Recent Developments of Reversible Deactivation Radical Polymerization in Flow Chemistry
-
摘要: 可逆失活自由基聚合(RDRP)是高分子合成领域中应用最广的合成方法之一,能够实现对分子量、分子量分布、聚合物结构等的精确调控,大大促进了功能高分子的合成与发展。与传统反应瓶和反应釜相比,流动化学反应器具有比表面积大、传质传热高效等优点,不仅能够有效加快聚合反应速率、减少副反应,还能为光控可逆失活自由基聚合(photo-RDRP)提供均匀、充足的光照。此外,随着计算机科学的高速发展,电脑辅助的流动聚合已成为高分子合成领域的前沿技术之一。对此,本综述首先对流动化学在热引发和光引发RDRP中的应用进行了概述,然后从定制化合成、高通量合成和自优化合成三个方面对流动RDRP方法的最新研究进展进行了介绍,最后对流动聚合中尚存的问题进行了简单的总结与展望。Abstract: Reversible deactivation radical polymerization (RDRP) is one of the most widely used methods in the field of polymer synthesis. It can achieve precise control of molecular weight, molecular weight distribution, and polymer structure, greatly promoting the synthesis and development of functional polymer materials. Compared with traditional flask and tank reactors, the flow reactor has the advantages of large specific surface area, high mass and heat transfer efficiency, etc., which can not only effectively accelerate the reaction rate of RDRP, reduce the occurrence of side reactions, but also provides uniform and sufficient light for photo-controlled reversible deactivation radical polymerization (photo-RDRP). In addition, with the rapid development of computer science, computer-aided flow polymerization has become one of the cutting-edge technologies for polymer synthesis. This review gives an overview of the development of thermal and photo-initiated RDRP in flow chemistry at first, and then introduces the latest research progress in flow polymerization from three aspects: precise synthesis, high-throughput synthesis and self-optimized synthesis. Finally, a brief summary and prospect of the remaining problems in the flow polymerization are given.
-
Key words:
- RDRP /
- flow chemistry /
- customized synthesis /
- high throughput synthesis /
- self-optimized synthesis
-
图 5 (a)流动反应器中利用ZnTPP光催化剂实现耐氧型的PET-RAFT[57];(b)氧气存在下的PET-RAFT机理示意图[57];(c)在多个流动反应器串联的装置中合成嵌段共聚物的示意图[58];(d)连续流动反应器实物图[58]
Figure 5. (a) Oxygen tolerant PET-RAFT polymerization using ZnTPP photocatalyst in flow reactor[57]; (b) Proposed mechanism for PET-RAFT polymerization in the presence of oxygen[57]; (c) Schematic illustration of the photoflow reactor setup for the synthesis of block copolymers[58]; (d) Digital photo of continuous-flow reactor[58]
图 9 (a)基于数学模型设计并合成任意聚合物分子量分布的一般过程;(b)基于数学模型设计并实验合成不同类型分布的聚合物。(左:双峰分布;中:数均分子量相近但分布宽度不同;右:互补但不对称)[91]
Figure 9. (a) General procedure for the design and synthesis of polymer MWDs based on mathematical models; (b) Polymer distributions designed using the mathematical model and experimentally synthesized (left: bimodal MWDs; middle: MWDs with constant number average molecular weights but increasing breadths; right: complementary asymmetric polymer MWDs) [91]
图 10 (a)用于合成不同形貌的PEG-b-P(HPMA)纳米粒子的流动反应器装置[99];(b)用于合成不同形貌的PDMAA-b-(PDAAM-co-PDMAA)纳米粒子的流动反应装置[100];(c)采用聚合度分别为200、400和600的PDMAA进行扩链反应一步合成不同形貌PDMAA-b-(PDAAM-co-PDMAA)纳米粒子的TEM照片(BW = 分支蠕虫;HBW = 高度分支蠕虫;V = 囊泡)[100]
Figure 10. (a) Reactor setup for the synthesis of PEG-b-P(HPMA) nanoparticles enabling monitoring of particle morphology[99]; (b) Reactor setup for the synthesis of PDMAA-b-(PDAAM-co-PDMAA) nanoparticles with different morphologies[100]; (c) TEM micrographs of PDMAA-b-(PDAAm-stat-PDMAA) nanoparticles in one-step synthesis chain extending PDMAA with DP200, DP400, and DP600 (BW = Branched worms, HBW = Highly branched worms, V = Vesicles) [100]
图 11 程序化高通量流动合成建立聚合物库的示意图[105];(b)利用可编程流动聚合技术合成不同聚合度的聚碳酸酯[105];(c)计算机辅助滴流式光控聚合的反应装置示意图[106];(d)玻璃化转变温度与共聚物中PDMA含量的关系图[106]
Figure 11. (a) Schematic illustration of programmed synthesis of polyester and polycarbonate libraries in continuous-flow[105]; (b) Synthesis of polycarbonates with different degrees of polymerization based on programmable continuous-flow technique[105]; (c) Schematic illustration of flow setup for droplet-flow photopolymerization aided by computer[106]; (d)Tg value versus the molar fraction of PDMA in copolymers[106]
图 12 (a)自优化流动聚合平台示意图[109];(b)目标数均分子量为2.5×103的聚丙烯酸正丁酯在RAFT时的优化和控制过程[109];(c)用于动力学快速筛选、精确转化率控制的自动化流动聚合平台[110];(d)不同温度下丙烯酸甲酯(目标数均分子量为5×103)的RAFT聚合动力学筛选[110]
Figure 12. (a) Schematic illustration of autonomous self-optimizing flow reactors; (b) Optimization trajectory and process control phases for RAFT polymerization of poly(n-butyl acrylate) with a target Mn of 2.5×103; (c) Automated polymer synthesis flow platform for the fast kinetic screening of polymerizations and exact monomer conversion targeting[110]; (d) Kinetic screening of a RAFT polymerization of methyl acrylate (Mn,target = 5×103) under different temperature[110]
-
[1] CHIEFARI J, CHONG Y K, ERCOLE F, KRSTINA J, JEFFERY J, LE T P T, MAYADUNNE R T A, MEIJS G F, MOAD C L, Graeme Moad, RIZZARDO E, TANG S H. Living free-radical polymerization by reversible addition−fragmentation chain transfer: The RAFT process [J]. Macromolecules,1998,31(16):5559-5562. doi: 10.1021/ma9804951 [2] WANG J S, MATYJASZEWSKI K. Controlled living radical polymerization. Atom-transfer radical polymerization in the presence of transition-metal complexes [J]. Journal of the American Chemical Society,1995,117(20):5614-5615. doi: 10.1021/ja00125a035 [3] KATO M, KAMIGAITO M, SAWAMOTO M, HIGASHIMURA T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium(ii)/methylaluminum bis(2, 6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization [J]. Macromolecules,1995,28(5):1721-1723. doi: 10.1021/ma00109a056 [4] HAWKER C J, BOSMAN A W, HARTH E. New polymer synthesis by nitroxide mediated living radical polymerizations [J]. Chemical Reviews,2001,101(12):3661-3688. doi: 10.1021/cr990119u [5] STEINBACHER J L, MCQUADE D T. Polymer chemistry in flow: New polymers, beads, capsules, and fibers [J]. Journal of Polymer Science Part A: Polymer Chemistry,2006,44(22):6505-6533. doi: 10.1002/pola.21630 [6] DEMELLO A J. Control and detection of chemical reactions in microfluidic systems [J]. Nature,2006,442(7101):394-402. doi: 10.1038/nature05062 [7] GEYER K, CODEE J D, SEEBERGER P H. Microreactors as tools for synthetic chemists-the chemists' round-bottomed flask of the 21 st century? [J]. Chemistry,2006,12(33):8434-8442. doi: 10.1002/chem.200600596 [8] WATTS P, WILES C. Recent advances in synthetic micro reaction technology [J]. Chemical Communications,2007(5):443-467. doi: 10.1039/B609428G [9] WEBB D, JAMISON T F. Continuous flow multi-step organic synthesis [J]. Chemical Science,2010,1(6):675-680. doi: 10.1039/c0sc00381f [10] YEO L Y, CHANG H C, CHAN P P, FRIEND J R. Microfluidic devices for bioapplications [J]. Small,2011,7(1):12-48. doi: 10.1002/smll.201000946 [11] GUTMANN B, CANTILLO D, KAPPE C O. Continuous-flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients [J]. Angewandte Chemie, International Edition in English,2015,54(23):6688-6728. doi: 10.1002/anie.201409318 [12] PASTRE J C, BROWNE D L, LEY S V. Flow chemistry syntheses of natural products [J]. Chemical Society Reviews,2013,42(23):8849-8869. doi: 10.1039/c3cs60246j [13] GEACINTOV C, SMID J, SZWARC M. Kinetics of anionic polymerization of styrene in tetrahydrofuran [J]. Journal of the American Chemical Society,1962,84(13):2508-2514. doi: 10.1021/ja00872a012 [14] WILMS D, KLOS J, FREY H. Microstructured reactors for polymer synthesis: A renaissance of continuous flow processes for tailor-made macromolecules [J]. Macromolecular Chemistry and Physics,2008,209(4):343-356. doi: 10.1002/macp.200700588 [15] HAVEN J J, JUNKERS T. Reactor automation in continuous flow polymerisation: On-demand delivery of precision polymer materials [J]. Chimica Oggi-Chemistry Today,2018,36(5):42-44. [16] JUNKERS T. Precise macromolecular engineering via continuous-flow synthesis techniques [J]. Journal of Flow Chemistry,2017,7(3-4):106-110. [17] ZHU N, HU X, FANG Z, GUO K. Continuous flow photoinduced reversible deactivation radical polymerization [J]. ChemPhotoChem,2018,2(10):831-838. doi: 10.1002/cptc.201800032 [18] REIS M H, LEIBFARTH F A, PITET L M. Polymerizations in continuous flow: Recent advances in the synthesis of diverse polymeric materials [J]. ACS Macro Letters,2020,9(1):123-133. doi: 10.1021/acsmacrolett.9b00933 [19] ZAQUEN N, RUBENS M, CORRIGAN N, XU J, ZETTERLUND P B, BOYER C, JUNKERS T. Polymer synthesis in continuous flow reactors [J]. Progress in Polymer Science,2020:107101256. [20] DIEHL C, LAURINO P, AZZOUZ N, SEEBERGER P H . Accelerated continuous flow RAFT polymerization [J]. Macromolecules (Washington, DC, US),2010,43(24):10311-10314. [21] HORNUNG C H, GUERRERO-SANCHEZ C, BRASHOLZ M, SAUBERN S, CHIEFARI J, MOAD G, RIZZARDO E, THANG S H. Controlled RAFT polymerization in a continuous flow microreactor [J]. Org Process Res Dev,2011,15(3):593-601. doi: 10.1021/op1003314 [22] HORNUNG C H, POSTMA A, SAUBERN S, CHIEFARI J. A continuous flow process for the radical induced end group removal of RAFT polymers [J]. Macromol. React. Eng.,2012,6(6-7):246-251. doi: 10.1002/mren.201200007 [23] HORNUNG C H, von KÄNEL K, MARTINEZ-BOTELLA I, ESIRITU M, NGUYEN X, POSTMA A, SAUBERN S, CHIEFARI J, TANG S H. Continuous flow aminolysis of RAFT polymers using multistep processing and inline analysis [J]. Macromolecules (Washington, DC, US),2014,47(23):8203-8213. [24] LI Z, CHEN W J, ZHANG Z B, ZHANG L F, CHEN J P, ZHU X L. A surfactant-free emulsion RAFT polymerization of methyl methacrylate in a continuous tubular reactor [J]. Polymer Chemistry,2015,6(11):1937-1943. doi: 10.1039/C4PY01456A [25] LI Z, CHEN W, ZHANG Z, ZHANG L, CHENG Z, ZHU X . Fast RAFT aqueous polymerization in a continuous tubular reactor: Consecutive synthesis of a double hydrophilic block copolymer [J]. Polymer Chemistry,2015,6(28):5030-5035. doi: 10.1039/C5PY00847F [26] BAETEN E, HAVEN J J, JUNKERS T. RAFT multiblock reactor telescoping: From monomers to tetrablock copolymers in a continuous multistage reactor cascade [J]. Polymer Chemistry,2017,8(25):3815-3824. doi: 10.1039/C7PY00585G [27] SHEN Y, ZHU S, PELTON R. Packed column reactor for continuous atom transfer radical polymerization: Methyl methacrylate polymerization using silica gel supported catalyst [J]. Macromol. Rapid Commun,2000,21(4):956. [28] NODA T, GRICE A J, LEVERE M E, HADDLETON D M. Continuous process for atrp: Synthesis of homo and block copolymers [J]. Eur Polym J,2007,43(6):2321-2330. doi: 10.1016/j.eurpolymj.2007.03.010 [29] PARIDA D, SERRA C A, GOMEZ R I, GARG D K, HOARAU Y, BOUQUEY M, MULLER R. Atom transfer radical polymerization in continuous microflow: Effect of process parameters [J]. Journal of Flow Chemistry,2014,4(2):92-96. doi: 10.1556/JFC-D-14-00003 [30] PARIDA D, SERRA C A, GARG D K, HOARAU Y, MULLER R, BOUQUEY M. Flow inversion: An effective means to scale-up controlled radical polymerization tubular microreactors [J]. Macromolecular Reaction Engineering,2014,8(8):597-603. doi: 10.1002/mren.201400002 [31] ENRIGHT T E, CUNNINGHAM M F, KEOSHKERIAN B. Nitroxide-mediated polymerization of styrene in a continuous tubular reactor [J]. Macromolecular Rapid Communications,2005,26(4):221-225. doi: 10.1002/marc.200400531 [32] ENRIGHT T E, CUNNINGHAM M F, KEOSHKERIAN B. Nitroxide-mediated bulk and miniemulsion polymerization in a continuous tubular reactor: Synthesis of homo-, di- and triblock copolymers [J]. Macromolecular Reaction Engineering,2010,4(3‐4):186-196. [33] ROSENFELD C, SERRA C, BROCHON C, HADZUUOANNOU G. High-temperature nitroxide-mediated radical polymerization in a continuous microtube reactor: Towards a better control of the polymerization reaction [J]. Chemical Engineering Science,2007,62(18):5245-5250. [34] STUDER A, RYU I, FUKUYAMA T, KAJIHARA Y. Nitroxide-mediated polymerization of styrene, butyl acrylate, or methyl methacrylate by microflow reactor technology [J]. Synthesis,2012,44(16):2555-2559. doi: 10.1055/s-0031-1290780 [35] GONG H H, MA M X, ZHOU Y, ZHAO Y, GU Y,CHEN M . Photoredox controlled living polymerization [J]. Journal of Functional Polymers,2019,32(3):271-291. [36] HAN S T, GU Y, MA M Y, CHEN MAO. Light-intensity switch enabled nonsynchronous growth of fluorinated raspberry-like nanoparticles [J]. Chemical Science,2020,11(38):10431-10436. doi: 10.1039/D0SC04141F [37] ZHAO Y, MA M, LIN X, CHEN M. Photoorganocatalyzed divergent reversible-deactivation radical polymerization towards linear and branched fluoropolymers [J]. Angewandte Chemie International Edition,2020,59(48):21470-21474. doi: 10.1002/anie.202009475 [38] LI R, AN Z. Achieving ultrahigh molecular weights with diverse architectures for unconjugated monomers through oxygen-tolerant photoenzymatic RAFT polymerization [J]. Angewandte Chemie International Edition,2020,59(49):22258-22264. doi: 10.1002/anie.202010722 [39] LI R Y, AN Z S. Photoenzymatic RAFT emulsion polymerization with oxygen tolerance [J]. Chinese Journal of Polymer Science,2021,39(9):1138-1145. doi: 10.1007/s10118-021-2556-5 [40] LI A, RAMAKRISHNA S N, NALAM P C, BENETTI E M, SPENCER N D. Stratified polymer grafts: Synthesis and characterization of layered ‘brush’ and ‘gel’ structures [J]. Advanced Materials Interfaces,2014,1(1):1300007. doi: 10.1002/admi.201300007 [41] QUAN Q Z, WEN H J, HAN S T, WANG Z T, SHAO Z Z. CHEN M Fluorous-core nanoparticle-embedded hydrogel synthesized via tandem photo-controlled radical polymerization: Facilitating the separation of perfluorinated alkyl substances from water [J]. Acs Applied Materials & Interfaces,2020,12(21):24319-24327. [42] ZHANG Z, CORRIGAN N, BAGHERI A, JIN J, BOYER C. A versatile 3 d and 4 d printing system through photocontrolled RAFT polymerization [J]. Angewandte Chemie International Edition,2019,58(50):17954-17963. doi: 10.1002/anie.201912608 [43] SU Y, STRAATHOF N J, HESSEL V, NOEL T. Photochemical transformations accelerated in continuous-flow reactors: Basic concepts and applications [J]. Chemistry,2014,20(34):10562-10589. doi: 10.1002/chem.201400283 [44] JUNKERS T, WENN B. Continuous photoflow synthesis of precision polymers [J]. Reaction Chemistry & Engineering,2016,1(1):60-64. [45] DIEHL C, LAURINO P, AZZOUZ N, SEEBERGER P. Accelerated continuous flow RAFT polymerization [J]. Macromolecules,2010,43(24):10311-10314. doi: 10.1021/ma1025253 [46] ZAQUEN N, KADIR A M N B P H A, IASA A, CORRIGAN N, JUNKER T, ZETTERLUND P B, BOYER C. Rapid oxygen tolerant aqueous RAFT photopolymerization in continuous flow reactors [J]. Macromolecules,2019,52(4):1609-1619. doi: 10.1021/acs.macromol.8b02628 [47] CORRIGAN N, ZHERNAKOV L, HASHIM M H, XU J, BOYER C. Flow mediated metal-free pet-RAFT polymerisation for upscaled and consistent polymer production [J]. Reaction Chemistry & Engineering,2019,4(7):1216-1228. [48] XU J, JUNG K, ATME A, SHANMUGAM S, BOYER C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance [J]. Journal of the American Chemical Society,2014,136(14):5508-5519. doi: 10.1021/ja501745g [49] SHANMUGAM S, XU J, BOYER C. Exploiting metalloporphyrins for selective living radical polymerization tunable over visible wavelengths [J]. Journal of the American Chemical Society,2015,137(28):9174-9185. doi: 10.1021/jacs.5b05274 [50] GONG H H, ZHAO Y C, SHEN X W, LIN J, CHEN M. Organocatalyzed photocontrolled radical polymerization of semifluorinated (meth)acrylates driven by visible light [J]. Angewandte Chemie: International Edition,2018,57(1):333-337. doi: 10.1002/anie.201711053 [51] JIANG K, HAN S, MA M, ZHANG L, ZHAO Y,CHEN M . Photoorganocatalyzed reversible-deactivation alternating copolymerization of chlorotrifluoroethylene and vinyl ethers under ambient conditions: Facile access to main-chain fluorinated copolymers [J]. Journal of the American Chemical Society,2020,142(15):7108-7115. doi: 10.1021/jacs.0c01016 [52] CHEN M, JOHNSON J A. Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques [J]. Chem Commun (Cambridge, UK),2015,51(31):6742-6745. doi: 10.1039/C5CC01562F [53] RUBENS M, LATSRISAENG P, JUNKERS T. Visible light-induced iniferter polymerization of methacrylates enhanced by continuous flow [J]. Polymer Chemistry,2017,8(42):6496-6505. doi: 10.1039/C7PY01157A [54] GARDINER J, HORNUNG C H, TSANAKTSIDIS J, GUTHRIE D. Continuous flow photo-initiated RAFT polymerisation using a tubular photochemical reactor [J]. Eur Polym J,2016,80:200-207. [55] WENN B, JUNKERS T. Continuous microflow photo RAFT polymerization [J]. Macromolecules (Washington DC, US),2016,49(18):6888-6895. [56] PENG J, XU Q, NI Y, ZHANG L, CHENG Z, ZHU X. Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance [J]. Polymer Chemistry,2019,10(16):2064-2072. doi: 10.1039/C9PY00069K [57] CORRIGAN N, ROSLI D, JONES J W J, XU J T . Oxygen tolerance in living radical polymerization: Investigation of mechanism and implementation in continuous flow polymerization [J]. Macromolecules (Washington, DC, US),2016,49(18):6779-6789. [58] ZAQUEN N, KADIR A M N B P H A, IASA A, CORRIAGAN N, JUNKERS T, ZETTERLUND P B, BOYER C . Rapid oxygen tolerant aqueous RAFT photopolymerization in continuous flow reactors [J]. Macromolecules (Washington, DC, U S),2019,52(4):1609-1619. [59] CHU Y, CORRIGAN N, WU C, BOYER C, XU J. A process for well-defined polymer synthesis through textile dyeing inspired catalyst immobilization [J]. ACS Sustainable Chem Eng,2018,6(11):15245-15253. doi: 10.1021/acssuschemeng.8b03726 [60] WENN B, CONRADI M, CARREIRAS A D, HADDLETONC D M, JUNKERS T. Photo-induced copper-mediated polymerization of methyl acrylate in continuous flow reactors [J]. Polymer Chemistry,2014,5(8):3053-3060. doi: 10.1039/C3PY01762A [61] RAILIAN S, WENN B, JUNKERS T. Photo-induced copper-mediated acrylate polymerization in continuous-flow reactors [J]. Journal of Flow Chemistry,2016,6(3):260-267. doi: 10.1556/1846.2016.00018 [62] MELKER A, FORS B P, HAWKER C J, POELMA J E. Continuous flow synthesis of poly(methyl methacrylate) via a light-mediated controlled radical polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry,2015,53(23):2693-2698. doi: 10.1002/pola.27765 [63] RAMSEY B L, PEARSON R M, BECK L R, MIYAKE G M. Photoinduced organocatalyzed atom transfer radical polymerization using continuous flow [J]. Macromolecules,2017,50(7):2668-2674. doi: 10.1021/acs.macromol.6b02791 [64] HUANG W, ZHAI J, HU X, DUAN J, FANG Z,ZHU N, GUO K,. Continuous flow photoinduced phenothiazine derivatives catalyzed atom transfer radical polymerization [J]. European Polymer Journal,2020:126109565. [65] ZHAO Y, YU M, ZHANG S, WU Z, LIU Y,PENG C H, FU X. A well-defined, versatile photoinitiator (salen)co–co2 ch3 for visible light-initiated living/controlled radical polymerization [J]. Chemical Science,2015,6(5):2979-2988. doi: 10.1039/C5SC00477B [66] ZHAO Y, YU M, ZHANG S, LIU Y, FU X . Visible light induced living/controlled radical polymerization of acrylates catalyzed by cobalt porphyrins [J]. Macromolecules,2014,47(18):6238-6245. doi: 10.1021/ma5014385 [67] KERMAGORET A, WENN B, DEBUIGNE A, JEROMR C, JUNKERS T, DETREMBLEUR C. Improved photo-induced cobalt-mediated radical polymerization in continuous flow photoreactors [J]. Polymer Chemistry,2015,6(20):3847-3857. doi: 10.1039/C5PY00299K [68] ZHOU Y, HAN S, GU Y, CHEN M. Facile synthesis of gradient copolymers enabled by droplet-flow photo-controlled reversible deactivation radical polymerization [J]. Science China Chemistry,2021,64(5):844-851. doi: 10.1007/s11426-020-9946-8 [69] LEIBFARTH F A, JOHNSON J A, JAMISON T F. Scalable synthesis of sequence-defined, unimolecular macromolecules by flow-ieg [J]. Proc Natl Acad Sci USA,2015,112(34):10617-10622. doi: 10.1073/pnas.1508599112 [70] HUANG Z, NOBLE B B, CORRIGAN N, CHU Y, SATOH K, THOMAS D S, HAWKER C J, MOAD G, KAMIGAITO M, COOTE M L, BOYER C, XU J. Discrete and stereospecific oligomers prepared by sequential and alternating single unit monomer insertion [J]. Journal of the American Chemical Society,2018,140(41):13392-13406. doi: 10.1021/jacs.8b08386 [71] HUANG Z, CORRIGAN N, LIN S, BOYER C, XU J. Upscaling single unit monomer insertion to synthesize discrete oligomers [J]. Journal of Polymer Science Part A: Polymer Chemistry,2019,57(18):1947-1955. doi: 10.1002/pola.29330 [72] SHANMUGAM S, CUTHBERT J, KOWALEWSKI T, BOYER C, MATYJASZEWSKI K. Catalyst-free selective photoactivation of RAFT polymerization: A facile route for preparation of comblike and bottlebrush polymers [J]. Macromolecules,2018,51(19):7776-7784. doi: 10.1021/acs.macromol.8b01708 [73] TANAKA J, HÄKKINEN S, BOECK P T, CONG Y, PERRIER S, SHEIKO S S,YOU W. Orthogonal cationic and radical RAFT polymerizations to prepare bottlebrush polymers [J]. Angewandte Chemie International Edition,2020,59(18):7203-7208. doi: 10.1002/anie.202000700 [74] LI F, CAO M, FENG Y, LIANG R, FU X, ZHONG M. Site-specifically initiated controlled/living branching radical polymerization: A synthetic route toward hierarchically branched architectures [J]. Journal of the American Chemical Society,2019,141(2):794-799. doi: 10.1021/jacs.8b12433 [75] VATANKHAH-VARNOSFADERANI M, KEITH A N, CONG Y, LIANG H, ROSENTHAL M, SZTUCKICHARLES M, CLAIR C, MAGONOV S, IVANOV D A, DOBRYNIN A V, SHEIKO S S. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration [J]. Science,2018,359(6383):1509-1513. doi: 10.1126/science.aar5308 [76] OHNSORG M L, PRENDERGAST P C, ROBINSON L L, MATTHEW R B, FRANK S B, THERESA M R. Bottlebrush polymer excipients enhance drug solubility: Influence of end-group hydrophilicity and thermoresponsiveness [J]. ACS Macro Letters,2021,10(3):375-381. doi: 10.1021/acsmacrolett.0c00890 [77] MÜLLNER M, DODDS S J, NGUYEN T H, DANIELLE S, CHRISTOPHER J H P, BEN J B, FRANK C. Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo [J]. ACS Nano,2015,9(2):1294-1304. doi: 10.1021/nn505125f [78] WENN B, MARTENS A C, CHUANG Y M, GRUBER J, JUNKERS T. Efficient multiblock star polymer synthesis from photo-induced copper-mediated polymerization with up to 21 arms [J]. Polymer Chemistry,2016,7(15):2720-2727. doi: 10.1039/C6PY00175K [79] VRIJSEN J H, OSIRO MEDEIROS C, GRUBER J,JUNKERS T. Continuous flow synthesis of core cross-linked star polymers via photo-induced copper mediated polymerization [J]. Polymer Chemistry,2019,10(13):1591-1598. doi: 10.1039/C9PY00134D [80] CORRIGAN N, TRUJILLO F J, XU J, GRAEME M, CRAIG J H, CYRILLE B. Divergent synthesis of graft and branched copolymers through spatially controlled photopolymerization in flow reactors [J]. Macromolecules,2021,54(7):3430-3446. doi: 10.1021/acs.macromol.0c02715 [81] SIFRI R J, PADILLA-VÉLEZ O, COATES G W, BRETT P F. Controlling the shape of molecular weight distributions in coordination polymerization and its impact on physical properties [J]. Journal of the American Chemical Society,2020,142(3):1443-1448. doi: 10.1021/jacs.9b11462 [82] GENTEKOS D T, SIFRI R J, FORS B P. Controlling polymer properties through the shape of the molecular-weight distribution [J]. Nature Reviews Materials,2019,4(12):761-774. doi: 10.1038/s41578-019-0138-8 [83] WHITFIELD R, TRUONG N P, MESSMER D, PARKATZIDIS K, ROLLAND M, ANASTASAKI A. Tailoring polymer dispersity and shape of molecular weight distributions: Methods and applications [J]. Chemical Science,2019,10(38):8724-8734. doi: 10.1039/C9SC03546J [84] GENTEKOS D T, DUPUIS L N, FORS B P. Beyond dispersity: Deterministic control of polymer molecular weight distribution [J]. Journal of the American Chemical Society,2016,138(6):1848-1851. doi: 10.1021/jacs.5b13565 [85] WHITFIELD R, TRUONG N, ANASTASAKI A. Precise control of both dispersity and molecular weight distribution shape by polymer blending [J]. Angewandte Chemie International Edition,2021,60:19383-19388. [86] PLICHTA A, ZHONG M J, LI W W, ELSEN A M, MATYJASZEWSKI K. Tuning dispersity in diblock copolymers using arget atrp [J]. Macromolecular Chemistry and Physics,2012,213(24):2659-2668. doi: 10.1002/macp.201200461 [87] WHITFIELD R, PARKATZIDIS K, ROLLAND M, TRUONG N P, ANASTASAKI A. Tuning dispersity by photoinduced atom transfer radical polymerisation: Monomodal distributions with ppm copper concentration [J]. Angewandte Chemie International Edition,2019,58(38):13323-13328. doi: 10.1002/anie.201906471 [88] ROLLAND M, TRUONG N P, WHITFIELD R, ATHINA A. Tailoring polymer dispersity in photoinduced iron-catalyzed atrp [J]. ACS Macro Letters,2020,9(4):459-463. doi: 10.1021/acsmacrolett.0c00121 [89] WHITFIELD R, PARKATZIDIS K, TRUONG N P, TANJA J, ATHINA A. Tailoring polymer dispersity by RAFT polymerization: A versatile approach [J]. Chem,2020,6(6):1340-1352. [90] LIU X, WANG C G, GOTO A. Polymer dispersity control by organocatalyzed living radical polymerization [J]. Angewandte Chemie-International Edition,2019,58(17):5598-5603. doi: 10.1002/anie.201814573 [91] CORRIGAN N, ALMASRI A, TAILLADES XU J T, CYRILLE B. Controlling molecular weight distributions through photoinduced flow polymerization [J]. Macromolecules (Washington, DC, US),2017,50(21):8438-8448. [92] CORRIGAN N, MANAHAN R, LEW Z T, JONATHAN Y, XU J T, CYRILLE B. Copolymers with controlled molecular weight distributions and compositional gradients through flow polymerization [J]. Macromolecules (Washington, DC, US),2018,51(12):4553-4563. [93] LIU K, CORRIGAN N, POSTMA A, GRAEME M, CYRILLE B. A comprehensive platform for the design and synthesis of polymer molecular weight distributions [J]. Macromolecules,2020,53(20):8867-8882. doi: 10.1021/acs.macromol.0c01954 [94] WALSH D J, SCHINSKI D A, SCHNEIDER R A, DAMIEN G. General route to design polymer molecular weight distributions through flow chemistry [J]. Nature Communications,2020,11(1):3094. doi: 10.1038/s41467-020-16874-6 [95] YEOW J, BOYER C. Photoinitiated polymerization-induced self-assembly (photo-pisa): New insights and opportunities [J]. Advanced Science,2017,4(7):1700137. doi: 10.1002/advs.201700137 [96] CORNEL ERIK J, JIANG J, CHEN S. Principles and characteristics of polymerization-induced self-assembly with various polymerization techniques [J]. CCS Chemistry,2021,3(4):2014-2125. [97] PENG J, TIAN C, ZHANG L, CHENG Z, ZHU X. The in situ formation of nanoparticles via RAFT polymerization-induced self-assembly in a continuous tubular reactor [J]. Polymer Chemistry,2017,8(9):1495-1506. doi: 10.1039/C6PY02133F [98] PARKINSON S, HONDOW N S, CONTEH J S, BOURNE R A, WARREN N J. All-aqueous continuous-flow RAFT dispersion polymerisation for efficient preparation of diblock copolymer spheres, worms and vesicles [J]. React. Chem. Eng.,2019,4(5):852-861. doi: 10.1039/C8RE00211H [99] ZAQUEN N, YEOW J, JUNKERS T, CYRILLE B, ZETTERLUND P B. Visible light-mediated polymerization-induced self-assembly using continuous flow reactors [J]. Macromolecules (Washington, DC, US),,2018,51(14):5165-5172. [100] ZAQUEN N, ZU H, KADIR A M N B P H A, TANJA J, PER B Z, CYRILLE B. Scalable aqueous reversible addition-fragmentation chain transfer photopolymerization-induced self-assembly of acrylamides for direct synthesis of polymer nanoparticles for potential drug delivery applications [J]. ACS Appl Polym Mater,2019,1(6):1251-1256. doi: 10.1021/acsapm.9b00280 [101] LIU D, CAI W, ZHANG L, CYRILLE B, TAN J B. Efficient photoinitiated polymerization-induced self-assembly with oxygen tolerance through dual-wavelength type i photoinitiation and photoinduced deoxygenation [J]. Macromolecules,2020,53(4):1212-1223. doi: 10.1021/acs.macromol.9b02710 [102] CAI W B, LIU D D, CHEN Y, ZHANG L, TAN J B. Enzyme-assisted photoinitiated polymerization-induced self-assembly in continuous flow reactors with oxygen tolerance [J]. Chinese Journal of Polymer Science,2021,39(9):1127-1137. doi: 10.1007/s10118-021-2533-z [103] OLIVER S, ZHAO L, GORMLEY A J, ROBERT C, CYRILLE B. Living in the fast lane—high throughput controlled/living radical polymerization [J]. Macromolecules,2019,52(1):3-23. doi: 10.1021/acs.macromol.8b01864 [104] JUDZEWITSCH P R, CORRIGAN N, TRUJILLO F, Xu J T, Graeme M, Craig J H, Edgar H H W, Cyrille B. High-throughput process for the discovery of antimicrobial polymers and their upscaled production via flow polymerization [J]. Macromolecules,2020,53(2):631-639. doi: 10.1021/acs.macromol.9b02207 [105] LIN B, HEDRICK J L, PARK N H, WAYMOUTH R M. Programmable high-throughput platform for the rapid and scalable synthesis of polyester and polycarbonate libraries [J]. J Am Chem Soc, 2019, 141(22): 8921-8927. [106] ZHOU Y, GU Y, JIANG K, CHEN M. Droplet-flow photopolymerization aided by computer: Overcoming the challenges of viscosity and facilitating the generation of copolymer libraries [J]. Macromolecules (Washington, DC, US),,2019,52(15):5611-5617. [107] BÉDARD A C, ADAMO A, AROH K C, RUSSELL M G, BEDERMANN A A, TOROSIAN J,YUE B, JENSEN K F, JAMISON T F. Reconfigurable system for automated optimization of diverse chemical reactions [J]. Science,2018,361(6408):1220-1225. doi: 10.1126/science.aat0650 [108] COLEY C W, THOMAS D A, LUMMISS J A M, JAWORSKI J N, BREEN C P, SCHULTZ V, HART T, FISHMAN J S, ROGERS L, GAO H, HICKLIN R W, PLEHIERS P P, BYINGTON J, PIOTTI J S, GREEN W H, HART A J, JAMISON T F, JENSEN K F. A robotic platform for flow synthesis of organic compounds informed by ai planning [J]. Science,2019,365(6453):eaax1566. doi: 10.1126/science.aax1566 [109] RUBENS M, VRIJSEN J H, LAUN J, JUNKERS T. Precise polymer synthesis by autonomous self-optimizing flow reactors [J]. Angew Chem, Int Ed,2019,58(10):3183-3187. doi: 10.1002/anie.201810384 [110] RUBENS M, HERCK J V, JUNKERS T. Automated polymer synthesis platform for integrated conversion targeting based on inline benchtop nmr [J]. ACS Macro Lett,2019,8(11):1437-1441. doi: 10.1021/acsmacrolett.9b00767 -