高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丁内酰胺/壳聚糖电纺纳米蛛网复合纤维膜的制备及性能

曾贝迪 陈涛 赵黎明

曾贝迪, 陈 涛, 赵黎明. 聚丁内酰胺/壳聚糖电纺纳米蛛网复合纤维膜的制备及性能[J]. 功能高分子学报,2022,35(3):1-8 doi: 10.14133/j.cnki.1008-9357.20210603001
引用本文: 曾贝迪, 陈 涛, 赵黎明. 聚丁内酰胺/壳聚糖电纺纳米蛛网复合纤维膜的制备及性能[J]. 功能高分子学报,2022,35(3):1-8 doi: 10.14133/j.cnki.1008-9357.20210603001
ZENG Beidi, CHEN Tao, ZHAO Liming. Preparation and Properties of Polybutyrolactam/Chitosan Electrospun Composite Fiber Membranes with Nano-cobweb Structure[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210603001
Citation: ZENG Beidi, CHEN Tao, ZHAO Liming. Preparation and Properties of Polybutyrolactam/Chitosan Electrospun Composite Fiber Membranes with Nano-cobweb Structure[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210603001

聚丁内酰胺/壳聚糖电纺纳米蛛网复合纤维膜的制备及性能

doi: 10.14133/j.cnki.1008-9357.20210603001
基金项目: 上海市自然科学基金项目(21ZR1416000)
详细信息
    作者简介:

    曾贝迪(1996—),女,硕士生,主要研究方向为静电纺丝。E-mail:betty_zeng03@163.com

    通讯作者:

    陈 涛,E-mail: tchen@ecust.edu.cn;赵黎明,E-mail: zhaoliming@ ecust.edu.cn

  • 中图分类号: TQ340

Preparation and Properties of Polybutyrolactam/Chitosan Electrospun Composite Fiber Membranes with Nano-cobweb Structure

  • 摘要: 以生物基材料聚丁内酰胺(PBL)和壳聚糖(CS)为原料,考察了PBL/CS的混合液比例以及混合液浓度对纺丝混合液性质及电纺纤维膜的影响,并探讨了所制得电纺复合纤维膜的细胞相容性。结果表明:增加共混物中CS的含量及混合液浓度均会引起纺丝混合液电导率及黏度的增加;当混合液电导率的增加幅度较大时,有利于制得具有纳米蛛网结构的纤维膜;CS的加入抑制了PBL的结晶,制得的纤维结晶度低,甚至为无定形态。MTT实验表明:PBL/CS纤维膜无细胞毒性,可促进细胞增殖,且具有纳米蛛网结构的电纺复合纤维膜的细胞增殖效果更佳。

     

  • 图  1  PBL/CS纤维膜的形貌:(a~c)纤维膜的SEM照片;(a1~c1)纤维的直径分布图

    Figure  1.  Morphology of PBL/CS composite fiber membranes: (a—c) SEM images of fiber membranes; (a1~c1) Diameter distribution of fiber

    w(CS)/%; a, a1—10; b, b1—20; c, c1—30;wp=8.0%

    图  2  PBL/CS复合纤维膜的形貌:(a~c) PBL/CS复合纤维膜的SEM照片;(a1~c1)支架纤维的直径分布;(b2,c2):(b,c),中蛛网纤维的直径分布

    Figure  2.  Morphology of PBL/CS composite fiber membranes: (a—c) SEM images of samples; (a1—c1) Diameter distribution of samples; (b2—c2) Diameter distribution of nano-cobweb fibers in (b,c), respectively

    图  3  PBL/CS复合纤维膜的FI-IR谱图

    Figure  3.  FI-IR spectra of PBL/CS composite fiber membranes

    图  4  PBL/CS复合纤维膜及PBL粉末的XRD图

    Figure  4.  XRD curves of PBL powder and PBL/CS composite fiber membranes

    图  5  PBL/CS复合纤维膜C2C12细胞活性影响的(a)直接MTT图和(b)间接MTT图

    Figure  5.  (a) Direct and (b) indirect MTT results of PBL/CS composite fiber membranes cultured with C2C12 cells

    图  6  种植细胞PBL/CS复合纤维膜的体外荧光图

    Figure  6.  Fluorescence of cell cultured PBL/CS composite fiber membranes in vitro

    wp/%: a—9.0, b—10.0, c—11.0; w(CS)/%: a—10.0, b—20.0, c—30.0

    表  1  w(CS)对混合液及纤维膜性质的影响

    Table  1.   Influence of w(CS) on the properties of solutions and fiber membranes

    w(CS)/%σ/
    (mS·cm−1)
    η/
    (Pa·s)
    D/
    nm
    P/
    %
    03.710.46
    104.211.859033.7
    205.144.777240.2
    306.029.989453.6
    σ: Conductivity of solution; η: Viscosity of solution; D: Average diameter of fiber; P: Porosity of fiber membrane
    下载: 导出CSV

    表  2  不同混合液浓度对混合液及复合纤维膜性质的影响

    Table  2.   Effect of wp on the properties of solutions and fiber membranes

    wp/%w(CS)/%σ/
    (mS·cm−1
    η
    /(Pa·s)
    D/nmCobweb coverage/%P/%
    scaffoldcobweb
    9.0104.711.906172.3
    10.0205.684.99140131046.1
    11.0306.5710.381641010055.1
    下载: 导出CSV

    表  3  wp对电导率及黏度增幅的影响

    Table  3.   Effect of wp on the increase of solution conductivity and viscosity

    w(CS)/%wp1/%wp2/%Δwp/%Δσ
    /(mS·cm−1)
    $\frac{ {\displaystyle\varDelta\sigma} }{\displaystyle {\sigma}}$/%Δη
    (Pa·s)
    $\frac{ \displaystyle{\varDelta\eta} }{ {\displaystyle {\eta} } } $/%
    108.09.01.00.5011.90.052.7
    208.010.02.00.5410.50.224.6
    308.011.03.00.559.10.404.0
    Δwp=wp2-wp1, Δσ= σ2-σ1, Δη=η2η1
    下载: 导出CSV
  • [1] 刘兆麟. 纳米蛛网纤维材料的可控构筑与应用 [J]. 材料导报,2019,33(5):181-190.

    LIU Zhaolin. Tunable construction and application of nano-cobweb fibrous material [J]. Materials Reports,2019,33(5):181-190.
    [2] DING B, SI Y, WANG X, YU J Y, FENGD L, SUN G. Label-free ultrasensitive colorimetric detection of copper (II) ions utilizing polyaniline/polyamide-6 nano-fiber/net sensor strips [J]. Journal of Materials Chemistry,2011,21(35):13345-13353. doi: 10.1039/c1jm11851j
    [3] ZAMANI F, AMANI-TEHRAN M, LATIFI M, SHOKRGOZAR M A. Promotion of spinal cord axon regeneration by 3D nanofibrous core–sheath scaffolds [J]. Journal of Biomedical Materials Research Part A,2014,102(2):506-513. doi: 10.1002/jbm.a.34703
    [4] SASKIAWAN I. Biosynthesis of polyamide 4, a biobased and biodegradable polymer [J]. Microbiology Indonesia,2008,2(3):119-123. doi: 10.5454/mi.2.2.5
    [5] YAMANO N, KAWASAKI N, IDA S, NAKAYAMA Y, NAKAYAMA A. Biodegradation of polyamide 4 in vivo [J]. Polymer Degradation and Stability,2017,137:281-288. doi: 10.1016/j.polymdegradstab.2017.02.004
    [6] WILEY J, INC S. Degradation of several polyamides in soils [J]. Journal of Applied Polymer Science,1994,54:1579-1583. doi: 10.1002/app.1994.070541023
    [7] HASHIMOTO K, SUDO M, OHTA K, SUGIMURA T, YAMADA H, AOKI T. Biodegradation of Nylon 4 and its blend with nylon6 [J]. Journal of Applied Polymer Science,2002,86(9):2307-2311. doi: 10.1002/app.11235
    [8] KAZUHIKO H, SUDO M, SUGIMURA T, INAGAKI Y. Synthesis of novel block copolymers containing polyamide 4 segments and control of their biodegradability [J]. Journal of Applied Polymer Science,2004,92(6):3492-3498. doi: 10.1002/app.20348
    [9] YAMANO N, KAWASAKI N, OSHIMA M, NAKAYAMA A. Polyamide 4 with long-chain fatty acid groups : Suppressing the biodegradability of biodegradable polymers [J]. Polymer Degradation and Stability,2014,108:116-122. doi: 10.1016/j.polymdegradstab.2014.06.011
    [10] KAWASAKI N, NAKAYAMA A, YAMANO N, YAMANO N, TAKEDA S, KWATA Y, YAMAMOTO N, AIBA S. Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4 [J]. Polymer,2005,46(23):9987-9993. doi: 10.1016/j.polymer.2005.06.092
    [11] YAMANO N, KAWASAKI N, IDA S, NAKAYAMAET A. Biodegradation of polyamide 4 in seawater [J]. Polymer Degradation and Stability,2019,166:230-236. doi: 10.1016/j.polymdegradstab.2019.05.032
    [12] SAMUELS R J. Solid state characterization of the structure of chitosan films [J]. Journal of Polymer Science:Polymer Physics Edition,1981,19(7):1081-1105. doi: 10.1002/pol.1981.180190706
    [13] HASEGAWA M, ISOGAI A, ONABE F, USUDA M. Dissolving states of cellulose and chitosan in trifluoroacetic acid [J]. Journal of applied polymer science,1992,45(10):1857-1863. doi: 10.1002/app.1992.070451020
    [14] PA J H, YU T L. Light scattering study of chitosan in acetic acid aqueous solutions [J]. Macromolecular Chemistry and Physics,2001,202(7):985-991. doi: 10.1002/1521-3935(20010401)202:7<985::AID-MACP985>3.0.CO;2-2
    [15] SAKURAI K, SHIBANO T, KIMURA K, TAKAHASHI T. Crystal structure of chitosan II. Molecular packing in unit cell of crystal [J]. Sen'i Gakkaishi,1985,41(9):T361-T368. doi: 10.2115/fiber.41.9_T361
    [16] 陈晨, 陈涛, 赵黎明, 邱永隽. CO2对酰基化合物引发 2-吡咯烷酮聚合的影响 [J]. 功能高分子学报,2020,33(3):290-296.

    CHEN C, CHEN T, ZHAO L M, JIU Y J. Influence of CO2 on acyl compound initiated polymerization of 2-pyrrolidone [J]. Journal of Functional Polymers,2020,33(3):290-296.
    [17] CHEN T, WANG C, ZHAO L, WANG L J, QIU Y J. Suspension polymerization of 2-pyrrolidone in the presence of CO2 and organic promoters [J]. Journal of Applied Polymer Science,2021,138(4):e49736. doi: 10.1002/app.49736
    [18] WANG X, DING B, SUN G, WANG M, YU J Y . Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets [J]. Progress in Materials Science,2013,58(8):1173-1243. doi: 10.1016/j.pmatsci.2013.05.001
    [19] MA Y, ZHOU T, ZHAO C. Preparation of chitosan–nylon-6 blended membranes containing silver ions as antibacterial materials [J]. Carbohydrate Research,2008,343(2):230-237. doi: 10.1016/j.carres.2007.11.006
    [20] GONZÁLEZ V, GUERRERO C, ORTIZ U. Chemical structure and compatibility of polyamide–chitin and chitosan blends [J]. Journal of Applied Polymer Science,2000,78(4):850-857. doi: 10.1002/1097-4628(20001024)78:4<850::AID-APP190>3.0.CO;2-N
    [21] CHEN T, ZHONG G C, ZHANG Y T, ZHAO L M, QIU Y J. Bio-based and biodegradable electrospun fibers composed of poly(L-lactide) and polyamide 4 [J]. Chinese Journal of Polymer Science,2020,38(1):53-62. doi: 10.1007/s10118-019-2299-8
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  60
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 网络出版日期:  2021-10-21

目录

    /

    返回文章
    返回