Mussel-Inspired Azo-Polydopamine Coating for Photoelectric Dual Response Memristive Device
-
摘要: 高性能忆阻器件的开发适应了大数据时代的需求,尤其是以结构可灵活调变的有机/高分子材料为活性层的新型忆阻器件,正日益成为光电传感和人工智能研究领域的热点。受贻贝灵感化学启发,在蒸镀有氧化铟锡(ITO)的玻璃基底上自组装聚多巴胺(PDA)薄膜形成活性层,随后通过点击化学反应接枝具有光致异构化特性的偶氮苯(Azo),制备了结构为Al/PDA-Azo/ITO的忆阻器件。对其结构和电学性能进行的研究结果表明:偶氮苯共价接枝在平整的聚多巴胺表面;器件在施加电压扫描下表现出稳定的非易失性可擦写阻变存储特性,并且电导率在紫外光照射后增加30倍,而在可见光照射后恢复,实现了对电场和光场的双重响应。Abstract: The development of high-performance memristors meets the needs of the era of big data. In particular, memristors that use organic/polymer materials with flexibly adjustable structures as the active layer are becoming increasingly popular in the field of photoelectric sensing and artificial intelligence. Inspired by mussel-inspired chemistry, a polydopamine (PDA) film was self-assembled on indium tin oxide(ITO)-coated glass substrate to form an active layer, and then grafted azobenzene (Azo) with photoisomerization properties through click chemistry to prepare the memristive device with the structure of Al/PDA-Azo/ITO, and its photoelectric performance has been studied. As a result, Azo molecules are covalently grafted on the surface of polydopamine. The as-prepared device exhibits stable nonvolatile rewritable memory characteristics under applied voltage scanning. The conductivity of the device increases by 30 times after UV light irradiation, and it can be recovered after visible light irradiation, indicating that the fabricated memoristor achieves photoelectric dual response.
-
Key words:
- polydopamine /
- azobenzene /
- photo-isomerization /
- memristor /
- photoelectric dual response
-
图 4 PDA-Azo/ITO基底在起始和30 min紫外光照后的UV-Vis光谱(a); PDA-Azo/ITO基底在间隔5 min紫外光照(b)和可见光照后(c)的UV-Vis光谱; PDA-Azo/ITO基底328 nm处连续300 min紫外和可见光交替照射后的UV-Vis光谱(d)
Figure 4. UV-Vis spectra of PDA-Azo/ITO substrate in the initial state and after being illuminated by ultraviolet light for 30 min (a); UV-Vis spectra of PDA-Azo/ITO substrate after being illuminated by ultraviolet light (b) and visible light (c), detected every 5 min; UV-Vis spectra of PDA-Azo/ITO substrate after being alternatively illuminated by ultraviolet light and visible light for 300 min (d)
图 5 结构为Al/PDA-Azo/ITO的器件在外加电压及光源下电学性能测试示意图(a);小电压下紫外和可见光照前后器件的I-U曲线(b);大电压下器件初始状态的I-U曲线(c);经过30 min紫外和可见光照后器件的I-U曲线(d)
Figure 5. Schematic diagram of electrical performance of as-fabricated Al/PDA-Azo/ITO device under applied voltage and light(a); I-U curves of device before and after illuminating by UV and visible light at low voltage (b); I-U curves of device in initial state (c); I-U curves of deviceafter 30 min irradiation of UV and visible light (d)
-
[1] WANG Z, ZHANG S R, ZHOU L, MAO J Y, HAN S T, REN Y, YANG J Q, WANG Y, ZHAI Y B, ZHOU Y. Functional non-volatile memory devices: From fundamentals to photo-tunable properties [J]. Physica Status Solidi (RRL)-Rapid Research Letters,2019,13(5):1800644-1800664. doi: 10.1002/pssr.201800644 [2] ZHANG Y J, CHEN X H, WANG Z R, CHEN Q L, LIU G,LI Y ,WANG P J, LI R W, MIAO X S. Implementation of all 27 possible univariate ternary logics with a single ZnO memristor [J]. IEEE Transactions on Electron Devices,2019,66(11):4710-4715. doi: 10.1109/TED.2019.2939482 [3] LI Y, QIAN Q, LING S, FAN T T, ZHANG C, ZHU X L, ZHANG Q J, ZHANG Y, ZHANG J L, YU S W , YAO J L, MA C L. A benzothiadiazole-containing π-conjugated small molecule as promising element for nonvolatile multilevel resistive memory device [J]. Journal of Solid State Chemistry,2021,294:121850-121855. doi: 10.1016/j.jssc.2020.121850 [4] ZHAO Y Y, SUN W J, HE J H, LU J M. Amorphous spiro-OMeTAD prepared flexible films with surface engineering noost ternary resistive memory yield to 86% [J]. Advanced Electronic Materials,2019,5(6):1800964-1800970. doi: 10.1002/aelm.201800964 [5] HONG E Y, POON C T, YAM V W. A phosphole oxide-containing organogold(III) complex for solution-processable resistive memory devices with ternary memory performances [J]. J Am Chem Soc,2016,138(20):6368-6371. doi: 10.1021/jacs.6b02629 [6] ZHANG B, FAN F, XUE W, LIU G, FU Y B, ZHUANG X D, XU X H, GU J W, LI R W, CHEN Y. Redox gated polymer memristive processing memory unit [J]. Nat Commun,2019,10(1):736-746. doi: 10.1038/s41467-019-08642-y [7] HU B, WANG C, WANG J, GAO J K, WANG K, WU J S, ZHANG G D, CHENG W Q, BHAVANASI V, WANG M F, LEE P S, ZHANG Q C. Inorganic-organic hybrid polymer with multiple redox for high-density data storage [J]. Chem Sci,2014,5(9):3404-3408. doi: 10.1039/C4SC00823E [8] SHEN Z, ZHAO C, QI Y,IVONA Z M, YANG L,WEN J C ,HUANG Y B, LI P Z, ZHAO C Z. Memristive non-volatile memory based on graphene materials [J]. Micromachines (Basel),2020,11(4):341-366. doi: 10.3390/mi11040341 [9] SANGWAN V K, HERSAM M C. Neuromorphic nanoelectronic materials [J]. Nat Nanotechnol,2020,15(7):517-528. doi: 10.1038/s41565-020-0647-z [10] 靳志斌, 张健, 谷志刚. 表面配位金属-有机框架薄膜的制备及电催化应用 [J]. 功能高分子学报,2021,34(3):198-214.JIN Z B, ZHANG J, GU Z G. A review on the preparation and electrocatalysis of surface-coordinated metal-organic framework thin films [J]. Journal of Functional Polymers,2021,34(3):198-214. [11] LEE H, DELLATORE S M, MILLER W M, MESSERSMITH P B. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science,2007,318(5849):426-430. doi: 10.1126/science.1147241 [12] HUANG N, ZHANG S, YANG L, LIU M L, LI H T, ZHANG Y Y, YAO S Z. Multifunctional electrochemical platforms based on the michael addition/schiff base eeaction of polydopamine modified reduced graphene oxide: Construction and application [J]. ACS Appl Mater Interfaces,2015,7(32):17935-17946. doi: 10.1021/acsami.5b04597 [13] ZHENG Z, LI M, SHI P, GAO Y B , MA J, LI Y C, HUANG L,YANG Z F, YANG L. Polydopamine-modified collagen sponge scaffold as a novel dermal regeneration template with sustained release of platelet-rich plasma to accelerate skin repair: A one-step strategy [J]. Bioact Mater,2021,6(8):2613-2628. doi: 10.1016/j.bioactmat.2021.01.037 [14] BANDARA H M D, BURDETTE S C. Photoisomerization in different classes of azobenzene [J]. Chem Soc Rev,2012,41(5):1809-1825. doi: 10.1039/C1CS15179G [15] GALANTI A, DIEZ-CABANES V, SANTORO J,VALÁŠEK M, MINOIA A, MAYOR M, CORNIL J, SAMORÌ P. Electronic decoupling in C3-symmetrical light-responsive tris(azobenzene) scaffolds: Self-assembly and multiphotochromism [J]. J Am Chem Soc,2018,140(47):16062-16070. doi: 10.1021/jacs.8b06324 [16] ZHANG Z Y, HE Y, ZHOU Y,YU C Y, HAN L, LI T. Pyrazolylazophenyl ether-based photoswitches: Facile synthesis, (near-) quantitative photoconversion, long thermal half-life, easy functionalization, and versatile applications in light-responsive systems [J]. Chemistry,2019,25(58):13402-13410. doi: 10.1002/chem.201902897 [17] 田晨, 孙柳英, 陶鑫峰, 姚远,林绍梁. 偶氮苯超支化聚合物的自组装及其光响应性 [J]. 功能高分子学报,2020,33(3):284-289.TIAN C, SUN L Y, TAO X F, YAO Y, LIN S L. Self-assembly and photo-responsiveness of hyperbranched azopolymers [J]. Journal of Functional Polymers,2020,33(3):284-289. [18] MENG L, XIN N, HU C, WANG J Y, GUI B, SHI J J, WANG C, SHEN C, ZHANG G Y, GUO H, MENG S, GUO X F. Side-group chemical gating via reversible optical and electric control in a single molecule transistor [J]. Nat Commun,2019,10(1):1450-1457. doi: 10.1038/s41467-019-09120-1 [19] LENFANT S, VIERO Y, KRZEMINSKI C, VUILLAUME D. New photomechanical molecular switch based on a linear π-conjugated system [J]. The Journal of Physical Chemistry C,2017,121(22):12416-12425. doi: 10.1021/acs.jpcc.7b01240 [20] ISMAIL N A N, SHAARI S, JUHARI N, SABANI N, AHMAD M F, ZAKARIA N F. Solvent effect on the electrical and structural properties for MEH-PPV organic light emitting diodes (OLED) [J]. Journal of Physics: Conference Series,2021,1755(1):2027-2032. [21] LI H, HUANG K, DONG Y,GUO X T, YANG Y, LUO Q, MA C Q, LI D F, LU G H, XIONG J, ZHANG J, YANG Y G, GAO X Y, YANG J L. Efficient organic solar cells with the active layer fabricated from glovebox to ambient condition [J]. Applied Physics Letters,2020,117(13):3301-3308. [22] SHAMIEH B, SARKAR T, FREY G L. One-step processing of multilayers in organic solar cells [J]. Journal of Materials Chemistry C,2020,8(26):8992-8998. doi: 10.1039/D0TC00195C [23] SAMPAIO P G V, GONZÁLEZ M O A, OLIVEIRA FERREIRA P, VIDAL P C J, PEREIRA J P P, FERREIRA H, OPRIME P C. Overview of printing and coating techniques in the production of organic photovoltaic cells [J]. International Journal of Energy Research,2020,44(13):9912-9931. doi: 10.1002/er.5664 [24] MOSCIATTI T, BONACCHI S, GOBBI M,FERLAUTO L, LISCIO F, GIORGINI L, ORGIU E, SAMORÌ P. Optical input/electrical output memory elements based on a liquid crystalline azobenzene polymer [J]. ACS Appl Mater Interfaces,2016,8(10):6563-6569. doi: 10.1021/acsami.5b12430 [25] NGUYEN D T, FREITAG M, GUTHEIL C,SOTTHEWES K, TYLER B J, BOCKMANN M, DAS M, SCHLTER F, NIKOS L, DOLTSINIS, ARLINGHAUS H F, RAVOO B J, GLORIUS F. An arylazopyrazole-based N-heterocyclic carbene as a photoswitch on gold surfaces: Light-switchable wettability, work function, and conductance [J]. Angew Chem Int Ed Engl,2020,59(32):13651-13656. doi: 10.1002/anie.202003523 [26] BIAN Q, WANG W, WANG S, WANG G J. Light-triggered specific cancer cell release from cyclodextrin/azobenzene and aptamer-modified substrate [J]. ACS Appl Mater Interfaces,2016,8(40):27360-27367. doi: 10.1021/acsami.6b09734 [27] CHO D, YANG M, SHIN N, HONG S. Mapping reversible photoswitching of molecular resistance fluctuations during the conformational transformation of azobenzene-terminated molecular switches [J]. Nanotechnology,2018,29(36):365704-365715. doi: 10.1088/1361-6528/aacb17 [28] PRANANTYO D, XU L Q, NEOH K G, KANG E T. Antifouling coatings via tethering of hyperbranched polyglycerols on biomimetic anchors [J]. Industrial & Engineering Chemistry Research,2016,55(7):1890-1901. [29] NIEDZIALKOWSKI P, BOJKO M, RYL J,WCISŁO A, SPODZIEJA M,MAGIERA-MULARZ K, GUZIK K, DUBIN G, HOLAK T A, OSSOWSKI T, RODZIEWICZ-MOTOWIDŁO S. Ultrasensitive electrochemical determination of the cancer biomarker protein sPD-L1 based on a BMS-8-modified gold electrode [J]. Bioelectrochemistry,2021,139:107742. doi: 10.1016/j.bioelechem.2021.107742 [30] ZHANG B, YAN Q, YUAN S,ZHUANG X D, ZHANG F. Enhanced antifouling and anticorrosion properties of stainless steel by biomimetic anchoring pegdma-cross-linking polycationic brushes [J]. Industrial & Engineering Chemistry Research,2019,58(17):7107-7119. [31] DHANKHAR S S, NAGARAJA C M. Porous nitrogen-rich covalent organic framework for capture and conversion of CO2 at atmospheric pressure conditions [J]. Microporous and Mesoporous Materials,2020,308:110314-110320. doi: 10.1016/j.micromeso.2020.110314 [32] KIM Y, WANG G, CHOE M, KIM J, LEE S C, PARK S, KIM D, LEE B, LEE T. Electronic properties associated with conformational changes in azobenzene-derivative molecular junctions [J]. Organic Electronics,2011,12(12):2144-2150. doi: 10.1016/j.orgel.2011.08.017 [33] KUNFI A, BERNADETT VLOCSKO R, KERESZTES Z, MOHAI M, BERTÓTI I, ÁBRAHÁM A, KISS E, LONDON G. Photoswitchable macroscopic solid surfaces based on azobenzene-functionalized polydopamine/gold nanoparticle composite materials: Formation, isomerization and ligand exchange [J]. Chempluschem,2020,85(5):797-805. doi: 10.1002/cplu.201900674 [34] MARGAPOTI E, LI J, CEYLAN O, SEIFERT M, NISIC F, ANH T, MEGGENDORFER F, DRAGONETTI C, PALMA C, BARTH J, FINLEY J. A 2D semiconductor-self-assembled monolayer photoswitchable diode [J]. Adv Mater,2015,27(8):1426-1431. doi: 10.1002/adma.201405110 [35] VELAYUTHAM T S, AZMINA M S, MANICKAM-ACHARI V, ALEJANDRO R, RINAA R, ALFONSO M. A new light-responsive resistive random-access memory device containing hydrogen-bonded complexes [J]. Journal of Photochemistry and Photobiology A: Chemistry,2021,404:112914-112924. doi: 10.1016/j.jphotochem.2020.112914 [36] WANG C, DONG W, LI P, WANG Y F, TU H Y, TAN S, WU Y, WATANABE M. Reversible ion-conducting switch by azobenzene molecule with light-controlled sol-gel transitions of the PNIPAm ion gel [J]. ACS Appl Mater Interfaces,2020,12(37):42202-42209. doi: 10.1021/acsami.0c12910 -