高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乳酸/聚丁内酰胺电纺核-壳结构纤维的制备及性能

张媛婷 明远 陈涛 赵黎明 邱永隽

张媛婷, 明 远, 陈 涛, 等. 聚乳酸/聚丁内酰胺电纺核-壳结构纤维的制备及性能[J]. 功能高分子学报,2022,35(2):137-145 doi: 10.14133/j.cnki.1008-9357.20210531001
引用本文: 张媛婷, 明 远, 陈 涛, 等. 聚乳酸/聚丁内酰胺电纺核-壳结构纤维的制备及性能[J]. 功能高分子学报,2022,35(2):137-145 doi: 10.14133/j.cnki.1008-9357.20210531001
ZHANG Yuanting, MING Yuan, CHEN Tao, ZHAO Liming, QIU Yongjun. Preparation and Properties of PLLA/PBL Electrospun Fibers with Core-Sheath Structure[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210531001
Citation: ZHANG Yuanting, MING Yuan, CHEN Tao, ZHAO Liming, QIU Yongjun. Preparation and Properties of PLLA/PBL Electrospun Fibers with Core-Sheath Structure[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210531001

聚乳酸/聚丁内酰胺电纺核-壳结构纤维的制备及性能

doi: 10.14133/j.cnki.1008-9357.20210531001
基金项目: 上海市自然科学基金(21ZR1416000)
详细信息
    作者简介:

    张媛婷(1996—),女,陕西宝鸡人,硕士生,主要研究方向为生物基材料的静电纺丝。E-mail:happyzyt@126.com

    通讯作者:

    陈 涛,E-mail: tchen@ecust.edu.cn; 赵黎明,E-mail: zhaoliming@ ecust.edu.cn

  • 中图分类号: TQ340

Preparation and Properties of PLLA/PBL Electrospun Fibers with Core-Sheath Structure

  • 摘要: 通过溶液静电纺丝法制备了基于聚L-乳酸/聚丁内酰胺(PLLA/PBL)共混体系的全生物基可降解纤维。通过扫描电子显微镜(SEM)、接触角测试、差示扫描量热(DSC)、X射线衍射(XRD)、透射电子显微镜(TEM)以及全反射红外光谱(ATR)等方法,表征并分析了PLLA与PBL的共混比例对纤维形貌、直径、亲水性、热性能及结晶性能的影响,并研究了共混纤维的内部结构。结果表明:PLLA与PBL以不同比例共混电纺均可得到形貌均匀的纤维,PLLA/PBL共混纤维的直径低于纯PLLA纤维的直径,且PLLA/PBL共混纤维的平均直径随PBL含量的增加而减小;PBL的加入没有明显改善PLLA/PBL共混纤维的亲水性,但对纤维中PLLA组分的结晶以及晶体的完善有阻碍作用;电纺过程中溶剂挥发导致的相分离使PLLA/PBL共混纤维形成了以PLLA为壳、PBL为核的核-壳结构。

     

  • 图  1  PLLA/PBL共混纤维的SEM图像

    Figure  1.  SEM images of PLLA/PBL blend fibers

    图  2  纤维平均直径随PBL质量分数的变化

    Figure  2.  Fiber average diameters versus PBL mass fractions

    图  3  PLLA/PBL共混纤维的DSC曲线

    Figure  3.  DSC curves of PLLA/PBL blend fibers

    图  4  PLLA/PBL共混纤维膜的XRD图像

    Figure  4.  XRD patterns of PLLA/PBL blend fiber membranes

    图  5  PLLA/PBL共混纤维膜表面接触角及水滴形态

    Figure  5.  Contact angles and droplet morphologies on PLLA/PBL blend fiber membrane surfaces

    图  6  PLLA/PBL共混纤维膜的TEM图像(w(PBL) = 50%)

    Figure  6.  TEM images of PLLA/PBL blend fiber membrane (w(PBL)= 50%)

    图  7  PLLA/PBL共混纤维膜DCM刻蚀后的SEM图像

    Figure  7.  SEM images of PLLA/PBL blend fiber membranes etched by DCM

    图  8  PLLA/PBL共混纤维膜的(a)剩余质量随刻蚀时间的变化情况以及(b~d)在不同刻蚀时间的ATR谱图

    Figure  8.  (a) PLLA/PBL fiber membrane residual mass versus etching time and (b—d) ATR spectra at different etching time

  • [1] ZUPANČIČ Š. Core-shell nanofibers as drug delivery systems [J]. Acta Pharm,2019,69(2):131-153. doi: 10.2478/acph-2019-0014
    [2] ALHARBI H F, LUQMAN M, KHALIL K A, et al. Fabrication of core-shell structured nanofibers of poly(lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering [J]. European Polymer Journal,2018,98:483-491. doi: 10.1016/j.eurpolymj.2017.11.052
    [3] MOGHE A K, GUPTA B S. Co-axial electrospinning for nanofiber structures: Preparation and applications [J]. Polymer Reviews,2008,48(2):353-377. doi: 10.1080/15583720802022257
    [4] SU S, BEDIR T, KALKANDELEN C, et al. Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications [J]. European Polymer Journal,2021,142:110158. doi: 10.1016/j.eurpolymj.2020.110158
    [5] TIPDUANGTA P, BELTON P, FABIAN L, et al. Electrospun polymer blend nanofibers for tunable drug delivery: The role of transformative phase separation on controlling the release rate [J]. Molecular Pharmaceutics,2016,13(1):25-39. doi: 10.1021/acs.molpharmaceut.5b00359
    [6] LI G, ZHAO M H, XU F, et al. Synthesis and biological application of polylactic acid [J]. Molecules,2020,25(21):5023. doi: 10.3390/molecules25215023
    [7] NCUBE L K, UDE A U, OGUNMUYIWA E N, et al. Environmental impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid based materials [J]. Materials,2020,13(21):4994. doi: 10.3390/ma13214994
    [8] 钟郭程, 陈涛, 赵黎明, 等. 立构二嵌段聚乳酸微纳米纤维的制备与结晶性能 [J]. 华东理工大学学报(自然科学版),2020,46(4):480-487.

    ZHONG G C, CHEN T, ZHAO L M, et al. Preparation and crystallization properties of di-stereoblock polylactides micro/nanofibers [J]. Journal of East China University of Science and Technology,2020,46(4):480-487.
    [9] LIU S, QIN S, HE M, et al. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery [J]. Composites Part B:Engineering,2020,199:108238. doi: 10.1016/j.compositesb.2020.108238
    [10] 吴德, 唐亮琛, 唐颂超, 等. 生物基丁内酰胺及聚丁内酰胺的合成及性能 [J]. 功能高分子学报,2017,30(3):314-320.

    WU D, TANG L C, TANG S C, et al. Synthesis and properties of bio-based butyrolactam and polybutyrolactam [J]. Journal of Functional Polymers,2017,30(3):314-320.
    [11] SI J P, KIM E Y, NOH W, et al. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli [J]. Bioprocess and Biosystems Engineering,2013,36(7):885-892.
    [12] TACHIBANA K, URANO Y, NUMATA K. Biodegradability of nylon 4 film in a marine environment [J]. Polymer Degradation and Stability,2013,98(9):1847-1851. doi: 10.1016/j.polymdegradstab.2013.05.007
    [13] YAMANO N, KAWASAKI N, IDA S, et al. Biodegradation of polyamide 4 in vivo [J]. Polymer Degradation and Stability,2017,137:281-288. doi: 10.1016/j.polymdegradstab.2017.02.004
    [14] YAMANO N, KAWASAKI N, IDA S, et al. Biodegradation of polyamide 4 in seawater [J]. Polymer Degradation and Stability,2019,166:230-236. doi: 10.1016/j.polymdegradstab.2019.05.032
    [15] KIM J W, KIM H S. Synthesis and characteristics of poly(L-lactic acid-block-γ-aminobutyric acid) [J]. Textile Science and Engineering,2015,52(1):53-58. doi: 10.12772/TSE.2015.52.053
    [16] CHEN T, ZHONG G C, ZHANG Y T, et al. Bio-based and biodegradable electrospun fibers composed of poly(L-lactide) and polyamide 4 [J]. Chinese Journal of Polymer Science,2020,38(1):53-62. doi: 10.1007/s10118-019-2299-8
    [17] KONNO M, KISHI Y, TANAKA M, et al. Core/shell-like structured ultrafine branched nanofibers created by electrospinning [J]. Polymer Journal,2014,46(11):792-799. doi: 10.1038/pj.2014.74
    [18] XU J, ZHANG J, GAO W, et al. Preparation of chitosan/PLA blend micro/nanofibers by electrospinning [J]. Materials Letters,2009,63(8):658-660. doi: 10.1016/j.matlet.2008.12.014
    [19] TIWARI A P, JOSHI M K, KIM J I, et al. Bimodal fibrous structures for tissue engineering: Fabrication, characterization and in vitro biocompatibility [J]. Journal of Colloid and Interface Science,2016,476:29-34. doi: 10.1016/j.jcis.2016.02.048
    [20] BLAŽKOVÁ L, MALINOVÁ L, BENEŠOVÁ V, et al. Nanofibers prepared by electrospinning from solutions of biobased polyamide 4 [J]. Journal of Polymer Science Part A:Polymer Chemistry,2017,55(13):2203-2210. doi: 10.1002/pola.28605
    [21] PRATICK S, THANGAPANDIAN V, SAJAN S, et al. Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends [J]. Soft Matter,2016,12(23):5110-5120. doi: 10.1039/C6SM00648E
    [22] ZOU S F, WANG R Y, FAN B, et al. Effect of interface and confinement size on the crystallization behavior of PLLA confined in coaxial electrospun fibers [J]. Journal of Applied Polymer Science,2018,135(11):45980. doi: 10.1002/app.45980
    [23] TONCHEVA A, PANEVA D, MANOLOVA N, et al. Electrospun poly(L-lactide) membranes containing a single drug or multiple drug system for antimicrobial wound dressings [J]. Macromolecular Research,2011,19(12):1310-1319. doi: 10.1007/s13233-011-1206-0
    [24] YOU Y, JI H Y, LEE S W, et al. Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers [J]. Materials Letters,2006,60(6):757-760. doi: 10.1016/j.matlet.2005.10.007
    [25] BOGNITZKI M, FRESE T, STEINHART M, et al. Preparation of fibers with nanoscaled morphologies: Electrospinning of polymer blends [J]. Polymer Engineering and Science,2001,41(6):982-989. doi: 10.1002/pen.10799
    [26] LI Y, CHEN F, NIE J, et al. Electrospun poly(lactic acid)/chitosan core-shell structure nanofibers from homogeneous solution [J]. Carbohydr Polym,2012,90(4):1445-1451. doi: 10.1016/j.carbpol.2012.07.013
    [27] ZHANG J, NIE J. Transformation of complex internal structures of poly(ethylene oxide)/chitosan oligosaccharide electrospun nanofibers [J]. Polymer International,2012,61(1):135-140. doi: 10.1002/pi.3159
  • 加载中
图(8)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  45
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 网络出版日期:  2021-10-29

目录

    /

    返回文章
    返回