高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CP@hBT-CNT/PDMS三相介电复合材料的制备与性能

王心成 成尚儒 高强民 唐尧凯 袁莹欣 李安琦 观姗姗

王心成, 成尚儒, 高强民, 唐尧凯, 袁莹欣, 李安琦, 观姗姗. CP@hBT-CNT/PDMS三相介电复合材料的制备与性能[J]. 功能高分子学报,2022,35(4):372-378 doi: 10.14133/j.cnki.1008-9357.20210731001
引用本文: 王心成, 成尚儒, 高强民, 唐尧凯, 袁莹欣, 李安琦, 观姗姗. CP@hBT-CNT/PDMS三相介电复合材料的制备与性能[J]. 功能高分子学报,2022,35(4):372-378 doi: 10.14133/j.cnki.1008-9357.20210731001
WANG Xincheng, CHENG Shangru, GAO Qiangmin, TANG Yaokai, YUAN Yingxin, LI Anqi, GUAN Shanshan. Preparation and Properties of CP@hBT-CNT/PDMS Three-Phase Dielectric Composite[J]. Journal of Functional Polymers, 2022, 35(4): 372-378. doi: 10.14133/j.cnki.1008-9357.20210731001
Citation: WANG Xincheng, CHENG Shangru, GAO Qiangmin, TANG Yaokai, YUAN Yingxin, LI Anqi, GUAN Shanshan. Preparation and Properties of CP@hBT-CNT/PDMS Three-Phase Dielectric Composite[J]. Journal of Functional Polymers, 2022, 35(4): 372-378. doi: 10.14133/j.cnki.1008-9357.20210731001

CP@hBT-CNT/PDMS三相介电复合材料的制备与性能

doi: 10.14133/j.cnki.1008-9357.20210731001
基金项目: 国家自然科学基金(51903133);山东省重点研发计划项目(2019 GGX103030)
详细信息
    作者简介:

    王心成(1997—),男,研究生,主要研究方向为功能复合材料。E-mail:1052016626@qq.com

    通讯作者:

    观姗姗, E-mail:guanshanshan.86@163.com

  • 中图分类号: O63

Preparation and Properties of CP@hBT-CNT/PDMS Three-Phase Dielectric Composite

  • 摘要: 基于卡波姆(CP)和羟基化钛酸钡(hBT)之间的相互作用,通过CP对hBT的包覆制备了“核-壳”结构CP功能化改性的hBT杂化粒子(CP@hBT)。以CP@hBT为陶瓷填料,氨基化碳纳米管(CNT)为导电填料,聚二甲基硅氧烷(PDMS)为基体,利用溶液共混法制备CP@hBT-CNT/PDMS介电复合材料。系统研究了CP功能化改性对CP@hBT-CNT/PDMS微观形貌和介电性能的影响。结果表明,CP对hBT功能化改性后可以有效减少CP@hBT杂化粒子的沉降和团聚问题,增强了其在PDMS基体中的分散性。在1 000 Hz条件下,当w(CNT)=0.75%时,CP@hBT-CNT/PDMS复合材料的介电常数可以达到138,同时介电损耗仍较低。

     

  • 图  1  hBT和CP@hBT的(a)FT-IR谱图和(b)拉曼谱图

    Figure  1.  (a) FT-IR and (b) Raman spectra of hBT and CP@hBT

    图  2  hBT和CP@hBT悬浮液的分散性

    Figure  2.  Dispersibility of hBT and CP@hBT suspensions

    图  3  (a) hBT和(b,c) CP@hBT的TEM照片; (d) CP@hBT核-壳粒子形成机理示意图

    Figure  3.  TEM images of (a) hBT and (b, c) CP@hBT; (d) Schematic diagram of CP@hBT core-shell formation mechanism

    图  4  (a,b) hBT-CNT(1.0%)/PDMS复合材料与(c,d) CP@hBT-CNT(1.0%)/PDMS复合材料断面形貌的SEM照片

    Figure  4.  Cross-section SEM images of (a,b) hBT-CNT(1.0%)/PDMS composite and (c,d) CP@hBT-CNT(1.0%)/PDMS composite

    图  5  CP@hBT-CNT/PDMS复合材料的(a)电导率、(b)介电常数以及(c)介电损耗

    Figure  5.  (a) Conductivity, (b) dielectric constant and (c) dielectric loss of CP@hBT-CNT/PDMS composites

    图  6  CP@hBT-CNT/PDMS复合材料的电导率与x的关系

    Figure  6.  Relationship between the conductivity and x for CP@hBT-CNT/PDMS composite

    图  7  复合材料的介电性能

    Figure  7.  Dielectric properties of composite

  • [1] 顾怡, 王静荣, 徐海萍, 杨丹丹. 碳纳米管/氮化硼/聚偏氟乙烯三相复合材料的制备及其介电性能 [J]. 东华大学学报:自然科学版,2021,47(2):19-25.

    GU Y, WANG J R, XU H P, YANG D D. Preparation and dielectric properties of carbon nanotube/boron nitride/polyvinylidene fluoride three-phase composites [J]. Journal of Donghua University (Natural Science),2021,47(2):19-25.
    [2] 马佳晨. 含氟聚合物/钛酸钡介电复合材料的制备及性能研究 [D]. 济南: 济南大学, 2020.

    MA J C. Preparation and properties of fluoropolymer/BaTiO3 dielectric composites [D]. Jinan: University of Jinan, 2020.
    [3] 何帅. P(VDF-HFP)/EP/CNT 三相复合材料的制备与性能研究 [D]. 秦皇岛: 燕山大学, 2020.

    HE S. Preparation and properties of P(VDF-HFP)/EP/CNT three-phase composite [D]. Qinhuangdao: Yanshan University, 2020.
    [4] 申翰林. 基于回复电压法的油浸式变压器状态检测关键技术的研究 [D]. 成都: 西南交通大学, 2012.

    SHEN H L. Research on the key technologies in status detection of oil-immersed transformers based on recovery voltage measurement [D]. Chengdu: Southwest Jiaotong University, 2012.
    [5] OOMMEN T V, PREVOST T A. Cellulose insulation in oil-filled power transformers: Part II. Maintaining insulation integrity and life [J]. Electrical Insulation Magazine,2006,22(2):5-14. doi: 10.1109/MEI.2006.1618996
    [6] GUAN S S, SONG S C, LI H, MO G S, ZHAO S G, GUO L N. Development of carboxyl-functionalized multi-walled nanotube/polydimethylsiloxane novel polymeric nanodielectric material [J]. Materials Letters,2018,216:281-286. doi: 10.1016/j.matlet.2018.01.128
    [7] 曾兰英. 聚合物基高性能介电材料的三相复合研究 [D]. 广州: 华南理工大学, 2018.

    ZENG L Y. Study on three-phase compound of polymer-based high performance dielectric materials [D]. Guangzhou: South China University of Technology, 2018.
    [8] LI W Y, SONG Z Q, QIAN J, CHU H Y, WU X Y, TAN Z Y, NIE W. Surface modification-based three-phase nanocomposites with low percolation threshold for optimized dielectric constant and loss [J]. Ceramics International,2017:4835-4844.
    [9] DANG Z M, SHEN Y, NAN C W. Dielectric behavior of three-phase percolative Ni–BaTiO3/polyvinylidene fluoride composites [J]. Applied Physics Letters,2002,81(25):4814-4816. doi: 10.1063/1.1529085
    [10] 王继华. 石墨烯/钛酸钡/聚合物基复合材料的可控制备与介电性能研究 [D]. 哈尔滨: 哈尔滨理工大学, 2020.

    WANG J H. Controllable preparation and dielectric properties of graphene/barium titanate/polymer-based composites [D]. Harbin: Harbin University of Science and Technology, 2020.
    [11] YAO S H, DANG Z M, JIANG M J, BAI J B. BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase composites with high dielectric constant and low dielectric loss [J]. Applied Physics Letters,2008,93(18):3502-3505.
    [12] GUAN S S, TANG Y K, SONG S C, LIU H F, ZHAO S G. Influence of inter structure of BaTiO3-carbon nanotube hybrid particles on the dielectric properties of PDMS nanocomposites [J]. Materials Science and Engineering B,2021,271(8):115280-115288.
    [13] 余雪敏. 改性钛酸钡/聚酰亚胺高介电复合材料的制备及其性能的研究 [D]. 南京: 东南大学, 2019.

    YU X M. Preparation and properties of modified barium titanate/polyimide composite material [D]. Nanjing: Southeast University, 2019.
    [14] 谢顼. 基于钛酸钡的复合粒子制备及其聚偏氟乙烯介电复合材料结构与性能研究 [D]. 重庆: 西南交通大学, 2020.

    XIE X. Preparation of composite particles based on barium titanate and study on the structure and properties of polyvinylidene fluoride dielectric composites [D]. Chongqing: Southwest Jiaotong University, 2020.
    [15] HAN X H, CHEN S, LV X G, LUO H, ZHANG D, BOWEN C R. Using novel rigid-fluoride polymer to control the interfacial thickness of graphene and tailor the dielectric behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) nanocomposites [J]. Physical Chemistry Chemical Physics,2018,20(4):2826-2837. doi: 10.1039/C7CP07224D
    [16] LIU Y P, SHI J C, KANG P, WU P, ZHOU Z, CHEN G X, LI Q F. Improve the dielectric property and breakdown strength of composites by cladding a polymer/BaTiO3 composite layer around carbon nanotubes [J]. Polymer,2020,188:122157-122165. doi: 10.1016/j.polymer.2020.122157
    [17] 杨科. 高介电低损耗聚合物纳米复合材料的可控制备与性能调控 [D]. 上海: 上海交通大学, 2015.

    YANG K. Controllable fabrication and property regulation of polymer nanocomposites with high dielectric constant and low dielectric loss [D]. Shanghai: Shanghai Jiao Tong University, 2015.
    [18] 李振强. 改性纳米银/陶瓷/PVDF复合材料及介电性能的研究 [D]. 武汉: 武汉工程大学, 2015.

    LI Z Q. Study on the dielectric properties of modified nano silver/ceramic/PVDF composites [D]. Wuhan: Wuhan Institute of Technology, 2015.
    [19] SURASSMO S, SAENGKRIT N RUKTANONCHAI U R, SUKTHAM K, WORAMONGKOLCHAI N, WUTIKHUN T, PUTTIPIPATKHACHORN S. Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization [J]. Colloids and Surfaces B:Biointerfaces,2015,130:229-236. doi: 10.1016/j.colsurfb.2015.04.015
    [20] LIU H F, TANG Y K, JIN Z, SONG S C, ZHANG P P, ZHAO S G, GUAN S S, GUAN W N. Surface functionalization of carbon nanotubes by biological adhesive polymers carbopol for developing high-permittivity polymer composites [J]. Journal of Vinyl and Additive Technology,2020,26(2):165-172. doi: 10.1002/vnl.21729
    [21] 刘春萍. 硅橡胶基介电弹性体的制备和性能研究 [D]. 北京: 北京化工大学, 2020.

    LIU C P. Preparation and properties study of silicone rubber-based dielectric elastomer [D]. Beijing: Beijing University of Chemical Technology, 2020.
    [22] TIAN M, MA Q, LI X L, ZHANG L Q, NISHI T, NING N Y. High performance dielectric composites by latex compounding of graphene oxide-encapsulated carbon nanosphere hybrids with XNBR [J]. Journal of Materials Chemistry A,2014,2(29):11144-11154. doi: 10.1039/C4TA01600A
    [23] DANG Z M, YUAN J K, ZHA J W, ZHOU T, LI S T, HU G H. Fundamentals, processes and applications of high-permittivity polymere-matrix composites [J]. Progress in Materials Science,2012,57(4):660-723. doi: 10.1016/j.pmatsci.2011.08.001
    [24] 唐萍, 张荣, 陈志强, 胡云平, 宾月珍. 碳纳米管-聚乙烯复合材料的介电性能 [J]. 功能高分子学报,2016,29(3):290-295.

    TANG P, ZHANG R, CHEN Z Q, HU Y P, BIN Y Z. Dielectric properties of carbon nanotubes-polyethylene composites [J]. Journal of Functional Polymers,2016,29(3):290-295.
    [25] LIU Z D, FENG Y, LI W L. High dielectric constant and low loss of polymeric dielectric composites filled by carbon nanotubes adhering BaTiO3 hybrid particles [J]. RSC Advances,2015,5(37):29017-29021. doi: 10.1039/C5RA00639B
    [26] SUI G, JANA S, ZHONG W H, FUQUA M A, ULVEN C A. Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites [J]. Acta Materialia,2008,56(10):2381-2388. doi: 10.1016/j.actamat.2008.01.034
    [27] WANG C C, SONG J F, BAO H M, SHEN Q D, YANG C Z. Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities [J]. Advanced Functional Materials,2008,18(8):1299-1306. doi: 10.1002/adfm.200701100
  • 加载中
图(7)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  166
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31
  • 录用日期:  2021-11-22
  • 网络出版日期:  2021-11-29
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回