高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合静态光散射和耗散粒子动力学解析多级纳米线结构

杨文漪 吴芳升 王立权 林嘉平

杨文漪, 吴芳升, 王立权, 林嘉平. 结合静态光散射和耗散粒子动力学解析多级纳米线结构[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210610002
引用本文: 杨文漪, 吴芳升, 王立权, 林嘉平. 结合静态光散射和耗散粒子动力学解析多级纳米线结构[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210610002
YANG Wenyi, WU Fangsheng, WANG Liquan, LIN Jiaping. Structures of Hierarchical Nanowires Analyzed by Static Light Scattering Characterization and Dissipative Particle Dynamics Simulation[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210610002
Citation: YANG Wenyi, WU Fangsheng, WANG Liquan, LIN Jiaping. Structures of Hierarchical Nanowires Analyzed by Static Light Scattering Characterization and Dissipative Particle Dynamics Simulation[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210610002

结合静态光散射和耗散粒子动力学解析多级纳米线结构

doi: 10.14133/j.cnki.1008-9357.20210610002
基金项目: 国家自然科学基金(51833003,21774032)
详细信息
    作者简介:

    杨文漪(1996—),女,硕士生,主要研究方向为大分子自组装。E-mail:15216776867@163.com

    通讯作者:

    王立权,E-mail:lq_wang@ecust.edu.cn

    林嘉平,E-mail:jlin@ecust.edu.cn

  • 中图分类号: O63

Structures of Hierarchical Nanowires Analyzed by Static Light Scattering Characterization and Dissipative Particle Dynamics Simulation

  • 摘要: 由聚(γ-苄基-L-谷氨酸酯)-g-聚乙二醇(PBLG-g-PEG)自组装成的初级胶束可以在低温诱导下再次组装,形成一维多级纳米线。通过静态光散射表征和耗散粒子动力学模拟获取了纳米线在溶液中的结构信息,研究并分析了多级纳米线在溶液中的状态,进而探讨了初始混合溶剂和生长时间对纳米线的影响。研究表明,纳米线的形状因子与散射波矢的依赖关系与观测范围密切相关,揭示了不同聚合度的纳米线的结构;多级自组装形成的纳米线可以与高分子类比,表现为刚性高分子的特征,这与PBLG链的有序排列密切相关。

     

  • 图  1  初级胶束和纳米线的制备示意图

    Figure  1.  Schematic for preparing spindles and nanowires

    图  2  纳米线的DPD模型

    Figure  2.  DPD model of a nanowire

    图  3  (a)初级胶束和(b)纳米线的静态光散射函数图像(样品质量浓度为0.004 g/mL,插图为相应的SEM图,标尺为1 μm)

    Figure  3.  Plots of R/Kc against q for(a)spindle and(b)nanowires solutions (with the concentration of 0.004 g/mL, Typical SEM images are presented in the inset, where the scale bars is 1 μm)

    图  4  纺锤状胶束的R/K$\;\rho $、由DPD模拟得到的Pq)以及理论椭球形状模型的Pq)分别与q的依赖关系

    Figure  4.  Plots ofR/K$\;\rho $ as a function of the scatter vector q for the solution of spindle-like micelles; Pq)as a function of the scatter vectorq for the solution of ellipsoids(DPD and theory method). The lines are fitting lines.

    图  5  由DPD模拟得到的不同聚合度纳米线溶液的(a)Pq)与q的关系和(b)双对数坐标系下R/q的关系(其中蓝点为实验数据)

    Figure  5.  (a)The plots of R/ as a function of scatter vector q and(b)Log-log plots for R/ as a function of scatter vector q for the nanowires with various degree of polymerization (where the blue dots are experimental data)

    图  6  (a)不同溶剂条件下形成纳米线的静态光散射图;(b)DPD模拟得到的不同长径比胶束的Pq)与q关系图

    Figure  6.  (a)SLS profiles of nanowires prepared from various THF/DMF solvents;(b)Pq)as a function of q for spindles with vaiours L/D ratios(DPD simulation)

    图  7  纳米线随时间变化的静态光散射图

    Figure  7.  SLS profiles of nanowires obtained at various growth time

  • [1] WANG A D, HANG J B, YAN Y. Hierarchical molecular self-assemblies: Construction and advantages [J]. Soft Matter,2014,10:3362-3373. doi: 10.1039/c3sm53214c
    [2] CAI C C, LIN J P, LU Y Q, et al. Polypeptide self-assemblies: Nanostructures and bioapplications [J]. Chemical Society Reviews,2016,45:5985-6012.
    [3] 许升, 徐振宇, 王乾坤, 等. “项链状”聚合物/碳纳米管杂化组装体构建多巴胺传感器 [J]. 功能高分子学报,2019,32(3):307-315.

    XU S, XU Z Y, WANG Q K, et al. Fabrication of dopamine sensor based on hybrid assembly of necklace-like polymer/carbon nanotubes [J]. Journal of Functional Polymers,2019,32(3):307-315.
    [4] SEZIN S, ECE O, EGEMEN A, et al. Multifunctional one-dimensional polymeric nanostructures for drug delivery and biosensor applications [J]. Nanotechnology,2019,30(40):412001.
    [5] CANTON I, WARREN N J, CHAHAL A, et al. Mucin-inspired thermoresponsive synthetic hydrogels induce stasis in human pluripotent stem cells and human embryos [J]. ACS Central Science,2016,2(2):65-74. doi: 10.1021/acscentsci.5b00370
    [6] CHEN D Y, JIANG M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions [J]. Accounts of Chemical Research,2005,38(6):494-502. doi: 10.1021/ar040113d
    [7] ZHANG X, LV L, WU G, et al. Cluster-mediated assembly enables step-growth copolymerization from binary nanoparticle mixtures with rationally designed architectures [J]. Chemical Science,2018,9(16):3986-3991. doi: 10.1039/C8SC00220G
    [8] FANG B, WALTHER A, WOLF A, et al. Undulated multicompartment cylinders by the controlled and directed stacking of polymer micelles with a compartmentalized corona [J]. Angewandte Chemie International Edition,2009,48(16):2877-2880. doi: 10.1002/anie.200806051
    [9] HIFSUDHEEN M, MISHRA R K, VEDHANARAYANAN B, et al. The helix to super-helix transition in the self-assembly of π-systems: Superseding of molecular chirality at hierarchical level [J]. Angewandte Chemie International Edition,2017,129(41):12808-12812.
    [10] WANG X, GUERIN G, WANG H, et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture [J]. Science,2007,317(5838):644-647. doi: 10.1126/science.1141382
    [11] QI F, GUERIN G, CAMBRIDGE G, et al. Influence of solvent polarity on the self-assembly of the crystalline-coil diblock copolymer polyferrocenylsilane-b-polyisoprene [J]. Macromolecules,2011,44(15):6136-6144. doi: 10.1021/ma2008223
    [12] QIU H, RUSSO G, RUPAR P A, et al. Tunable supermicelle architectures from the hierarchical self-assembly of amphiphilic cylindrical b-a-b triblock co-micelles [J]. Angewandte Chemie International Edition,2012,124(47):12052-12055.
    [13] HSIAO M S, YUSOFF S F M, WINNIK M A, et al. Controlling micelle morphology through the influence of molar mass and solvent selectivity [J]. Macromolecules,2014,47(7):2361-2372. doi: 10.1021/ma402429d
    [14] GILROY J B, GADT T, WHITTELL G R, et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly [J]. Nature Chemistry,2010,2(7):566-570. doi: 10.1038/nchem.664
    [15] FINNEGAN J R, LUNN D J, GOULD O E C, et al. Gradient crystallization-driven self-assembly: Cylindrical micelles with “patchy” segmented coronas via the coassembly of linear and brush block copolymers [J]. Journal of the American Chemical Society,2014,136(39):13835-13844. doi: 10.1021/ja507121h
    [16] GUERIN G, QI F, CAMBRIDGE G, et al. Evaluation of the cross section of elongated micelles by static and dynamic light scattering [J]. The Journal of Physical Chemistry B,2012,116(14):4328-4337. doi: 10.1021/jp210454z
    [17] GAO H B, MA X D, LIN J P, et al. Synthesis of nanowires via temperature-induced supramolecular step-growth polymerization [J]. Macromolecules,2019,52:7731-7739. doi: 10.1021/acs.macromol.9b01358
    [18] CAI C H, LI Y L, LIN J P, et al. Simulation-assisted self-assembly of multicomponent polymers into hierarchical assemblies with varied morphologies [J]. Angew Chemie International Edition,2013,52(30):7732-7736. doi: 10.1002/anie.201210024
    [19] ZHU X Y, GUAN Z, LIN J P, et al. Strip-pattern-spheres self-assembled from polypeptide-based polymer mixtures: Structure and defect features [J]. Scientific Reports,2016,6:29796. doi: 10.1038/srep29796
    [20] ZHANG S, CAI C H, GUAN ZH, et al. Fabrication of virus-like particles with strip-pattern surface: A two-step self-assembly approach [J]. Chinese Chemical Letters,2017,28(4):839-844. doi: 10.1016/j.cclet.2016.12.040
    [21] 张朔, 李庆, 林嘉平, 等. 聚乙二醇-接枝-聚(γ-苄基L-谷氨酸酯) 刚-柔接枝共聚物的合成及其自组装行为研究 [J]. 高分子学报,2017(2):294-305. doi: 10.11777/j.issn1000-3304.2017.16258

    ZHANG S, LI Q, LIN J P, et al. Synthesis and self-assembly of poly (ethylene glycol)-g-poly (γ-benzyl-l-glutamate) rod-coil graft copolymers [J]. Acta Polymerica Sinica,2017(2):294-305. doi: 10.11777/j.issn1000-3304.2017.16258
    [22] WANG Y, WANG Y, BREED D R, et al. Colloids with valence and specific directional bonding [J]. Nature,2012(491):51-56.
    [23] LI Y, JIANG T, LIN S, et al. Hierarchical nanostructures self-assembled from a mixture system containing rod-coil block copolymers and rigid homopolymers [J]. Scientific Reports,2015,5(1):1-13. doi: 10.9734/JSRR/2015/14076
    [24] ZHANG Q, LIN J, WANG L, et al. Theoretical modeling and simulations of self-assembly of copolymers in solution [J]. Progress in Polymer Science,2017,75:1-30. doi: 10.1016/j.progpolymsci.2017.04.003
    [25] CONNORS K A. Chemical Kinetics: The Study of Reaction Rates in Solution[M]. Wiley-VCH Verlag GmbH, 1990.
    [26] HOOGERBRUGGE P J, KOELMAN J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhysics Letters,1992,19(3):155. doi: 10.1209/0295-5075/19/3/001
    [27] LU Y, GAO L, LIN J, et al. Supramolecular step-growth polymerization kinetics of pre-assembled triblock copolymer micelles [J]. Polymer Chemistry,2019,10(25):3461-3468. doi: 10.1039/C9PY00539K
    [28] PEDERSEN J S. Analysis of small-angle scattering data from colloids and polymer solutions: Modeling and least-squares fitting [J]. Advances in colloid and interface science,1997,70:171-210. doi: 10.1016/S0001-8686(97)00312-6
    [29] ROIG-SOLVAS B, BROOKS D, MAKOWSKI L. A direct approach to estimate the anisotropy of protein structures from small-angle X-ray scattering [J]. Journal of Applied Crystallography,2019,52(2):274-283. doi: 10.1107/S1600576719000918
  • 加载中
图(7)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  28
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 网络出版日期:  2021-08-23

目录

    /

    返回文章
    返回