高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贻贝启发的偶氮-聚多巴胺涂层用于光电双响应忆阻器件

龚明磊 刘铭扬 王潇漾 杨金波 陈彧 张斌

龚明磊, 刘铭扬, 王潇漾, 杨金波, 陈彧, 张斌. 贻贝启发的偶氮-聚多巴胺涂层用于光电双响应忆阻器件[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210701001
引用本文: 龚明磊, 刘铭扬, 王潇漾, 杨金波, 陈彧, 张斌. 贻贝启发的偶氮-聚多巴胺涂层用于光电双响应忆阻器件[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210701001
GONG Ming-lei, LIU Minyang, WANG Xiao-yang, YANG Jin-bo, CHEN Yu, ZHANG Bin. Mussel-inspired Azo-Polydopamine Coating for Photoelectric Dual Response Memristive Device[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210701001
Citation: GONG Ming-lei, LIU Minyang, WANG Xiao-yang, YANG Jin-bo, CHEN Yu, ZHANG Bin. Mussel-inspired Azo-Polydopamine Coating for Photoelectric Dual Response Memristive Device[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210701001

贻贝启发的偶氮-聚多巴胺涂层用于光电双响应忆阻器件

doi: 10.14133/j.cnki.1008-9357.20210701001
基金项目: 广西自然科学基金项目(2019GXNSFBA245028);国家自然科学基金(51961145402,51973061)
详细信息
    作者简介:

    龚明磊(1995—),男,硕士生,从事高分子忆阻器件的研究.E-mail:g18115691326@163.com

    通讯作者:

    王潇漾,E-mail:wangxy@guet.edu.cn

    amzhangbin@126.com

  • 中图分类号: O69;TB34;O633.21

Mussel-inspired Azo-Polydopamine Coating for Photoelectric Dual Response Memristive Device

  • 摘要: 高性能忆阻器件的开发适应了大数据时代的需求,尤其是以结构可灵活调变的有机/高分子材料为活性层的新型忆阻器件,正日益成为光电传感和人工智能研究领域的热点。受贻贝灵感化学启发,在蒸镀有氧化铟锡(ITO)的玻璃基底上自组装聚多巴胺(PDA)薄膜形成活性层,随后通过点击化学反应接枝具有光致异构化特性的偶氮苯(Azo),制备了结构为Al/PDA-Azo/ITO的忆阻器件。对其结构和电学性能进行的研究结果表明:偶氮苯共价接枝在平整的聚多巴胺表面;器件在施加电压扫描下表现出稳定的非易失性可擦写阻变存储特性,并且电导率在紫外光照射后增加30倍,而在可见光照射后恢复,实现了对电场和光场的双重响应。

     

  • 图  1  Al/PDA-Azo/ITO器件的制备过程及偶氮苯的光致异构化示意图

    Figure  1.  Preparation process of Al/PDA-Azo/ITO device and schematic illustration of photo-isomerization of Azo

    图  2  PDA/ITO和PDA-Azo/ITO基底的XPS宽谱(a,b)和C1s、N1s精谱(c~f)

    Figure  2.  XPS wide spectra(a,b),C1s and N1s core level spectra (c~f) of PDA/ITO and PDA-Azo/ITO substrate

    图  3  基底上多巴胺自聚(a)和偶氮苯接枝后的二维AFM图像(b); 偶氮苯接枝后截面FESEM图像(c)及EDS元素分布图 (d)

    Figure  3.  2D AFM images of PDA coated ITO glass (a) and Azo grafted PDA/ITO subtrate (b); FESEM cross-sectional image (c) and EDS images (d) of Azo grafted PDA/ITO substrate

    图  4  PDA-Azo/ITO基底在起始和30 min紫外光照后的UV-Vis光谱(a); PDA-Azo/ITO基底在间隔5 min紫外光照(b)和可见光照后(c)的UV-Vis光谱; PDA-Azo/ITO基底328 nm处连续30 min紫外和可见光交替照射后的UV-Vis光谱(d)

    Figure  4.  UV-Vis spectra of PDA-Azo/ITO substrate in the initial state and after being illuminated by ultraviolet light for 30 min (a); UV-Vis spectra of PDA-Azo/ITO substrate after being illuminated by ultraviolet light (b) and visible light (c), detected every 5 min; UV-Vis spectra of PDA-Azo/ITO substrate after being alternatively illuminated by ultraviolet light and visible light for 30 min (d)

    图  5  结构为Al/PDA-Azo/ITO的器件在外加电压及光源下电学性能测试示意图(a);小电压下紫外和可见光照前后器件I-V曲线(b);大电压下器件初始状态I-V曲线(c);经过30 min紫外和可见光照后器件I-V曲线(d)

    Figure  5.  Schematic diagram of electrical performance of as-fabricated Al/PDA-Azo/ITO device under applied voltage and light(a); I-V curves of device before and after illuminating by UV and visible light at low voltage (b); I-V curves of device in initial state (c); After 30 minutes irradiation of UV and visible light at large voltage (d)

    图  6  经紫外光(a)和可见光(b)照射后器件的I-V曲线

    Figure  6.  I-V curves of the device after illuminated by UV light (a) and visible light (b)

    图  7  反式(a)和顺式(b)偶氮苯接枝PDA后的基本单元最优化构型;结构单元分子静电势(ESP)表面(c,d);计算的结构单元LUMO轨道(e,f)和HOMO轨道(g,h)

    Figure  7.  Optimized structure for the basic unit of trans-(a) and cis-(b) Azo grafted PDA; Molecular electrostatic potential(ESP)surface (c,d); Calculated LUMO of (e,f) and Calculated HOMO (g,h)

  • [1] WANG Z, ZHANG S R, ZHOU L, et al. Functional non-volatile memory devices: from fundamentals to photo-tunable properties [J]. Physica Status Solidi (RRL)-Rapid Research Letters,2019,13(5):1800644-1800664. doi: 10.1002/pssr.201800644
    [2] ZHANG Y J, CHEN X H, WANG Z R, et al. Implementation of all 27 possible univariate ternary logics with a single ZnO memristor [J]. IEEE Transactions on Electron Devices,2019,66(11):4710-4715. doi: 10.1109/TED.2019.2939482
    [3] LI Y, QIAN Q, LING S, et al. A benzothiadiazole-containing π-conjugated small molecule as promising element for nonvolatile multilevel resistive memory device [J]. Journal of Solid State Chemistry,2021,294:121850-121855. doi: 10.1016/j.jssc.2020.121850
    [4] ZHAO Y Y, SUN W J, HE J H, et al. Amorphous spiro-OMeTAD prepared flexible films with surface engineering noost ternary resistive memory yield to 86% [J]. Advanced Electronic Materials,2019,5(6):1800964-1800970. doi: 10.1002/aelm.201800964
    [5] HONG E Y, POON C T, YAM V W. A phosphole oxide-containing organogold(III) complex for solution-processable resistive memory devices with ternary memory performances [J]. J Am Chem Soc,2016,138(20):6368-6371. doi: 10.1021/jacs.6b02629
    [6] ZHANG B, FAN F, XUE W, et al. Redox gated polymer memristive processing memory unit [J]. Nat Commun,2019,10(1):736-746. doi: 10.1038/s41467-019-08642-y
    [7] HU B, WANG C, WANG J, et al. Inorganic–organic hybrid polymer with multiple redox for high-density data storage [J]. Chem Sci,2014,5(9):3404-3408. doi: 10.1039/C4SC00823E
    [8] SHEN Z, ZHAO C, QI Y et al. Memristive non-volatile memory based on graphene materials [J]. Micromachines (Basel),2020,11(4):341-366. doi: 10.3390/mi11040341
    [9] SANGWAN V K, HERSAM M C. Neuromorphic nanoelectronic materials [J]. Nat Nanotechnol,2020,15(7):517-528. doi: 10.1038/s41565-020-0647-z
    [10] 靳志斌, 张健, 谷志刚. 表面配位金属-有机框架薄膜的制备及电催化应用 [J]. 功能高分子学报,2021,34(3):198-214.

    JIN Z B, ZHANG J, GU Z G. A review on the preparation and electrocatalysis of surface-coordinated metal-organic framework thin films [J]. Journal of Functional Polymers,2021,34(3):198-214.
    [11] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science,2007,318(5849):426-430. doi: 10.1126/science.1147241
    [12] HUANG N, ZHANG S, YANG L, et al. Multifunctional electrochemical platforms based on the michael addition/schiff base eeaction of polydopamine modified reduced graphene oxide: Construction and application [J]. ACS Appl Mater Interfaces,2015,7(32):17935-17946. doi: 10.1021/acsami.5b04597
    [13] ZHENG Z, LI M, SHI P, et al. Polydopamine-modified collagen sponge scaffold as a novel dermal regeneration template with sustained release of platelet-rich plasma to accelerate skin repair: a one-step strategy [J]. Bioact Mater,2021,6(8):2613-2628. doi: 10.1016/j.bioactmat.2021.01.037
    [14] BANDARA H M D, BURDETTE S C. Photoisomerization in different classes of azobenzene [J]. Chem Soc Rev,2012,41(5):1809-1825. doi: 10.1039/C1CS15179G
    [15] GALANTI A, DIEZ-CABANES V, SANTORO J, et al. Electronic decoupling in C3-symmetrical light-responsive tris(azobenzene) scaffolds: Self-assembly and multiphotochromism [J]. J Am Chem Soc,2018,140(47):16062-16070. doi: 10.1021/jacs.8b06324
    [16] ZHANG Z Y, HE Y, ZHOU Y, et al. Pyrazolylazophenyl ether-based photoswitches: facile synthesis, (near-)quantitative photoconversion, long thermal half-life, easy functionalization, and versatile applications in light-responsive systems [J]. Chemistry,2019,25(58):13402-13410. doi: 10.1002/chem.201902897
    [17] 田晨, 孙柳英, 陶鑫峰, 等. 偶氮苯超支化聚合物的自组装及其光响应性 [J]. 功能高分子学报,2020,33(3):284-289.

    TIAN C, SUN L Y, TAO X F, et al. Self-assembly and photo-responsiveness of hyperbranched azopolymers [J]. Journal of Functional Polymers,2020,33(3):284-289.
    [18] MENG L, XIN N, HU C, et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor [J]. Nat Commun,2019,10(1):1450-1457. doi: 10.1038/s41467-019-09120-1
    [19] LENFANT S, VIERO Y, KRZEMINSKI C, et al. New photomechanical molecular switch based on a linear π-conjugated system [J]. The Journal of Physical Chemistry C,2017,121(22):12416-12425. doi: 10.1021/acs.jpcc.7b01240
    [20] ISMAIL N A N, SHAARI S, JUHARI N, et al. Solvent effect on the electrical and structural properties for MEH-PPV organic light emitting diodes (OLED) [J]. Journal of Physics: Conference Series,2021,1755(1):2027-2032.
    [21] LI H, HUANG K, DONG Y, et al. Efficient organic solar cells with the active layer fabricated from glovebox to ambient condition [J]. Applied Physics Letters,2020,117(13):3301-3308.
    [22] SHAMIEH B, SARKAR T, FREY G L. One-step processing of multilayers in organic solar cells [J]. Journal of Materials Chemistry C,2020,8(26):8992-8998. doi: 10.1039/D0TC00195C
    [23] SAMPAIO P G V, GONZÁLEZ M O A, OLIVEIRA FERREIRA P, et al. Overview of printing and coating techniques in the production of organic photovoltaic cells [J]. International Journal of Energy Research,2020,44(13):9912-9931. doi: 10.1002/er.5664
    [24] MOSCIATTI T, BONACCHI S, GOBBI M, et al. Optical input/electrical output memory elements based on a liquid crystalline Azobenzene polymer [J]. ACS Appl Mater Interfaces,2016,8(10):6563-6569. doi: 10.1021/acsami.5b12430
    [25] NGUYEN D T, FREITAG M, GUTHEIL C, et al. An arylazopyrazole-based N-heterocyclic carbene as a photoswitch on gold surfaces: Light-switchable wettability, work function, and conductance [J]. Angew Chem Int Ed Engl,2020,59(32):13651-13656. doi: 10.1002/anie.202003523
    [26] BIAN Q, WANG W, WANG S, et al. Light-triggered specific cancer cell release from cyclodextrin/azobenzene and aptamer-modified substrate [J]. ACS Appl Mater Interfaces,2016,8(40):27360-27367. doi: 10.1021/acsami.6b09734
    [27] CHO D, YANG M, SHIN N, et al. Mapping reversible photoswitching of molecular resistance fluctuations during the conformational transformation of azobenzene-terminated molecular switches [J]. Nanotechnology,2018,29(36):365704-365715. doi: 10.1088/1361-6528/aacb17
    [28] PRANANTYO D, XU L Q, NEOH K G, et al. Antifouling coatings via tethering of hyperbranched polyglycerols on biomimetic anchors [J]. Industrial & Engineering Chemistry Research,2016,55(7):1890-1901.
    [29] NIEDZIALKOWSKI P, BOJKO M, RYL J, et al. Ultrasensitive electrochemical determination of the cancer biomarker protein sPD-L1 based on a BMS-8-modified gold electrode [J]. Bioelectrochemistry,2021,139:107742. doi: 10.1016/j.bioelechem.2021.107742
    [30] ZHANG B, YAN Q, YUAN S, et al. Enhanced antifouling and anticorrosion properties of stainless steel by biomimetic anchoring pegdma-cross-linking polycationic brushes [J]. Industrial & Engineering Chemistry Research,2019,58(17):7107-7119.
    [31] DHANKHAR S S, NAGARAJA C M. Porous nitrogen-rich covalent organic framework for capture and conversion of CO2 at atmospheric pressure conditions [J]. Microporous and Mesoporous Materials,2020,308:110314-110320. doi: 10.1016/j.micromeso.2020.110314
    [32] KIM Y, WANG G, CHOE M, et al. Electronic properties associated with conformational changes in azobenzene-derivative molecular junctions [J]. Organic Electronics,2011,12(12):2144-2150. doi: 10.1016/j.orgel.2011.08.017
    [33] KUNFI A, BERNADETT VLOCSKO R, KERESZTES Z, et al. Photoswitchable macroscopic solid surfaces based on azobenzene-functionalized polydopamine/gold nanoparticle composite materials: Formation, isomerization and ligand exchange [J]. Chempluschem,2020,85(5):797-805. doi: 10.1002/cplu.201900674
    [34] MARGAPOTI E, LI J, CEYLAN O, et al. A 2D semiconductor-self-assembled monolayer photoswitchable diode [J]. Adv Mater,2015,27(8):1426-1431. doi: 10.1002/adma.201405110
    [35] VELAYUTHAM T S, AZMINA M S, MANICKAM-ACHARI V, et al. A new light-responsive resistive random-access memory device containing hydrogen-bonded complexes [J]. Journal of Photochemistry and Photobiology A: Chemistry,2021,404:112914-112924. doi: 10.1016/j.jphotochem.2020.112914
    [36] WANG C, DONG W, LI P, et al. Reversible ion-conducting switch by azobenzene molecule with light-controlled sol-gel transitions of the PNIPAm ion gel [J]. ACS Appl Mater Interfaces,2020,12(37):42202-42209. doi: 10.1021/acsami.0c12910
  • 加载中
图(7)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  16
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 网络出版日期:  2021-08-30

目录

    /

    返回文章
    返回