Infection Behavior During Ageing of Polymers: A Review
-
摘要: 在聚合物共混物中或多种聚合物在同一空间并用时,各聚合物或聚合物组分的老化过程相互影响,即为聚合物老化传染行为。这种聚合物老化传染行为使针对单一品种聚合物老化的研究结果往往不能用以准确预测实际使用中聚合物材料的寿命,是老化研究领域的重要课题。本文综述了聚合物老化传染行为的研究进展,重点阐明老化传染行为的典型表现形式:“接触式”传播和“非接触式”传染,对传染媒介的来源和作用机制进行分析,介绍老化传染行为在环境保护和文物保护领域的应用,总结聚合物老化传染研究面临的挑战并展望前景。Abstract: When polymers are in blends or used together, the ageing process of polymer components or polymers affects each other, which is called infection behavior of ageing. Due to the infection behavior during ageing of polymer, the research results of an individual polymer cannot be used to predict the life of this polymer material in blends or being used with other polymers. Therefore, infection behavior is an important topic in the field of ageing study. This article mainly features the research progress towards infection behavior of polymer ageing. Firstly, the "contacting" and "non-contacting" behaviors are emphatically illustrated, which are the two typical patterns of infection behavior of ageing. Ageing spreads via infection agents within a polymer or polymer blend, and between different polymers separated from each other. Infection agents play an important role in infection behavior. Then, the source and effects of infection agents are analyzed. Infection agents include radicals, volatile organic small molecules, gases, volatile additives and so on. All these infection agents work in "contacting" behavior, while volatile and gaseous matter are more important in "non-contacting" behavior. Benzoyl peroxide (BPO), formaldehyde and acetic acid are found to accelerate the thermo-oxidative ageing of polypropylene (PP). Eighteen volatile organic small molecules including acids, esters, aldehydes, ketones and alcohols are demonstrated to accelerate the photo-oxidative ageing of PP to different extents. Finally, the applications of infection behavior in the field of environmental protection and heritage protection are introduced and the challenges and prospects are proposed. The characterization of infection agents and their mechanism of action remain to be clarified systematically.
-
Key words:
- polymer /
- ageing /
- infection /
- degradation /
- stability
-
图 10 PP与多种有机小分子共置光氧老化288 h的羰基指数(a. 对照组;b. PP+甲酸(FAC);c. PP+乙酸(HAC);d. PP+丙酸(PAC);e. PP+异丁酸(IAC);f. PP+十一烯酸(UAC);g. PP+丙烯酸(AA);h. PP+甲基丙烯酸(MAA);i. PP+丙烯酸甲酯(MA);j. PP+丙烯酸丁酯(BA);k. PP+甲基丙烯酸甲酯(MMA);l. PP+甲醛(FH);m. PP+乙醛(AH);n. PP+丙酮(CP);o. PP+丁酮(MEK);p. PP+乙醇(EA);q. PP+异丙醇(IPA);r. PP+正戊醇(NPEA);s. PP+异戊醇(IPEA))[97]
Figure 10. Carbonyl index of PP with various organic small molecules after photo-oxidative ageing for 288 h (a. Control; b. PP+FAC; c. PP+HAC; d. PP+PAC; e. PP+IAC; f. PP+UAC; g. PP+AA; h. PP+MAA; i. PP+MA; j. PP+BA; k. PP+MMA; l. PP+FH; m. PP+AH; n. PP+CP; o. PP+MEK; p. PP+EA; q. PP+IPA; r. PP+NPEA; s. PP+IPEA) [97]
表 1 不同老化条件下PP释放的挥发性物质种类和数量
Table 1. Types and quantities of volatiles realeased by PP under different ageing conditions
Composition Ageing condition Category Number Isotactic polypropylene(iPP)[90] 130 °C, thermo-oxidation Aldehyde, ketones, acids, alcohols, esters, aromatic hydrocarbons, furans 26 iPP [91] 200 kGy Co-60 irradiation + oxygen Aldehyde, ketones, acids, alcohols, esters, olefins, alkanes, furans 33 Atactic polypropylene(aPP)[92] 200 °C, thermo-oxidation Aldehyde, ketones, acids, alcohols, olefins, alkanes 23 Commercial PP [93] Xenon lamp, photo-oxidation Aldehyde, ketones, acids, alcohols, olefins, alkanes 22 PP + 0.22% peroxides [94] 250, 275, 300 °C, hot water Aldehyde, ketones, acids, alcohols, phenols 20 PP/HEMP fiber composites [95] ISO 877-2: 2011 Aldehyde, ketones, acids, alcohols, phenols,aliphatic hydrocarbons, furans, azines 92 -
[1] 化学工业部合成材料老化研究所. 高分子材料老化与防老化[M]. 北京: 化学工业出版社, 1979.INSTITUTE OF SYNTHETIC MATERIALS AGEING, MINISTRY OF CHEMICAL INDUSTRY. Ageing and Anti-ageing of Polymer Materials[M]. Beijing: Chemical Industry Press, 1979. [2] 钟世云, 许乾慰, 王公善. 聚合物降解与稳定化[M]. 北京: 化学工业出版社, 2002.ZHONG S Y, XU Q W, WANG G S. Polymer Degradati on and Stabilization[M]. Beijing: Chemical Industry Press, 2002. [3] UTRACKI L A, WILKIE C A. Polymer Blends Handbook[M]. 2nd ed. New York: Springer, 2014: 1434. [4] 李雅彬, 周博. 汽车内饰材料的研究进展 [J]. 汽车工程师,2012(4):19-22. doi: 10.3969/j.issn.1674-6546.2012.04.023LI Y B, ZHOU B. Progress in automotive interior materials [J]. Auto Engineer,2012(4):19-22. doi: 10.3969/j.issn.1674-6546.2012.04.023 [5] CELINA M C. Review of polymer oxidation and its relationship with materials performance and lifetime prediction [J]. Polymer Degradation and Stability,2013,98(12):2419-2429. doi: 10.1016/j.polymdegradstab.2013.06.024 [6] de GOEDE E, MALLON P E, RODE K, et al. Spatial heterogeneity of thermo-oxidative degradation in impact poly(propylene) copolymers [J]. Macromolecular Materials and Engineering,2011,296(11):1018-1027. doi: 10.1002/mame.201100061 [7] GIJSMAN P, DONG W F, QUINTANA A, et al. Influence of temperature and stabilization on oxygen diffusion limited oxidation profiles of polyamide 6 [J]. Polymer Degradation and Stability,2016,130:83-96. doi: 10.1016/j.polymdegradstab.2016.05.024 [8] WISE J, GILLEN K T, CLOUGH R L. An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers [J]. Polymer Degradation and Stability,1995,49(3):403-418. doi: 10.1016/0141-3910(95)00137-B [9] WISE J, GILLEN K T, CLOUGH R L. Quantitative model for the time development of diffusion-limited oxidation profiles [J]. Polymer,1997,38(8):1929-1944. doi: 10.1016/S0032-3861(96)00716-1 [10] CELINA M, WISE J, OTTESEN D K, et al. Correlation of chemical and mechanical property changes during oxidative degradation of neoprene [J]. Polymer Degradation and Stability,2000,68(2):171-184. doi: 10.1016/S0141-3910(99)00183-4 [11] QUINTANA A, CELINA M C. Overview of DLO modeling and approaches to predict heterogeneous oxidative polymer degradation [J]. Polymer Degradation and Stability,2018,149:173-191. doi: 10.1016/j.polymdegradstab.2017.11.014 [12] CELINA M, GEORGE G A. Physical spreading of oxidation in solid polypropylene as studied by chemiluminescence [J]. Polymer Degradation and Stability,1993,42(3):335-344. doi: 10.1016/0141-3910(93)90229-C [13] FAYOLLE B, AUDOUIN L, GEORGE G A, et al. Macroscopic heterogeneity in stabilized polypropylene thermal oxidation [J]. Polymer Degradation and Stability,2002,77(3):515-522. doi: 10.1016/S0141-3910(02)00110-6 [14] CELINA M, GEORGE G A, BILLINGHAM N C. Physical Spreading and Heterogeneity in Oxidation of Polypropylene[M]. Washington D C: American Chemical Society, 1996. [15] CELINA M, GEORGE G A. A heterogeneous model for the thermal oxidation of solid polypropylene from chemiluminescence analysis [J]. Polymer Degradation and Stability,1993,40(3):323-335. doi: 10.1016/0141-3910(93)90138-9 [16] CELINA M, GEORGE G A. Heterogeneous and homogeneous kinetic analyses of the thermal oxidation of polypropylene [J]. Polymer Degradation and Stability,1995,50(1):89-99. doi: 10.1016/0141-3910(95)00136-A [17] GEORGE G A, CELINA M, LERF C, et al. A spreading model for the oxidation of polypropylene [J]. Macromolecular Symposia,1997,115:69-92. doi: 10.1002/masy.19971150107 [18] TIEMBLO P, GÓMEZ-ELVIRA J M. A representation of the autoacceleration stage of polypropylene thermooxidation in reduced coordinates [J]. Polymer Degradation and Stability,2000,67(1):49-56. doi: 10.1016/S0141-3910(99)00117-2 [19] TIEMBLO P, GÓMEZ-ELVIRA J M, NAVARRO O, et al. The autoacceleration of polypropylene thermo-oxidation in reduced coordinates: Effect of the oxidation temperature and of polyolefin structure [J]. Polymer Degradation and Stability,2001,72(1):23-30. doi: 10.1016/S0141-3910(00)00197-X [20] GOSS B G S, BARRY M D, BIRTWHISTLE D, et al. Modelling of infectious spreading in heterogeneous polymer oxidation: I. Development of a stochastic model [J]. Polymer Degradation and Stability,2001,74(2):271-282. doi: 10.1016/S0141-3910(01)00158-6 [21] GOSS B G S, BLAKEY I, BARRY M D, et al. Modelling of infectious spreading in heterogeneous polymer oxidation: II. Refinement of stochastic model and calibration using chemiluminescence of polypropylene [J]. Polymer Degradation and Stability,2001,74(3):523-532. doi: 10.1016/S0141-3910(01)00189-6 [22] RYCHLÝ J, MATISOVÁ-RYCHLÁ L, TIEMBLO P, et al. The effect of physical parameters of isotactic polypropylene on its oxidisability measured by chemiluminescence method. Contribution to the spreading phenomenon [J]. Polymer Degradation and Stability,2001,71(2):253-260. doi: 10.1016/S0141-3910(00)00169-5 [23] GOSS B G S, NAKATANI H, GEORGE G A, et al. Catalyst residue effects on the heterogeneous oxidation of polypropylene [J]. Polymer Degradation and Stability,2003,82(1):119-126. doi: 10.1016/S0141-3910(03)00172-1 [24] GENTILE G, AMBROGI B, CERRUTI P, et al. Pros and cons of melt annealing on the properties of MWCNT/polypropylene composites [J]. Polymer Degradation and Stability,2014,110:56-64. doi: 10.1016/j.polymdegradstab.2014.08.018 [25] HERNÁNDEZ-FERNÁNDEZ J, LÓPEZ-MARTÍNEZ J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,2021,155:105052. doi: 10.1016/j.jaap.2021.105052 [26] BLAKEY I, GEORGE G A. Raman spectral mapping of photo-oxidised polypropylene [J]. Polymer Degradation and Stability,2000,70(2):269-275. doi: 10.1016/S0141-3910(00)00126-9 [27] NAKATANI H, SHIBATA H, MIYAZAKI K, et al. Studies on heterogeneous degradation of polypropylene/talc composite: Effect of iron impurity on the degradation behavior [J]. Journal of Applied Polymer Science,2010,115(1):167-173. doi: 10.1002/app.31010 [28] MALÍKOVÁ M, RYCHLY J, MATISOVÁ-RYCHLÁ L. The effects of annealing in inert atmospheres and of oxygen concentration on chemiluminescence from polypropylene [J]. Polymer Degradation and Stability,2008,93(12):2113-2118. doi: 10.1016/j.polymdegradstab.2008.08.008 [29] ERIKSSON P, REITBERGER T, STENBERG B. Gas-phase contribution to the spreading of oxidation in polypropylene as studied by imaging chemiluminescence [J]. Polymer Degradation and Stability,2002,78(1):183-189. doi: 10.1016/S0141-3910(02)00132-5 [30] ERIKSSON P, REITBERGER T, AHLBLAD G, et al. Oxidation fronts in polypropylene as studied by imaging chemiluminescence [J]. Polymer Degradation and Stability,2001,73(1):177-183. doi: 10.1016/S0141-3910(01)00085-4 [31] AHLBLAD G, GIJSMAN P, TERSELIUS B, et al. Thermo-oxidative stability of PP waste films studied by imaging chemiluminescence [J]. Polymer Degradation and Stability,2001,73(1):15-22. doi: 10.1016/S0141-3910(01)00038-6 [32] BLAKEY I, BILLINGHAM N, GEORGE G A. Use of 9, 10-diphenylanthracene as a contrast agent in chemiluminescence imaging: The observation of spreading of oxidative degradation in thin polypropylene films [J]. Polymer Degradation and Stability,2007,92(11):2102-2109. doi: 10.1016/j.polymdegradstab.2007.07.020 [33] FAIRFULL-SMITH K E, BLINCO J P, KEDDIE D J, et al. A novel profluorescent dinitroxide for imaging polypropylene degradation [J]. Macromolecules,2008,41(5):1577-1580. doi: 10.1021/ma701944p [34] ZHANG Z K, TIAN R, ZHANG P D, et al. Three-dimensional visualization for early-stage evolution of polymer aging [J]. ACS Central Science,2020,6:771-778. doi: 10.1021/acscentsci.0c00133 [35] NAKATANI H, SUZUKI S, TANAKA T, et al. Effect of unsaturated chain end-group on thermal oxidative behavior of polypropylene [J]. Polymer International,2007,56(9):1147-1151. doi: 10.1002/pi.2252 [36] NAKATANI H, KURNIAWAN D, TANIIKE T, et al. Degradation behavior of polymer blend of isotactic polypropylenes with and without unsaturated chain end group [J]. Science and Technology of Advanced Materials,2008,9(2):024401. doi: 10.1088/1468-6996/9/2/024401 [37] CHAMMINGKWAN P, YAMAGUCHI F, TERANO M, et al. Influence of isotacticity and its distribution on degradation behavior of polypropylene [J]. Polymer Degradation and Stability,2017,143:253-258. doi: 10.1016/j.polymdegradstab.2017.07.024 [38] SUMINO K I, TANIIKE T, TERANO M, et al. Thermal and photooxidative degradation behaviors of poly(propylene)/SiO2 nanocomposites with various polymer morphologies [J]. Macromolecular Reaction Engineering,2008,2(2):135-141. doi: 10.1002/mren.200700035 [39] KATADA I, TOYONAGA M, GOTO K, et al. Role of higher-order structures on the degradation and stabilization of polypropylene-based materials [J]. Kobunshi Ronbunshu,2013,70(12):693-696. doi: 10.1295/koron.70.693 [40] NGUYEN T, GU X H, VANLANDINGHAM M, et al. Degradation modes of crosslinked coatings exposed to photolytic environment [J]. Journal of Coatings Technology and Research,2013,10(1):1-14. doi: 10.1007/s11998-012-9455-1 [41] TOURNEBIZE A, DOMÍNGUEZ I F, MORSE G E, et al. Side chain structure and dispersity impact the photostability of low band gap polymers [J]. Polymer Degradation and Stability,2017,146:155-160. doi: 10.1016/j.polymdegradstab.2017.10.010 [42] 何曼君, 陈维孝, 董西侠. 高分子物理[M]. 上海: 复旦大学出版社, 2000.HE M J, CHEN W X, DONG X X. Polymer Physics[M]. Shanghai: Fudan University Press, 2000. [43] la MANTIA F P, MORREALE M, BOTTA L, et al. Degradation of polymer blends: A brief review [J]. Polymer Degradation and Stability,2017,145:79-92. doi: 10.1016/j.polymdegradstab.2017.07.011 [44] RIVATON A, SERRE F, GARDETTE J L. Oxidative and photooxidative degradations of PP/PBT blends [J]. Polymer Degradation and Stability,1998,62(1):127-143. doi: 10.1016/S0141-3910(97)00271-1 [45] THERIAS S, DINTCHEVA N T, GARDETTE J L, et al. Photooxidative behaviour of polyethylene/polyamide-6 blends [J]. Polymer Degradation and Stability,2010,95(4):522-526. doi: 10.1016/j.polymdegradstab.2009.12.017 [46] MOUFFOK S, KACI M. Artificial weathering effect on the structure and properties of polypropylene/polyamide-6 blends compatibilized with PP-g-MA [J]. Journal of Applied Polymer Science,2015,132(13):41722. [47] BATE D M, LEHRLE R S. The effect of blending on polymer stability: Kinetics and mechanisms [J]. Polymer Degradation and Stability,1998,62(1):57-66. doi: 10.1016/S0141-3910(97)00261-9 [48] POSPÍŠIL J, HORÁK Z, KRULIŠ Z, et al. Degradation and aging of polymer blends: I. Thermomechanical and thermal degradation [J]. Polymer Degradation and Stability,1999,65(3):405-414. doi: 10.1016/S0141-3910(99)00029-4 [49] MÁRQUEZ Y, FRANCO L, PUIGGALÍ J. Thermal degradation studies of poly(trimethylene carbonate) blends with either polylactide or polycaprolactone [J]. Thermochimica Acta,2012,550:65-75. doi: 10.1016/j.tca.2012.10.001 [50] KACZMAREK H. Photodegradation of polystyrene and poly(vinyl acetate) blends: II. Irradiation of PS/PVAc blends by fluorescent lamp [J]. European Polymer Journal,1995,31(12):1175-1184. doi: 10.1016/0014-3057(95)00095-X [51] KACZMAREK H. Photodegradation of polystyrene and poly(vinyl acetate) blends: I. Irradiation of PS/PVAc blends by polychromatic light [J]. European Polymer Journal,1995,31(11):1037-1042. doi: 10.1016/0014-3057(95)00094-1 [52] WALDMAN W R, de PAOLI M A. Photodegradation of polypropylene/polystyrene blends: Styrene-butadiene-styrene compatibilisation effect [J]. Polymer Degradation and Stability,2008,93(1):273-280. doi: 10.1016/j.polymdegradstab.2007.09.003 [53] MARINHO V A D, PEREIRA C A B, VITORINO M B C, et al. Degradation and recovery in poly(butylene adipate-co-terephthalate)/thermoplastic starch blends [J]. Polymer Testing,2017,58:166-172. doi: 10.1016/j.polymertesting.2016.12.028 [54] MOUSTAPHA M E, FRIEDRICH J F, FARAG, Z R, et al. Potentiometric studies on the influence of poly(N-vinylpyrrolidone) on the thermal degradation behavior of poly(vinyl chloride) blends [J]. Materials Testing,2019,61(2):179-184. doi: 10.3139/120.111304 [55] GANESH K, LATHA R, KISHORE K, et al. Stabilization of thermal degradation of poly(methyl methacrylate) by polysulfide polymers [J]. Journal of Applied Polymer Science,1997,66:2149-2156. doi: 10.1002/(SICI)1097-4628(19971219)66:11<2149::AID-APP11>3.0.CO;2-X [56] VÁSQUEZ-RENDÓN M, AVAREZ-LÁINEZ M L. Tailoring the mechanical, thermal, and flammability properties of high-performance PEI/PBT blends exhibiting dual-phase continuity [J]. Polymer,2018,154:241-252. doi: 10.1016/j.polymer.2018.09.012 [57] MANGIN R, VAHABI H, SONNIER R, et al. Assessment of the protective effect of PMMA on water immersion ageing of flame retarded PLA/PMMA blends [J]. Polymer Degradation and Stability,2020,174:109104. doi: 10.1016/j.polymdegradstab.2020.109104 [58] SEDLÁR J, PÁC J. Polypropylene stability adversely affected by volatile oxidation products[J]. Polymer, 1974, 15(9): 613-614. [59] DRAKE W O. The influence of sample holders on oven aging of polypropylene [J]. Journal of Polymer Science:Symposium,1976(57):153-159. [60] AHLBLAD G, REITBERGER T, TERSELIUS B, et al. Imaging chemiluminescence technique applied to thermo-oxidation of polymers : Possibilities and limitations [J]. Angewandte Makromolekulare Chemie,1998,262:1-7. [61] AHLBLAD G, REITBERGER T, TERSELIUS B, et al. Thermo-oxidative infection in populations of EPDM particles studied by imaging chemiluminescence [J]. Polymer Degradation and Stability,1999,65(2):169-177. doi: 10.1016/S0141-3910(98)00177-3 [62] CELINA M, CLOUGH R, JONES G. Polymer degradation initiated via infectious behavior[J]. Polymer, 2005, 46(14): 5161-5164. [63] CELINA M, CLOUGH R L, JONES G D. Initiation of polymer degradation via transfer of infectious species [J]. Polymer Degradation and Stability,2006,91(5):1036-1044. doi: 10.1016/j.polymdegradstab.2005.07.022 [64] LIU X, YANG R. Cross-infection in thermo-oxidation of polymers [J]. Polymer Degradation and Stability,2019,161:7-12. doi: 10.1016/j.polymdegradstab.2019.01.009 [65] 赵皎宏, 李一枫, 杨睿, 等. 远程“传染”对聚丙烯光氧老化的影响 [J]. 高分子学报,2015(4):369-373. doi: 10.11777/j.issn1000-3304.2015.15041ZHAO J H, LI Y F, YANG R, et al. Infectious behavior of polypropylene during photo-oxidation [J]. Acta Polymerica Sinica,2015(4):369-373. doi: 10.11777/j.issn1000-3304.2015.15041 [66] LIU X, REN X P, YANG R. Infectious behavior in photo-oxidation of polymers [J]. Chinese Journal of Polymer Science,2020,38(3):248-256. doi: 10.1007/s10118-020-2344-7 [67] VANCE A L, ALVISO C T, HARVEY C A. Accelerated degradation of syntactic polysulfide in the presence of Viton A [J]. Polymer Degradation and Stability,2006,91(9):1960-1963. doi: 10.1016/j.polymdegradstab.2006.02.014 [68] COLWELL J M, NIKOLIC M A L, BOTTLE S E, et al. Sensitive luminescence techniques to study the early stages of polymer oxidation [J]. Polymer Degradation and Stability,2013,98(12):2436-2444. doi: 10.1016/j.polymdegradstab.2013.06.010 [69] HAMSKOG M, AHLBLAD G, FÄRNERT G, et al. New multi-cell imaging chemiluminescence (ICL) instrument to evaluate the stability of polymers [J]. Polymer Testing,2003,22(4):363-369. doi: 10.1016/S0142-9418(02)00114-9 [70] ARATANI N, KATADA I, NAKAYAMA K, et al. Development of high-throughput chemiluminescence imaging instrument for parallel evaluation of polymer lifetime [J]. Polymer Degradation and Stability,2015,121:340-347. doi: 10.1016/j.polymdegradstab.2015.09.025 [71] NAKAYAMA K, DAO A T N, TAKEUCHI K, et al. Chemiluminescence from recombinant spider silk under thermo-oxidative degradation [J]. Polymer Degradation and Stability,2017,144:264-269. doi: 10.1016/j.polymdegradstab.2017.08.010 [72] DAO A T N, SHIMOKATA J, TAKEUCHI K, et al. Stabilization of recombinant spider silk in thermo-oxidative degradation: High-throughput screening for antioxidants [J]. Polymer Degradation and Stability,2018,153:37-46. doi: 10.1016/j.polymdegradstab.2018.04.018 [73] TANIIKE T, KITAMURA T, NAKAYAMA K, et al. Stabilizer formulation based on high-throughput chemiluminescence imaging and machine learning [J]. ACS Applied Polymer Materials,2020,2:3319-3326. doi: 10.1021/acsapm.0c00442 [74] Standard test method for rubber : Deterioration by heat and oxygen[S]. West Conshohocken: ASTM International, 2015. [75] THAKUR S, SARATHI R, GAUTAM R, et al. Thermal aging of cellulosic pressboard material and its surface discharge and chemical characterization [J]. Cellulose,2017,24:5197-5210. doi: 10.1007/s10570-017-1490-8 [76] la NASA J, di MARCO F, BERNAZZANI L, et al. Aquazol as a binder for retouching paints: An evaluation through analytical pyrolysis and thermal analysis [J]. Polymer Degradation and Stability,2017,144:508-519. doi: 10.1016/j.polymdegradstab.2017.09.007 [77] CAMPBELL C G, ASTORGA D J, DUEMICHEN E, et al. Thermoset materials characterization by thermal desorption or pyrolysis based gas chromatography-mass spectrometry methods [J]. Polymer Degradation and Stability,2020,174:109032. doi: 10.1016/j.polymdegradstab.2019.109032 [78] BIALE G, la NASA J, MATTONAI M, et al. A systematic study on the degradation products generated from artificially aged microplastics [J]. Polymers,2021,13(12):1997. doi: 10.3390/polym13121997 [79] YAMADA K, KUMAGAI S, SHIRATORI T, et al. Combined UV-irradiation and pyrolysis-GC/MS approach for evaluating the deterioration behavior of ethylene vinyl acetate [J]. Polymer Degradation and Stability,2021,190:109623. doi: 10.1016/j.polymdegradstab.2021.109623 [80] RODRIGUEZ-CELIS E M, DUCHESNE S, JALBERT J, et al. Understanding ethanol versus methanol formation from insulating paper in power transformers [J]. Cellulose,2015,22:3225-3236. doi: 10.1007/s10570-015-0693-0 [81] SUN L, LI K, XUE W L, et al. Thermal degradation of reactive polyurethane hot melt adhesive based on MDI [J]. Journal of Adhesion Science and Technology,2018,32(11):1253-1263. doi: 10.1080/01694243.2017.1408184 [82] XU Y H, ZHANG T, ZHOU Y L, et al. Mechanism investigation of thermal degradation of CO2-based poly(cyclohexene carbonate caprolactone) [J]. Polymer Degradation and Stability,2019,168:108957. doi: 10.1016/j.polymdegradstab.2019.108957 [83] HU J H, LI Y, XIAO F, et al. Thermal degradation and aging behavior of polytriazole polyethylene oxide-tetrahydrofuran elastomer based on click-chemistry [J]. Journal of Applied Polymer Science,2020,137:e48974. doi: 10.1002/app.48974 [84] LIU X, YANG R. Conversion among photo-oxidative products of polypropylene in solid, liquid and gaseous states [J]. BMC Chemistry,2020,14:44. doi: 10.1186/s13065-020-00698-y [85] YANG R, ZHAO J H, LIU Y. Oxidative degradation products analysis of polymer materials by pyrolysis gas chromatography-mass spectrometry [J]. Polymer Degradation and Stability,2013,98:2466-2472. doi: 10.1016/j.polymdegradstab.2013.05.018 [86] LIU J, LI X B, XU L K, et al. Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment [J]. Polymer Testing,2016,54:59-66. doi: 10.1016/j.polymertesting.2016.06.010 [87] LIU X, ZHAO J H, YANG R, et al. Thermal aging of hydrogenated nitrile rubber loss of additives and its influence on elasticity maintenance [J]. Polimery,2017,62(7-8):588-598. [88] LIU X, ZHAO J H, YANG R, et al. Effect of lubricating oil on thermal aging of nitrile rubber [J]. Polymer Degradation and Stability,2018,151:136-143. doi: 10.1016/j.polymdegradstab.2018.03.004 [89] LIU S S, VEYSEY S W, FIFIELD L S, et al. Quantitative analysis of changes in antioxidant in crosslinked polyethylene (XLPE) cable insulation material exposed to heat and gamma radiation [J]. Polymer Degradation and Stability,2018,156:252-258. doi: 10.1016/j.polymdegradstab.2018.09.011 [90] BERNSTEIN R, THORNBERG S M, ASSINK R A, et al. The origins of volatile oxidation products in the thermal degradation of polypropylene, identified by selective isotopic labeling [J]. Polymer Degradation and Stability,2007,92:2076-2094. doi: 10.1016/j.polymdegradstab.2007.07.018 [91] BERNSTEIN R, THORNBERG S M, IRWIN A N, et al. Radiation-oxidation mechanisms: Volatile organic degradation products from polypropylene having selective C-13 labeling studied by GC/MS [J]. Polymer Degradation and Stability,2008,93:854-870. doi: 10.1016/j.polymdegradstab.2008.01.020 [92] GAEVAYA L N, TUROV Y P, NEKHOROSHEV Y P, et al. Structural-group composition of low-molecular-weight products of thermal oxidative degradation of atactic polypropylene [J]. Russian Journal of Applied Chemistry,2011,84(3):461-467. doi: 10.1134/S1070427211030220 [93] KANG P, WU P, JIN Y, et al. Formation and emissions of volatile organic compounds from homo-PP and co-PP resins during manufacturing process and accelerated photoaging degradation [J]. Molecules,2020,25:2761. doi: 10.3390/molecules25122761 [94] REBEYROLLE-BERNAR P, ETIÉVANT P. Volatile compounds extracted from polypropylene sheets by hot water: Influence of the temperature of sheets injection [J]. Journal of Applied Polymer Science,1993,49(7):1159-1164. doi: 10.1002/app.1993.070490704 [95] BADJI C, BEIGBEDER J, GARAY H, et al. Under glass weathering of hemp fibers reinforced polypropylene biocomposites: Impact of volatile organic compounds emissions on indoor air quality [J]. Polymer Degradation and Stability,2018,149:85-95. doi: 10.1016/j.polymdegradstab.2018.01.020 [96] CELINA M, CLOUGH R L. Remote inhibition of polymer degradation [J]. Polymer,2006,47(1):289-292. doi: 10.1016/j.polymer.2005.11.041 [97] 刘璇, 刘昊雨, 李一枫, 等. 有机小分子对聚丙烯光氧老化的传染作用 [J]. 高等学校化学学报,2020,41(12):2838-2844.LIU X, LIU H Y, LI Y F, et al. Infectious effect of organic small molecules on photo-oxidative aging of polypropylene [J]. Chemical Journal of Chinese Universities,2020,41(12):2838-2844. [98] ZHANG F, CAO Y F, LIU X, et al. How small molecules affect the thermo-oxidative aging mechanism of polypropylene: A reactive molecular dynamics study [J]. Polymers,2021,13:1243. doi: 10.3390/polym13081243 [99] BROSKA R, RYCHLÝ J, CSOMOROVÁ K. Carboxylic acid assisted oxidation of polypropylene studied by chemiluminescence [J]. Polymer Degradation and Stability,1999,63(2):231-236. doi: 10.1016/S0141-3910(98)00097-4 [100] BUTLER C H, WHITMORE P M. Evolution of peroxide species during the photooxidation of poly(vinyl butyral) [J]. Journal of Applied Polymer Science,2014,131(2):39753. [101] GALLET G, ERLANDSSON B, ALBERTSSON A C, et al. Thermal oxidation of poly(ethylene oxide-propylene oxide-ethylene oxide) triblock copolymer: Focus on low molecular weight degradation products [J]. Polymer Degradation and Stability,2002,77(1):55-66. doi: 10.1016/S0141-3910(02)00079-4 [102] ABDOUSS M, SHARIFI-SANJANI N, BATAILLE P. Oxidation of polypropylene in a solution of monochlorobenzene [J]. Journal of Applied Polymer Science,1999,74(14):3417-3424. doi: 10.1002/(SICI)1097-4628(19991227)74:14<3417::AID-APP16>3.0.CO;2-G [103] GAUTHIER E, NIKOLIĆ M, TRUSS R, et al. Effect of soil environment on the photo-degradation of polyethylene films [J]. Journal of Applied Polymer Science,2015,132(39):42558. [104] LYU Y D, FAIRBROTHER A, GONG M Y, et al. Drivers for the cracking of multilayer polyamide-based backsheets in field photovoltaic modules: In-depth degradation mapping analysis [J]. Progress in Photovoltaics:Research and Applications,2020,28(7):704-716. doi: 10.1002/pip.3260 [105] PIRES J P, MIRANDA G M, de SOUZA G L, et al. Investigation of degradation of polypropylene in soil using an enzymatic additive [J]. Iranian Polymer Journal,2019,28:1045-1055. doi: 10.1007/s13726-019-00766-8 [106] BONILLA J, PAIANO R B, LOURENÇO R V, et al. Biodegradation of films based on natural and synthetic biopolymers using an aquatic system from active sludge [J]. Journal of Polymers and the Environment,2021,29(5):1380-1395. doi: 10.1007/s10924-020-01962-x [107] POSPÍŠIL J, HORÁK Z, KRULIŠ Z, et al. The origin and role of structural inhomogeneities and impurities in material recycling of plastics [J]. Macromolecular Symposia,1998,135:247-263. doi: 10.1002/masy.19981350127 [108] HAMSKOG M, KLÜGEL M, FORSSTRÖM D, et al. The effect of base stabilization on the recyclability of polypropylene as studied by multi-cell imaging chemiluminescence and microcalorimetry [J]. Polymer Degradation and Stability,2004,86(3):557-566. doi: 10.1016/j.polymdegradstab.2004.07.004 [109] HAMSKOG M, KLÜGEL M, FORSSTRÖM D, et al. The effect of adding virgin material or extra stabilizer on the recyclability of polypropylene as studied by multi-cell imaging chemiluminescence and microcalorimetry [J]. Polymer Degradation and Stability,2006,91(3):429-436. doi: 10.1016/j.polymdegradstab.2005.02.024 [110] ZAHARESCU T, SCAGLIUSI S R, LUCHIAN A M, et al. Degradability characterization of EPDM/IIR blends by γ-irradiation [J]. Journal of Polymers and the Environment,2018,26(2):616-625. doi: 10.1007/s10924-017-0966-9 [111] de CARVALHO C L, ROSA D S. Thermal oxidative degradation of polypropylene-containing pro-oxidants [J]. Journal of Thermal Analysis and Calorimetry,2014,115(2):1627-1632. doi: 10.1007/s10973-013-3490-8 [112] de CARVALHO C L, SILVEIRA A F, ROSA D S. A study of the controlled degradation of polypropylene containing pro-oxidant agents [J]. Springer Plus,2013,2:623. doi: 10.1186/2193-1801-2-623 [113] MIYAZAKI K, NAKATANI H. Preparation of degradable polypropylene by an addition of poly(ethylene oxide) microcapsule containing TiO2 [J]. Polymer Degradation and Stability,2009,94(12):2114-2120. doi: 10.1016/j.polymdegradstab.2009.10.001 [114] MIYAZAKI K, SHIBATA K, NAKATANI H. Preparation of isotactic polypropylene/fibrous cellulose composite oxo-biodegradation induced by poly(ethylene oxide)/TiO2 initiator and accelerator system [J]. Journal of Applied Polymer Science,2013,127(2):854-861. doi: 10.1002/app.37808 [115] MIYAZAKI K, ARAI T, NAKATANI H. Polypropylene plasticization and photodegradation with a TiO2/poly(ethylene oxide)/methyl linoleate paint photocatalyst system [J]. Journal of Applied Polymer Science,2014,131(4):39909. [116] MIYAZAKI K, SATO H, WATANABE T, et al. Photodegradation of herbaceous lignin and unsaturated polyester with a novel TiO2 photocatalyst system [J]. Journal of Polymers and the Environment,2014,22(4):494-500. doi: 10.1007/s10924-014-0657-8 [117] MIYAZAKI K, SATO H, KIKUCHI S, et al. Dehydrochlorination of poly(vinyl chloride) modified with titanium dioxide/poly(ethylene oxide) based paint photocatalysts [J]. Journal of Applied Polymer Science,2014,131(18):40760. [118] MIYATA Y, MIYAZAKI K, MIURA M, et al. Solventless delignification of wood flour with TiO2/poly(ethylene oxide) photocatalyst system [J]. Journal of Polymers and the Environment,2013,21(1):115-121. doi: 10.1007/s10924-012-0465-y [119] 盖军, 冯阳阳, 柴鹏, 等. PVDF/TiO2电纺纤维膜在光降解和油水分离方面的应用 [J]. 功能高分子学报,2021,34(5):1-7.GAI J, FENG Y Y, CHAI P, et al. Application of PVDF/TiO2 electrospun fiber membrane in photodegradation and oil-water separation [J]. Journal of Functional Polymers,2021,34(5):1-7. [120] XU J Z, YANG W, ZHANG C Q, et al. Photo-oxidation and biodegradation of polyethylene films containing polyethylene glycol modified TiO2 as pro-oxidant additives [J]. Polymer Composites,2018,39:E531-E539. doi: 10.1002/pc.24679 [121] LATTUATI-DERIEUX A, EGASSE C, THAO-HEU S, et al. What do plastics emit? HS-SPME-GC/MS analyses of new standard plastics and plastic objects in museum collections [J]. Journal of Cultural Heritage,2013,14(3):238-247. doi: 10.1016/j.culher.2012.06.005 [122] MITCHELL G, MITCHELL C, GIBSON L T. Emissions from polymeric materials: Characterised by thermal desorption-gas chromatography [J]. Polymer Degradation and Stability,2014,107:328-340. doi: 10.1016/j.polymdegradstab.2013.12.003 [123] BEMBIBRE C, STRLIČ M. Smell of heritage: A framework for the identification, analysis and archival of historic odours [J]. Heritage Science,2017,5:2. doi: 10.1186/s40494-016-0114-1 [124] SUTHERLAND K. Gas chromatography/mass spectrometry techniques for the characterisation of organic materials in works of art [J]. Physical Sciences Reviews,2019,4(6):20180010. [125] la NASA J, MATTONAI M, MODUGNO F, et al. Comics’ VOC-abulary: Study of the ageing of comic books in archival bags through VOCs profiling [J]. Polymer Degradation and Stability,2019,161:39-49. doi: 10.1016/j.polymdegradstab.2019.01.001 [126] KEARNEY M, TOWNSEND J H, PARKIN I P, et al. Factors affecting the practicality of solid-phase microextraction VOC analysis of artworks featuring polymeric materials in open environments [J]. Microchemical Journal,2020,155:104711. doi: 10.1016/j.microc.2020.104711 [127] ALVAREZ-MARTIN A, GEORGE J, KAPLAN E, et al. Identifying VOCs in exhibition cases and efflorescence on museum objects exhibited at Smithsonian’s National Museum of the American Indian-New York [J]. Heritage Science,2020,8:115. doi: 10.1186/s40494-020-00454-4 [128] CURRAN K, MOŽIR A, UNDERHILL M, et al. Cross-infection effect of polymers of historic and heritage significance on the degradation of a cellulose reference test material [J]. Polymer Degradation and Stability,2014,107:294-306. doi: 10.1016/j.polymdegradstab.2013.12.019 [129] CINCINELLI A, MARTELLINI T, AMORE A, et al. Measurement of volatile organic compounds (VOCs) in libraries and archives in Florence (Italy) [J]. Science of the Total Environment,2016,572:333-339. doi: 10.1016/j.scitotenv.2016.07.201 [130] RIJAVEC T, STRLIČ M, CIGIĆ I K. Plastics in heritage collections: Poly(vinyl chloride) degradation and characterization [J]. Acta Chimica Slovenica,2020,67:993-1013. doi: 10.17344/acsi.2020.6479 [131] KING R, GRAU-BOVÉ J, CURRAN K. Plasticiser loss in heritage collections: Its prevalence, cause, effect, and methods for analysis [J]. Heritage Science,2020,8:123. doi: 10.1186/s40494-020-00466-0 [132] JEONG M J, POTTHAST A. Improving the accuracy of estimating paper permanence for accelerated degradation in closed vials [J]. Cellulose,2021,28:4053-4068. doi: 10.1007/s10570-021-03804-y [133] JABLONSKÝ M, KATUŽČÁK S, HOLÚBKOVÁ S, et al. The effect of acetic and formic acid formation during accelerated ageing on embrittlement of newsprint paper [J]. Restaurator,2011,32(4):318-347. [134] STRLIČM, CIGIĆ I K, MOŽIR A, et al. The effect of volatile organic compounds and hypoxia on paper degradation [J]. Polymer Degradation and Stability,2011,96(4):608-615. doi: 10.1016/j.polymdegradstab.2010.12.017 [135] TÉTREAULT J, DUPONT A L, BÉGIN P, et al. The impact of volatile compounds released by paper on cellulose degradation in ambient hygrothermal conditions [J]. Polymer Degradation and Stability,2013,98(9):1827-1837. doi: 10.1016/j.polymdegradstab.2013.05.017 [136] TÉTREAULT J, BÉGIN P, PARIS-LACOMBE S, et al. Modelling considerations for the degradation of cellulosic paper [J]. Cellulose,2019,26(3):2013-2033. doi: 10.1007/s10570-018-2156-x [137] KEMPER B, LICHTBLAU D A. Extraction of plasticizers: An entire and reproducible quantification method for historical cellulose acetate material [J]. Polymer Testing,2019,80:106096. doi: 10.1016/j.polymertesting.2019.106096 [138] BONADUCE I, ODLYHA M, DI GIROLAMO F, et al. The role of organic and inorganic indoor pollutants in museum environments in the degradation of dammar varnish [J]. Analyst,2013,138(2):487-500. doi: 10.1039/C2AN36259G [139] LIGTERINK F, di PIETRO G. The limited impact of acetic acid in archives and libraries [J]. Heritage Science,2018,6:59. doi: 10.1186/s40494-018-0225-y [140] SAMIDE M J, LIGGETT M C, MILL J, et al. Relating volatiles analysis by GC-MS to Oddy test performance for determining the suitability of museum construction materials [J]. Heritage Science,2018,6:47. doi: 10.1186/s40494-018-0213-2 -