentally synthesized (left: bimodal MWDs; middle: MWDs with constant number average molecular weights but increasing breadths; right: complementary asymmetric polymer MWDs) [91]

    图  10  (a)用于合成不同形貌的PEG-b-P(HPMA)纳米粒子的流动反应器装置[99];(b)用于合成不同形貌的PDMAA-b-(PDAAM-co-PDMAA)纳米粒子的流动反应装置[100];(c)采用聚合度分别为200、400和600的PDMAA进行扩链反应一步合成不同形貌PDMAA-b-(PDAAM-co-PDMAA)纳米粒子的TEM照片(BW = 分支蠕虫;HBW = 高度分支蠕虫;V = 囊泡)[100]

    Figure  10.  (a) Reactor setup for the synthesis of PEG-b-P(HPMA) nanoparticles enabling monitoring of particle morphology[99]; (b) Reactor setup for the synthesis of PDMAA-b-(PDAAM-co-PDMAA) nanoparticles with different morphologies[100]; (c) TEM micrographs of PDMAA-b-(PDAAm-stat-PDMAA) nanoparticles in one-step synthesis chain extending PDMAA with DP200, DP400, and DP600 (BW = Branched worms, HBW = Highly branched worms, V = Vesicles) [100]

    图  11  程序化高通量流动合成建立聚合物库的示意图[105];(b)利用可编程流动聚合技术合成不同聚合度的聚碳酸酯[105];(c)计算机辅助滴流式光控聚合的反应装置示意图[106];(d)玻璃化转变温度与共聚物中PDMA含量的关系图[106]

    Figure  11.  (a) Schematic illustration of programmed synthesis of polyester and polycarbonate libraries in continuous-flow[105]; (b) Synthesis of polycarbonates with different degrees of polymerization based on programmable continuous-flow technique[105]; (c) Schematic illustration of flow setup for droplet-flow photopolymerization aided by computer[106]; (d)Tg value versus the molar fraction of PDMA in copolymers[106]

    图  12  (a)自优化流动聚合平台示意图[109];(b)目标数均分子量为2.5×103的聚丙烯酸正丁酯在RAFT时的优化和控制过程[109];(c)用于动力学快速筛选、精确转化率控制的自动化流动聚合平台[110];(d)不同温度下丙烯酸甲酯(目标数均分子量为5×103)的RAFT聚合动力学筛选[110]

    Figure  12.  (a) Schematic illustration of autonomous self-optimizing flow reactors; (b) Optimization trajectory and process control phases for RAFT polymerization of poly(n-butyl acrylate) with a target Mn of 2.5×103; (c) Automated polymer synthesis flow platform for the fast kinetic screening of polymerizations and exact monomer conversion targeting[110]; (d) Kinetic screening of a RAFT polymerization of methyl acrylate (Mn,target = 5×103) under different temperature[110]

  • [1] CHIEFARI J, CHONG Y K, ERCOLE F, KRSTINA J, JEFFERY J, LE T P T, MAYADUNNE R T A, MEIJS G F, MOAD C L, Graeme Moad, RIZZARDO E, TANG S H. Living free-radical polymerization by reversible addition−fragmentation chain transfer:   The RAFT process [J]. Macromolecules,1998,31(16):5559-5562. doi: 10.1021/ma9804951
    [2] WANG J S, MATYJASZEWSKI K. Controlled living radical polymerization. Atom-transfer radical polymerization in the presence of transition-metal complexes [J]. Journal of the American Chemical Society,1995,117(20):5614-5615. doi: 10.1021/ja00125a035
    [3] KATO M, KAMIGAITO M, SAWAMOTO M, HIGASHIMURA T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(ii)/methylaluminum bis(2, 6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization [J]. Macromolecules,1995,28(5):1721-1723. doi: 10.1021/ma00109a056
    [4] HAWKER C J, BOSMAN A W, HARTH E. New polymer synthesis by nitroxide mediated living radical polymerizations [J]. Chemical Reviews,2001,101(12):3661-3688. doi: 10.1021/cr990119u
    [5] STEINBACHER J L, MCQUADE D T. Polymer chemistry in flow: New polymers, beads, capsules, and fibers [J]. Journal of Polymer Science Part A: Polymer Chemistry,2006,44(22):6505-6533. doi: 10.1002/pola.21630
    [6] DEMELLO A J. Control and detection of chemical reactions in microfluidic systems [J]. Nature,2006,442(7101):394-402. doi: 10.1038/nature05062
    [7] GEYER K, CODEE J D, SEEBERGER P H. Microreactors as tools for synthetic chemists-the chemists' round-bottomed flask of the 21 st century? [J]. Chemistry,2006,12(33):8434-8442. doi: 10.1002/chem.200600596
    [8] WATTS P, WILES C. Recent advances in synthetic micro reaction technology [J]. Chemical Communications,2007(5):443-467. doi: 10.1039/B609428G
    [9] WEBB D, JAMISON T F. Continuous flow multi-step organic synthesis [J]. Chemical Science,2010,1(6):675-680. doi: 10.1039/c0sc00381f
    [10] YEO L Y, CHANG H C, CHAN P P, FRIEND J R. Microfluidic devices for bioapplications [J]. Small,2011,7(1):12-48. doi: 10.1002/smll.201000946
    [11] GUTMANN B, CANTILLO D, KAPPE C O. Continuous-flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients [J]. Angewandte Chemie, International Edition in English,2015,54(23):6688-6728. doi: 10.1002/anie.201409318
    [12] PASTRE J C, BROWNE D L, LEY S V. Flow chemistry syntheses of natural products [J]. Chemical Society Reviews,2013,42(23):8849-8869. doi: 10.1039/c3cs60246j
    [13] GEACINTOV C, SMID J, SZWARC M. Kinetics of anionic polymerization of styrene in tetrahydrofuran [J]. Journal of the American Chemical Society,1962,84(13):2508-2514. doi: 10.1021/ja00872a012
    [14] WILMS D, KLOS J, FREY H. Microstructured reactors for polymer synthesis: A renaissance of continuous flow processes for tailor-made macromolecules [J]. Macromolecular Chemistry and Physics,2008,209(4):343-356. doi: 10.1002/macp.200700588
    [15] HAVEN J J, JUNKERS T. Reactor automation in continuous flow polymerisation: On-demand delivery of precision polymer materials [J]. Chimica Oggi-Chemistry Today,2018,36(5):42-44.
    [16] JUNKERS T. Precise macromolecular engineering via continuous-flow synthesis techniques [J]. Journal of Flow Chemistry,2017,7(3-4):106-110.
    [17] ZHU N, HU X, FANG Z, GUO K. Continuous flow photoinduced reversible deactivation radical polymerization [J]. ChemPhotoChem,2018,2(10):831-838. doi: 10.1002/cptc.201800032
    [18] REIS M H, LEIBFARTH F A, PITET L M. Polymerizations in continuous flow: Recent advances in the synthesis of diverse polymeric materials [J]. ACS Macro Letters,2020,9(1):123-133. doi: 10.1021/acsmacrolett.9b00933
    [19] ZAQUEN N, RUBENS M, CORRIGAN N, XU J, ZETTERLUND P B, BOYER C, JUNKERS T. Polymer synthesis in continuous flow reactors [J]. Progress in Polymer Science,2020:107101256.
    [20] DIEHL C, LAURINO P, AZZOUZ N, SEEBERGER P H . Accelerated continuous flow RAFT polymerization [J]. Macromolecules (Washington, DC, US),2010,43(24):10311-10314.
    [21] HORNUNG C H, GUERRERO-SANCHEZ C, BRASHOLZ M, SAUBERN S, CHIEFARI J, MOAD G, RIZZARDO E, THANG S H. Controlled RAFT polymerization in a continuous flow microreactor [J]. Org Process Res Dev,2011,15(3):593-601. doi: 10.1021/op1003314
    [22] HORNUNG C H, POSTMA A, SAUBERN S, CHIEFARI J. A continuous flow process for the radical induced end group removal of RAFT polymers [J]. Macromol. React. Eng.,2012,6(6-7):246-251. doi: 10.1002/mren.201200007
    [23] HORNUNG C H, von KÄNEL K, MARTINEZ-BOTELLA I, ESIRITU M, NGUYEN X, POSTMA A, SAUBERN S, CHIEFARI J, TANG S H. Continuous flow aminolysis of RAFT polymers using multistep processing and inline analysis [J]. Macromolecules (Washington, DC, US),2014,47(23):8203-8213.
    [24] LI Z, CHEN W J, ZHANG Z B, ZHANG L F, CHEN J P, ZHU X L. A surfactant-free emulsion RAFT polymerization of methyl methacrylate in a continuous tubular reactor [J]. Polymer Chemistry,2015,6(11):1937-1943. doi: 10.1039/C4PY01456A
    [25] LI Z, CHEN W, ZHANG Z, ZHANG L, CHENG Z, ZHU X . Fast RAFT aqueous polymerization in a continuous tubular reactor: Consecutive synthesis of a double hydrophilic block copolymer [J]. Polymer Chemistry,2015,6(28):5030-5035. doi: 10.1039/C5PY00847F
    [26] BAETEN E, HAVEN J J, JUNKERS T. RAFT multiblock reactor telescoping: From monomers to tetrablock copolymers in a continuous multistage reactor cascade [J]. Polymer Chemistry,2017,8(25):3815-3824. doi: 10.1039/C7PY00585G
    [27] SHEN Y, ZHU S, PELTON R. Packed column reactor for continuous atom transfer radical polymerization: Methyl methacrylate polymerization using silica gel supported catalyst [J]. Macromol. Rapid Commun,2000,21(4):956.
    [28] NODA T, GRICE A J, LEVERE M E, HADDLETON D M. Continuous process for atrp: Synthesis of homo and block copolymers [J]. Eur Polym J,2007,43(6):2321-2330. doi: 10.1016/j.eurpolymj.2007.03.010
    [29] PARIDA D, SERRA C A, GOMEZ R I, GARG D K, HOARAU Y, BOUQUEY M, MULLER R. Atom transfer radical polymerization in continuous microflow: Effect of process parameters [J]. Journal of Flow Chemistry,2014,4(2):92-96. doi: 10.1556/JFC-D-14-00003
    [30] PARIDA D, SERRA C A, GARG D K, HOARAU Y, MULLER R, BOUQUEY M. Flow inversion: An effective means to scale-up controlled radical polymerization tubular microreactors [J]. Macromolecular Reaction Engineering,2014,8(8):597-603. doi: 10.1002/mren.201400002
    [31] ENRIGHT T E, CUNNINGHAM M F, KEOSHKERIAN B. Nitroxide-mediated polymerization of styrene in a continuous tubular reactor [J]. Macromolecular Rapid Communications,2005,26(4):221-225. doi: 10.1002/marc.200400531
    [32] ENRIGHT T E, CUNNINGHAM M F, KEOSHKERIAN B. Nitroxide-mediated bulk and miniemulsion polymerization in a continuous tubular reactor: Synthesis of homo-, di- and triblock copolymers [J]. Macromolecular Reaction Engineering,2010,4(3‐4):186-196.
    [33] ROSENFELD C, SERRA C, BROCHON C, HADZUUOANNOU G. High-temperature nitroxide-mediated radical polymerization in a continuous microtube reactor: Towards a better control of the polymerization reaction [J]. Chemical Engineering Science,2007,62(18):5245-5250.
    [34] STUDER A, RYU I, FUKUYAMA T, KAJIHARA Y. Nitroxide-mediated polymerization of styrene, butyl acrylate, or methyl methacrylate by microflow reactor technology [J]. Synthesis,2012,44(16):2555-2559. doi: 10.1055/s-0031-1290780
    [35] GONG H H, MA M X, ZHOU Y, ZHAO Y, GU Y,CHEN M . Photoredox controlled living polymerization [J]. Journal of Functional Polymers,2019,32(3):271-291.
    [36] HAN S T, GU Y, MA M Y, CHEN MAO. Light-intensity switch enabled nonsynchronous growth of fluorinated raspberry-like nanoparticles [J]. Chemical Science,2020,11(38):10431-10436. doi: 10.1039/D0SC04141F
    [37] ZHAO Y, MA M, LIN X, CHEN M. Photoorganocatalyzed divergent reversible-deactivation radical polymerization towards linear and branched fluoropolymers [J]. Angewandte Chemie International Edition,2020,59(48):21470-21474. doi: 10.1002/anie.202009475
    [38] LI R, AN Z. Achieving ultrahigh molecular weights with diverse architectures for unconjugated monomers through oxygen-tolerant photoenzymatic RAFT polymerization [J]. Angewandte Chemie International Edition,2020,59(49):22258-22264. doi: 10.1002/anie.202010722
    [39] LI R Y, AN Z S. Photoenzymatic RAFT emulsion polymerization with oxygen tolerance [J]. Chinese Journal of Polymer Science,2021,39(9):1138-1145. doi: 10.1007/s10118-021-2556-5
    [40] LI A, RAMAKRISHNA S N, NALAM P C, BENETTI E M, SPENCER N D. Stratified polymer grafts: Synthesis and characterization of layered ‘brush’ and ‘gel’ structures [J]. Advanced Materials Interfaces,2014,1(1):1300007. doi: 10.1002/admi.201300007
    [41] QUAN Q Z, WEN H J, HAN S T, WANG Z T, SHAO Z Z. CHEN M Fluorous-core nanoparticle-embedded hydrogel synthesized via tandem photo-controlled radical polymerization: Facilitating the separation of perfluorinated alkyl substances from water [J]. Acs Applied Materials & Interfaces,2020,12(21):24319-24327.
    [42] ZHANG Z, CORRIGAN N, BAGHERI A, JIN J, BOYER C. A versatile 3 d and 4 d printing system through photocontrolled RAFT polymerization [J]. Angewandte Chemie International Edition,2019,58(50):17954-17963. doi: 10.1002/anie.201912608
    [43] SU Y, STRAATHOF N J, HESSEL V, NOEL T. Photochemical transformations accelerated in continuous-flow reactors: Basic concepts and applications [J]. Chemistry,2014,20(34):10562-10589. doi: 10.1002/chem.201400283
    [44] JUNKERS T, WENN B. Continuous photoflow synthesis of precision polymers [J]. Reaction Chemistry & Engineering,2016,1(1):60-64.
    [45] DIEHL C, LAURINO P, AZZOUZ N, SEEBERGER P. Accelerated continuous flow RAFT polymerization [J]. Macromolecules,2010,43(24):10311-10314. doi: 10.1021/ma1025253
    [46] ZAQUEN N, KADIR A M N B P H A, IASA A, CORRIGAN N, JUNKER T, ZETTERLUND P B, BOYER C. Rapid oxygen tolerant aqueous RAFT photopolymerization in continuous flow reactors [J]. Macromolecules,2019,52(4):1609-1619. doi: 10.1021/acs.macromol.8b02628
    [47] CORRIGAN N, ZHERNAKOV L, HASHIM M H, XU J, BOYER C. Flow mediated metal-free pet-RAFT polymerisation for upscaled and consistent polymer production [J]. Reaction Chemistry & Engineering,2019,4(7):1216-1228.
    [48] XU J, JUNG K, ATME A, SHANMUGAM S, BOYER C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance [J]. Journal of the American Chemical Society,2014,136(14):5508-5519. doi: 10.1021/ja501745g
    [49] SHANMUGAM S, XU J, BOYER C. Exploiting metalloporphyrins for selective living radical polymerization tunable over visible wavelengths [J]. Journal of the American Chemical Society,2015,137(28):9174-9185. doi: 10.1021/jacs.5b05274
    [50] GONG H H, ZHAO Y C, SHEN X W, LIN J, CHEN M. Organocatalyzed photocontrolled radical polymerization of semifluorinated (meth)acrylates driven by visible light [J]. Angewandte Chemie: International Edition,2018,57(1):333-337. doi: 10.1002/anie.201711053
    [51] JIANG K, HAN S, MA M, ZHANG L, ZHAO Y,CHEN M . Photoorganocatalyzed reversible-deactivation alternating copolymerization of chlorotrifluoroethylene and vinyl ethers under ambient conditions: Facile access to main-chain fluorinated copolymers [J]. Journal of the American Chemical Society,2020,142(15):7108-7115. doi: 10.1021/jacs.0c01016
    [52] CHEN M, JOHNSON J A. Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques [J]. Chem Commun (Cambridge, UK),2015,51(31):6742-6745. doi: 10.1039/C5CC01562F
    [53] RUBENS M, LATSRISAENG P, JUNKERS T. Visible light-induced iniferter polymerization of methacrylates enhanced by continuous flow [J]. Polymer Chemistry,2017,8(42):6496-6505. doi: 10.1039/C7PY01157A
    [54] GARDINER J, HORNUNG C H, TSANAKTSIDIS J, GUTHRIE D. Continuous flow photo-initiated RAFT polymerisation using a tubular photochemical reactor [J]. Eur Polym J,2016,80:200-207.
    [55] WENN B, JUNKERS T. Continuous microflow photo RAFT polymerization [J]. Macromolecules (Washington DC, US),2016,49(18):6888-6895.
    [56] PENG J, XU Q, NI Y, ZHANG L, CHENG Z, ZHU X. Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance [J]. Polymer Chemistry,2019,10(16):2064-2072. doi: 10.1039/C9PY00069K
    [57] CORRIGAN N, ROSLI D, JONES J W J, XU J T . Oxygen tolerance in living radical polymerization: Investigation of mechanism and implementation in continuous flow polymerization [J]. Macromolecules (Washington, DC, US),2016,49(18):6779-6789.
    [58] ZAQUEN N, KADIR A M N B P H A, IASA A, CORRIAGAN N, JUNKERS T, ZETTERLUND P B, BOYER C . Rapid oxygen tolerant aqueous RAFT photopolymerization in continuous flow reactors [J]. Macromolecules (Washington, DC, U S),2019,52(4):1609-1619.
    [59] CHU Y, CORRIGAN N, WU C, BOYER C, XU J. A process for well-defined polymer synthesis through textile dyeing inspired catalyst immobilization [J]. ACS Sustainable Chem Eng,2018,6(11):15245-15253. doi: 10.1021/acssuschemeng.8b03726
    [60] WENN B, CONRADI M, CARREIRAS A D, HADDLETONC D M, JUNKERS T. Photo-induced copper-mediated polymerization of methyl acrylate in continuous flow reactors [J]. Polymer Chemistry,2014,5(8):3053-3060. doi: 10.1039/C3PY01762A
    [61] RAILIAN S, WENN B, JUNKERS T. Photo-induced copper-mediated acrylate polymerization in continuous-flow reactors [J]. Journal of Flow Chemistry,2016,6(3):260-267. doi: 10.1556/1846.2016.00018
    [62] MELKER A, FORS B P, HAWKER C J, POELMA J E. Continuous flow synthesis of poly(methyl methacrylate) via a light-mediated controlled radical polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry,2015,53(23):2693-2698. doi: 10.1002/pola.27765
    [63] RAMSEY B L, PEARSON R M, BECK L R, MIYAKE G M. Photoinduced organocatalyzed atom transfer radical polymerization using continuous flow [J]. Macromolecules,2017,50(7):2668-2674. doi: 10.1021/acs.macromol.6b02791
    [64] HUANG W, ZHAI J, HU X, DUAN J, FANG Z,ZHU N, GUO K,. Continuous flow photoinduced phenothiazine derivatives catalyzed atom transfer radical polymerization [J]. European Polymer Journal,2020:126109565.
    [65] ZHAO Y, YU M, ZHANG S, WU Z, LIU Y,PENG C H, FU X. A well-defined, versatile photoinitiator (salen)co–co2 ch3 for visible light-initiated living/controlled radical polymerization [J]. Chemical Science,2015,6(5):2979-2988. doi: 10.1039/C5SC00477B
    [66] ZHAO Y, YU M, ZHANG S, LIU Y, FU X . Visible light induced living/controlled radical polymerization of acrylates catalyzed by cobalt porphyrins [J]. Macromolecules,2014,47(18):6238-6245. doi: 10.1021/ma5014385
    [67] KERMAGORET A, WENN B, DEBUIGNE A, JEROMR C, JUNKERS T, DETREMBLEUR C. Improved photo-induced cobalt-mediated radical polymerization in continuous flow photoreactors [J]. Polymer Chemistry,2015,6(20):3847-3857. doi: 10.1039/C5PY00299K
    [68] ZHOU Y, HAN S, GU Y, CHEN M. Facile synthesis of gradient copolymers enabled by droplet-flow photo-controlled reversible deactivation radical polymerization [J]. Science China Chemistry,2021,64(5):844-851. doi: 10.1007/s11426-020-9946-8
    [69] LEIBFARTH F A, JOHNSON J A, JAMISON T F. Scalable synthesis of sequence-defined, unimolecular macromolecules by flow-ieg [J]. Proc Natl Acad Sci USA,2015,112(34):10617-10622. doi: 10.1073/pnas.1508599112
    [70] HUANG Z, NOBLE B B, CORRIGAN N, CHU Y, SATOH K, THOMAS D S, HAWKER C J, MOAD G, KAMIGAITO M, COOTE M L, BOYER C, XU J. Discrete and stereospecific oligomers prepared by sequential and alternating single unit monomer insertion [J]. Journal of the American Chemical Society,2018,140(41):13392-13406. doi: 10.1021/jacs.8b08386
    [71] HUANG Z, CORRIGAN N, LIN S, BOYER C, XU J. Upscaling single unit monomer insertion to synthesize discrete oligomers [J]. Journal of Polymer Science Part A: Polymer Chemistry,2019,57(18):1947-1955. doi: 10.1002/pola.29330
    [72] SHANMUGAM S, CUTHBERT J, KOWALEWSKI T, BOYER C, MATYJASZEWSKI K. Catalyst-free selective photoactivation of RAFT polymerization: A facile route for preparation of comblike and bottlebrush polymers [J]. Macromolecules,2018,51(19):7776-7784. doi: 10.1021/acs.macromol.8b01708
    [73] TANAKA J, HÄKKINEN S, BOECK P T, CONG Y, PERRIER S, SHEIKO S S,YOU W. Orthogonal cationic and radical RAFT polymerizations to prepare bottlebrush polymers [J]. Angewandte Chemie International Edition,2020,59(18):7203-7208. doi: 10.1002/anie.202000700
    [74] LI F, CAO M, FENG Y, LIANG R, FU X, ZHONG M. Site-specifically initiated controlled/living branching radical polymerization: A synthetic route toward hierarchically branched architectures [J]. Journal of the American Chemical Society,2019,141(2):794-799. doi: 10.1021/jacs.8b12433
    [75] VATANKHAH-VARNOSFADERANI M, KEITH A N, CONG Y, LIANG H, ROSENTHAL M, SZTUCKICHARLES M, CLAIR C, MAGONOV S, IVANOV D A, DOBRYNIN A V, SHEIKO S S. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration [J]. Science,2018,359(6383):1509-1513. doi: 10.1126/science.aar5308
    [76] OHNSORG M L, PRENDERGAST P C, ROBINSON L L, MATTHEW R B, FRANK S B, THERESA M R. Bottlebrush polymer excipients enhance drug solubility: Influence of end-group hydrophilicity and thermoresponsiveness [J]. ACS Macro Letters,2021,10(3):375-381. doi: 10.1021/acsmacrolett.0c00890
    [77] MÜLLNER M, DODDS S J, NGUYEN T H, DANIELLE S, CHRISTOPHER J H P, BEN J B, FRANK C. Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo [J]. ACS Nano,2015,9(2):1294-1304. doi: 10.1021/nn505125f
    [78] WENN B, MARTENS A C, CHUANG Y M, GRUBER J, JUNKERS T. Efficient multiblock star polymer synthesis from photo-induced copper-mediated polymerization with up to 21 arms [J]. Polymer Chemistry,2016,7(15):2720-2727. doi: 10.1039/C6PY00175K
    [79] VRIJSEN J H, OSIRO MEDEIROS C, GRUBER J,JUNKERS T. Continuous flow synthesis of core cross-linked star polymers via photo-induced copper mediated polymerization [J]. Polymer Chemistry,2019,10(13):1591-1598. doi: 10.1039/C9PY00134D
    [80] CORRIGAN N, TRUJILLO F J, XU J, GRAEME M, CRAIG J H, CYRILLE B. Divergent synthesis of graft and branched copolymers through spatially controlled photopolymerization in flow reactors [J]. Macromolecules,2021,54(7):3430-3446. doi: 10.1021/acs.macromol.0c02715
    [81] SIFRI R J, PADILLA-VÉLEZ O, COATES G W, BRETT P F. Controlling the shape of molecular weight distributions in coordination polymerization and its impact on physical properties [J]. Journal of the American Chemical Society,2020,142(3):1443-1448. doi: 10.1021/jacs.9b11462
    [82] GENTEKOS D T, SIFRI R J, FORS B P. Controlling polymer properties through the shape of the molecular-weight distribution [J]. Nature Reviews Materials,2019,4(12):761-774. doi: 10.1038/s41578-019-0138-8
    [83] WHITFIELD R, TRUONG N P, MESSMER D, PARKATZIDIS K, ROLLAND M, ANASTASAKI A. Tailoring polymer dispersity and shape of molecular weight distributions: Methods and applications [J]. Chemical Science,2019,10(38):8724-8734. doi: 10.1039/C9SC03546J
    [84] GENTEKOS D T, DUPUIS L N, FORS B P. Beyond dispersity: Deterministic control of polymer molecular weight distribution [J]. Journal of the American Chemical Society,2016,138(6):1848-1851. doi: 10.1021/jacs.5b13565
    [85] WHITFIELD R, TRUONG N, ANASTASAKI A. Precise control of both dispersity and molecular weight distribution shape by polymer blending [J]. Angewandte Chemie International Edition,2021,60:19383-19388.
    [86] PLICHTA A, ZHONG M J, LI W W, ELSEN A M, MATYJASZEWSKI K. Tuning dispersity in diblock copolymers using arget atrp [J]. Macromolecular Chemistry and Physics,2012,213(24):2659-2668. doi: 10.1002/macp.201200461
    [87] WHITFIELD R, PARKATZIDIS K, ROLLAND M, TRUONG N P, ANASTASAKI A. Tuning dispersity by photoinduced atom transfer radical polymerisation: Monomodal distributions with ppm copper concentration [J]. Angewandte Chemie International Edition,2019,58(38):13323-13328. doi: 10.1002/anie.201906471
    [88] ROLLAND M, TRUONG N P, WHITFIELD R, ATHINA A. Tailoring polymer dispersity in photoinduced iron-catalyzed atrp [J]. ACS Macro Letters,2020,9(4):459-463. doi: 10.1021/acsmacrolett.0c00121
    [89] WHITFIELD R, PARKATZIDIS K, TRUONG N P, TANJA J, ATHINA A. Tailoring polymer dispersity by RAFT polymerization: A versatile approach [J]. Chem,2020,6(6):1340-1352.
    [90] LIU X, WANG C G, GOTO A. Polymer dispersity control by organocatalyzed living radical polymerization [J]. Angewandte Chemie-International Edition,2019,58(17):5598-5603. doi: 10.1002/anie.201814573
    [91] CORRIGAN N, ALMASRI A, TAILLADES XU J T, CYRILLE B. Controlling molecular weight distributions through photoinduced flow polymerization [J]. Macromolecules (Washington, DC, US),2017,50(21):8438-8448.
    [92] CORRIGAN N, MANAHAN R, LEW Z T, JONATHAN Y, XU J T, CYRILLE B. Copolymers with controlled molecular weight distributions and compositional gradients through flow polymerization [J]. Macromolecules (Washington, DC, US),2018,51(12):4553-4563.
    [93] LIU K, CORRIGAN N, POSTMA A, GRAEME M, CYRILLE B. A comprehensive platform for the design and synthesis of polymer molecular weight distributions [J]. Macromolecules,2020,53(20):8867-8882. doi: 10.1021/acs.macromol.0c01954
    [94] WALSH D J, SCHINSKI D A, SCHNEIDER R A, DAMIEN G. General route to design polymer molecular weight distributions through flow chemistry [J]. Nature Communications,2020,11(1):3094. doi: 10.1038/s41467-020-16874-6
    [95] YEOW J, BOYER C. Photoinitiated polymerization-induced self-assembly (photo-pisa): New insights and opportunities [J]. Advanced Science,2017,4(7):1700137. doi: 10.1002/advs.201700137
    [96] CORNEL ERIK J, JIANG J, CHEN S. Principles and characteristics of polymerization-induced self-assembly with various polymerization techniques [J]. CCS Chemistry,2021,3(4):2014-2125.
    [97] PENG J, TIAN C, ZHANG L, CHENG Z, ZHU X. The in situ formation of nanoparticles via RAFT polymerization-induced self-assembly in a continuous tubular reactor [J]. Polymer Chemistry,2017,8(9):1495-1506. doi: 10.1039/C6PY02133F
    [98] PARKINSON S, HONDOW N S, CONTEH J S, BOURNE R A, WARREN N J. All-aqueous continuous-flow RAFT dispersion polymerisation for efficient preparation of diblock copolymer spheres, worms and vesicles [J]. React. Chem. Eng.,2019,4(5):852-861. doi: 10.1039/C8RE00211H
    [99] ZAQUEN N, YEOW J, JUNKERS T, CYRILLE B, ZETTERLUND P B. Visible light-mediated polymerization-induced self-assembly using continuous flow reactors [J]. Macromolecules (Washington, DC, US),,2018,51(14):5165-5172.
    [100] ZAQUEN N, ZU H, KADIR A M N B P H A, TANJA J, PER B Z, CYRILLE B. Scalable aqueous reversible addition-fragmentation chain transfer photopolymerization-induced self-assembly of acrylamides for direct synthesis of polymer nanoparticles for potential drug delivery applications [J]. ACS Appl Polym Mater,2019,1(6):1251-1256. doi: 10.1021/acsapm.9b00280
    [101] LIU D, CAI W, ZHANG L, CYRILLE B, TAN J B. Efficient photoinitiated polymerization-induced self-assembly with oxygen tolerance through dual-wavelength type i photoinitiation and photoinduced deoxygenation [J]. Macromolecules,2020,53(4):1212-1223. doi: 10.1021/acs.macromol.9b02710
    [102] CAI W B, LIU D D, CHEN Y, ZHANG L, TAN J B. Enzyme-assisted photoinitiated polymerization-induced self-assembly in continuous flow reactors with oxygen tolerance [J]. Chinese Journal of Polymer Science,2021,39(9):1127-1137. doi: 10.1007/s10118-021-2533-z
    [103] OLIVER S, ZHAO L, GORMLEY A J, ROBERT C, CYRILLE B. Living in the fast lane—high throughput controlled/living radical polymerization [J]. Macromolecules,2019,52(1):3-23. doi: 10.1021/acs.macromol.8b01864
    [104] JUDZEWITSCH P R, CORRIGAN N, TRUJILLO F, Xu J T, Graeme M, Craig J H, Edgar H H W, Cyrille B. High-throughput process for the discovery of antimicrobial polymers and their upscaled production via flow polymerization [J]. Macromolecules,2020,53(2):631-639. doi: 10.1021/acs.macromol.9b02207
    [105] LIN B, HEDRICK J L, PARK N H, WAYMOUTH R M. Programmable high-throughput platform for the rapid and scalable synthesis of polyester and polycarbonate libraries [J]. J Am Chem Soc, 2019, 141(22): 8921-8927.
    [106] ZHOU Y, GU Y, JIANG K, CHEN M. Droplet-flow photopolymerization aided by computer: Overcoming the challenges of viscosity and facilitating the generation of copolymer libraries [J]. Macromolecules (Washington, DC, US),,2019,52(15):5611-5617.
    [107] BÉDARD A C, ADAMO A, AROH K C, RUSSELL M G, BEDERMANN A A, TOROSIAN J,YUE B, JENSEN K F, JAMISON T F. Reconfigurable system for automated optimization of diverse chemical reactions [J]. Science,2018,361(6408):1220-1225. doi: 10.1126/science.aat0650
    [108] COLEY C W, THOMAS D A, LUMMISS J A M, JAWORSKI J N, BREEN C P, SCHULTZ V, HART T, FISHMAN J S, ROGERS L, GAO H, HICKLIN R W, PLEHIERS P P, BYINGTON J, PIOTTI J S, GREEN W H, HART A J, JAMISON T F, JENSEN K F. A robotic platform for flow synthesis of organic compounds informed by ai planning [J]. Science,2019,365(6453):eaax1566. doi: 10.1126/science.aax1566
    [109] RUBENS M, VRIJSEN J H, LAUN J, JUNKERS T. Precise polymer synthesis by autonomous self-optimizing flow reactors [J]. Angew Chem, Int Ed,2019,58(10):3183-3187. doi: 10.1002/anie.201810384
    [110] RUBENS M, HERCK J V, JUNKERS T. Automated polymer synthesis platform for integrated conversion targeting based on inline benchtop nmr [J]. ACS Macro Lett,2019,8(11):1437-1441. doi: 10.1021/acsmacrolett.9b00767
  • 加载中
图(12)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  79
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-19
  • 录用日期:  2021-11-12
  • 网络出版日期:  2021-11-22

目录

    /

    返回文章
    返回